PhilaPort Distribution Center
3309 South Galloway Avenue and
3401 Lawrence Street
Philadelphia, PA 19148

Owner:
PhilaPort
Philadelphia Regional Port Authority

Specifications Manual
ISSUED FOR BID
December 16, 2019

Prepared by:

Pennoni
1900 Market Street, Suite 300
Philadelphia, PA 19103

NORR
1617 JFK Blvd. Suite 1600
Philadelphia, PA 19103

Arora Engineers
61 Wilmington-W Chester Pike
Chadds Ford, PA 19317
SECTION 00 01 10
TABLE OF CONTENTS

PROCUREMENT AND CONTRACTING REQUIREMENTS

1.01 DIVISION 00 -- PROCUREMENT AND CONTRACTING REQUIREMENTS
 00 01 10 - Table of Contents
 00 41 00 - Bid Form (Separate)

SPECIFICATIONS

DIVISION 01 -- GENERAL REQUIREMENTS
 01 10 00 - Summary
 01 32 00 - Construction Progress Documentation
A. 01 33 00 - Submittal Procedures
B. 01 35 43 - Environmental Procedures
 01 40 00 - Quality Requirements
 01 50 00 - Temporary Facilities and Controls
 01 60 00 - Product Requirements
C. 01 73 00 - Execution
 01 74 19 - Construction Waste Management and Disposal
D. 01 77 00 - Closeout Procedures

DIVISION 03 -- CONCRETE
 03 30 00 - Cast-In-Place Concrete
 03 45 00 - Precast Architectural and Hollowcore Concrete

DIVISION 04 -- MASONRY
 04 22 00 - Concrete Unit Masonry

DIVISION 05 -- METALS
 05 12 00 - Structural Steel Framing
 05 21 00 - Steel Joist Framing
 05 31 00 - Steel Decking
 05 50 00 - Metal Fabrications
 05 51 00 - Metal Pan Stairs
 05 52 13 - Pipe and Tube Railings
 05 53 05 - Metal Gratings and Floor Plates

DIVISION 06 -- WOOD, PLASTICS, AND COMPOSITES
 06 10 00 - Rough Carpentry
 06 61 00 - Cast Polymer Fabrications

DIVISION 07 -- THERMAL AND MOISTURE PROTECTION
 07 21 00 - Thermal Insulation
 07 21 19 - Foamed-In-Place Insulation
 07 25 00 - Weather Barriers
Table of Contents

Division 07 -- Insulated Metal Wall Panels
07 42 13 - Insulated Metal Wall Panels
07 54 23 - Thermoplastic Polyolefin (TPO) Membrane Roofing - Carlisle
07 62 00 - Sheet Metal Flashing and Trim
07 71 00 - Roof Specialties
07 72 00 - Roof Accessories
07 81 00 - Applied Fireproofing
07 84 00 - Firestopping
07 91 00 - Preformed Joint Seals
07 95 13 - Expansion Joint Cover Assemblies

Division 08 -- Openings
08 11 13 - Hollow Metal Doors and Frames
08 14 16 - Flush Wood Doors
08 33 23 - Overhead Coiling Doors
08 36 13 - Sectional Doors
08 41 13 - Aluminum-Framed Entrances and Storefronts
08 56 59 - Service and Teller Window Units
08 71 00 - Door Hardware
08 80 00 - Glazing

Division 09 -- Finishes
09 22 16 - Non-Structural Metal Framing
09 29 00 - Gypsum Board
09 30 00 - Tiling
09 51 00 - Acoustical Ceilings
09 65 00 - Resilient Flooring
09 68 13 - Tile Carpeting
09 91 13 - Exterior Painting
09 91 23 - Interior Painting

Division 10 -- Specialties
10 14 00 - Signage
10 21 13.13 - Metal Toilet Compartments
10 28 00 - Toilet, Bath, and Laundry Accessories
10 44 00 - Fire Protection Specialties
10 51 13 - Metal Lockers
10 73 16.13 - Metal Canopies

Division 11 -- Equipment
11 13 13 - Loading Dock Bumpers
11 13 16 - Loading Dock Seals and Shelters
11 13 19 - Stationary Loading Dock Equipment
11 13 19.13 - Loading Dock Levelers

DIVISION 13 -- SPECIAL CONSTRUCTION

DIVISION 21 -- FIRE SUPPRESSION
21 05 13 - Common Motor Requirements for Fire Suppression Equipment
21 05 17 - Sleeves and Sleeve Seals for Fire-Suppression Piping
21 05 18 - Escutcheons for Fire-Suppression Piping
21 05 23 - General-Duty Valves for Water-Based Fire-Suppression Piping
21 05 29 - Hangers and Supports for Fire Suppression Piping and Equipment
21 05 53 - Identification for Fire Suppression Piping and Equipment
21 07 00 - Fire Suppression Systems Insulation
21 11 00 - Facility Fire-Suppression Water-Service Piping
21 11 19 - Fire Department Connections
21 13 13 - Wet-Pipe Sprinkler Systems
21 31 16 - Diesel-Drive, Centrifugal Fire Pumps
21 34 13 - Pressure-Maintenance Pumps

DIVISION 22 -- PLUMBING
22 05 13 - Common Motor Requirements for Plumbing Equipment
22 05 16 - Expansion Fittings and Loops for Plumbing Piping
22 05 17 - Sleeves and Sleeve Seals for Plumbing Piping
22 05 18 - Escutcheons for Plumbing Piping
22 05 19 - Meters and Gauges for Plumbing Piping
22 05 23.12 - Ball Valves for Plumbing Piping
22 05 23.13 - Butterfly Valves for Plumbing Piping
22 05 23.14 - Check Valves for Plumbing Piping
22 05 29 - Hangers and Supports for Plumbing Piping and Equipment
22 05 48.13 - Vibration Controls for Plumbing Piping and Equipment
22 05 53 - Identification for Plumbing Piping and Equipment
22 07 19 - Plumbing Piping Insulation
22 11 14 - Water Distribution
22 11 16 - Domestic Water Piping
22 11 19 - Domestic Water Piping Specialties
22 11 23.21 - Inline, Domestic-Water Pumps
22 13 13 - Sanitary Sewage
22 13 16 - Sanitary Waste and Vent Piping
22 13 19 - Sanitary Waste Piping Specialties
22 13 19.13 - Sanitary Drains
22 33 00 - Electric, Domestic-Water Heaters
22 42 13.13 - Commercial Water Closets
22 42 13.16 - Commercial Urinals
22 42 16.13 - Commercial Lavatories
22 42 16.16 - Commercial Sinks
22 47 16 - Pressure Water Coolers

DIVISION 23 -- HEATING, VENTILATING, AND AIR-CONDITIONING (HVAC)
23 05 13 - Common Motor Requirements for HVAC Equipment
23 05 29 - Hangers and Supports for HVAC Piping and Equipment
23 05 53 - Identification for HVAC Piping and Equipment
23 05 93 - Testing, Adjusting, and Balancing for HVAC
23 07 13 - Duct Insulation
23 09 23 - Direct Digital Control (DDC) System for HVAC
23 11 23 - Facility Natural Gas Piping
23 31 13 - Metal Ducts
23 33 00 - Air Duct Accessories
23 34 23 - HVAC Power Ventilators
23 36 00 - Air Terminal Units
23 37 13.13 - Air Diffusers
23 37 13.23 - Registers and Grilles
23 55 13.16 - Gas Fired Duct Heaters
23 55 33.16 - Gas-Fired Unit Heaters
23 72 23.23 - Packaged, Outdoor, Heat Wheel Energy Recovery Units
23 74 16.11 - Packaged, Small-Capacity, Rooftop Air-Conditioning Units

DIVISION 25 -- INTEGRATED AUTOMATION

DIVISION 26 -- ELECTRICAL
26 05 13 - Medium-Voltage Cables
26 05 19 - Low-Voltage Electrical Power Conductors and Cables
26 05 23 - Control-Voltage Electrical Power Cables
26 05 26 - Grounding and Bonding for Electrical Systems
26 05 29 - Hangers and Supports for Electrical Systems
26 05 33 - Raceways and Boxes for Electrical Systems
26 05 43 - Underground Ducts and Raceways for Electrical Systems
26 05 44 - Sleeves and Sleeve Seals for Electrical Raceways and Cabling
26 05 53 - Identification for Electrical Systems
26 05 73.13 - Short-Circuit Studies
26 05 73.16 - Coordination Studies
26 05 73.19 - Arc-Flash Hazard Analysis
26 09 23 - Lighting Control Devices
26 11 16.12 - Secondary Unit Substations with Switchboards Secondary
Table of Contents

26 13 23 Medium-Voltage, Metal-Enclosed Switchgear
26 22 13 - Low-Voltage Distribution Transformers
26 24 16 - Panelboards
26 27 13 - Electricity Metering
26 27 26 - Wiring Devices
26 28 13 - Fuses
26 28 16 - Enclosed Switches and Circuit Breakers
26 29 13.03 - Manual and Magnetic Motor Controllers
26 41 13 - Lightning Protection for Structures
26 43 13 - Surge Protection for Low Voltage Electrical Power Circuits
26 51 19 - Led Interior Lighting
26 52 13 - Emergency and Exit Lighting
26 56 19 - Led Exterior Lighting

DIVISION 27 -- COMMUNICATIONS
27 05 26 - Grounding and Bonding for Communications Systems
27 05 28 - Pathways for Communications Systems
27 05 29 - Hangers and Supports for Communications Systems
27 05 36 - Cable Trays for Communications Systems
27 05 43 - Underground pathways and structures for communications systems
27 05 44 - Sleeves and Sleeve Seals for Communications Pathways and Cabling
27 05 53 - Identification of Communications Systems
27 11 00 Communications Equipment Room Fittings
27 15 00 - Communications Cabling

DIVISION 28 -- ELECTRONIC SAFETY AND SECURITY
28 13 00 - Security Systems Equipment
28 46 21.11 - Addressable Fire-Alarm Systems

DIVISION 31 -- EARTHWORK
31 10 00 - Site Clearing
31 20 00 - Earth Moving
31 23 19 - Dewatering
31 50 00 - Excavation Support and Protection
31 63 30 - CMC Foundations

DIVISION 32 -- EXTERIOR IMPROVEMENTS
32 12 16 - Asphalt Paving
32 13 13 - Concrete Paving
32 13 14 - Concrete Curbing
32 13 73 - Pavement Joint Sealants
32 17 23 - Pavement Markings
32 91 13 - Soil Preparation
32 92 00 - Turf and Grasses

DIVISION 33 -- UTILITIES

(CH#130893) - Storm Utility Drainage Piping
33 47 13 - Pond and Reservoir Liners

END OF SECTION
SECTION 011000
SUMMARY

1.1 SUMMARY

A. Section Includes:
 1. Project information.
 2. Work covered by Contract Documents.
 3. Coordination with occupants.
 4. Work restrictions.
 5. Specification and Drawing conventions.

1.2 PROJECT INFORMATION

A. Project Identification: PhilaPort Distribution Center
 1. Project Location: 3309 South Galloway Street & 3401 South Lawrence Street

B. Owner: Philadelphia Regional Port Authority.
 1. Owner's Representative: Sherif Azmy.

C. Engineer: Pennoni Associates, Inc.

D. Web-Based Project Software: Project software administered by Contractor will be used for purposes of managing communication and documents during the construction stage.

1.3 WORK COVERED BY CONTRACT DOCUMENTS

A. The Work of Project is defined by the Contract Documents and consists of the following:
 1. The Construction Documents including the Program of Requirements, Construction Documents and Specifications.

1.4 WORK RESTRICTIONS

A. Work Restrictions, General: Comply with restrictions on construction operations.
 1. Comply with limitations on use of public streets and with other requirements of authorities having jurisdiction.

B. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after providing temporary utility services according to requirements indicated:
1. Notify Owner not less than two days in advance of proposed utility interruptions.
2. Obtain Owner's written permission before proceeding with utility interruptions.

C. Restricted Substances: Use of tobacco products and other controlled substances on Project site will be in designated areas.

1.5 SPECIFICATION AND DRAWING CONVENTIONS

A. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:

1. Imperative mood and streamlined language are generally used in the Specifications. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.
2. Specification requirements are to be performed by Contractor unless specifically stated otherwise.

B. Division 01 General Requirements: Requirements of Sections in Division 01 apply to the Work of all Sections in the Specifications.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION
SECTION 01 32 00
CONSTRUCTION PROGRESS DOCUMENTATION

PART 1 GENERAL

1.01 SUBMITTALS

A. Informational Submittals:

 1. Preliminary Progress Schedule: Submit at least 7 days prior to preconstruction conference.
 2. Detailed Progress Schedule:
 a. Submit initial Detailed Progress Schedule within 60 days after Effective Date of the Agreement.
 b. Submit an Updated Progress Schedule at each update, in accordance with Article Detailed Progress Schedule.
 3. Submit with Each Progress Schedule Submission:
 a. Contractor’s certification that Progress Schedule submission is actual schedule being used for execution of the Work.
 b. Progress Schedule: 4 legible copies.
 c. Narrative Progress Report: Same number of copies as specified for Progress Schedule.
 4. Prior to final payment, submit a final Updated Progress Schedule.

1.02 PRELIMINARY PROGRESS SCHEDULE

A. In addition to basic requirements outlined in General Conditions, show a detailed schedule, beginning with Notice to Proceed, for minimum duration of 90 days, and a summary of balance of Project through Final Completion.

B. Show activities including, but not limited to the following:

 1. Notice to Proceed.
 2. Permits.
 3. Submittals, with review time. Contractor may use Schedule of Submittals specified in Section 01 33 00, Submittal Procedures.
 4. Early procurement activities for long lead equipment and materials.
 5. Initial Site work.
 7. Specified Work sequences and construction constraints.
 9. Owner-furnished products delivery dates or ranges of dates.
 10. Major structural, mechanical, equipment, electrical, architectural, and instrumentation and control Work.

S Construction Progress Documentation 1 01 32 00
11. System startup summary.
12. Project close-out summary.

C. Update Preliminary Progress Schedule monthly as part of progress payment process. Failure to do so may result in the Owner withholding all or part of the monthly progress payment until the Preliminary Progress Schedule is updated in a manner acceptable to Engineer.

D. Format: In accordance with Article Progress Schedule—Bar Chart.

1.03 DETAILED PROGRESS SCHEDULE

A. In addition to requirements of General Conditions, submit Detailed Progress Schedule beginning with Notice to Proceed and continuing through Final Completion.

B. Show the duration and sequences of activities required for complete performance of the Work reflecting means and methods chosen by Contractor.

C. When accepted by Engineer, Detailed Progress Schedule will replace Preliminary Progress Schedule and become Baseline Schedule. Subsequent revisions will be considered as Updated Progress Schedules.

D. Format: In accordance with Article Progress Schedule—Bar Chart.

E. Update monthly to reflect actual progress and occurrences to date, including weather delays.

1.04 PROGRESS SCHEDULE—BAR CHART

A. General: Comprehensive bar chart schedule, generally as outlined in Associated General Contractors of America (AGC) 580, "Construction Project Planning and Scheduling Guidelines." If a conflict occurs between the AGC publication and this specification, this specification shall govern.

B. Format:

1. Unless otherwise approved, white paper, 11-inch by 17-inch sheet size.
2. Title Block: Show name of Project and Owner, date submitted, revision or update number, and name of scheduler.
3. Identify horizontally, across the top of the schedule, the time frame by year, month, and day.
4. Identify each activity with a unique number and a brief description of the Work associated with that activity.

5. Legend: Describe standard and special symbols used.

C. Contents: Identify, in chronological order, those activities reasonably required to complete the Work, including as applicable, but not limited to:

1. Obtaining permits, submittals for early product procurement, and long lead time items.
2. Mobilization and other preliminary activities.
3. Initial Site work.
4. Specified Work sequences, constraints, and Milestones, including Substantial Completion date(s).
5. Subcontract Work.
6. Delivery dates for Owner-furnished products, as specified in Section 01 11 00, Summary of Work.
7. Sitework.
8. Concrete Work.
10. Architectural features Work.
11. Equipment Work.
12. Mechanical Work.
15. Interfaces with Owner-furnished equipment.
16. Other important Work for each major facility.
17. Equipment and system startup and test activities.
18. Project closeout and cleanup.
19. Demobilization.
20. No activity duration, exclusive of those for Submittals review and product fabrication/delivery, shall be less than 1 day nor more than 14 days, unless otherwise approved.
21. Activity duration for Submittal review shall not be less than review time specified unless clearly identified and prior written acceptance has been obtained from Engineer.

D. Network Graphical Display:

1. Plot or print on paper not greater than 30 inches by 42 inches or smaller than 22 inches by 34 inches, unless otherwise approved.
2. Title Block: Show name of Project, Owner, date submitted, revision or update number, and the name of the scheduler. Updated schedules shall indicate data date.
3. Identify horizontally across top of schedule the time frame by year, month, and day.
4. Identify each activity with a unique number and a brief description of the Work associated with that activity.
5. Indicate the critical path.
6. Show, at a minimum, the controlling relationships between activities.
7. Plot activities on a time-scaled basis, with the length of each activity proportional to the current estimate of the duration.
8. Plot activities on an early start basis unless otherwise requested by Engineer.
9. Provide a legend to describe standard and special symbols used.

E. Schedule Report:

1. On 8-1/2-inch by 11-inch white paper, unless otherwise approved.
2. List information for each activity in tabular format, including at a minimum:
 a. Activity Identification Number.
 b. Activity Description.
 c. Original Duration.
 d. Remaining Duration.
 e. Early Start Date (Actual start on Updated Progress Schedules).
 f. Early Finish Date (Actual finish on Updated Progress Schedules).
 g. Late Start Date.
 h. Late Finish Date.
 i. Total Float.
3. Sort reports, in ascending order, as listed below:
 a. Activity number sequence with predecessor and successor activity.
 b. Activity number sequence.
 c. Early-start.
 d. Total float.

1.05 PROGRESS OF THE WORK

A. Updated Progress Schedule shall reflect:

1. Progress of Work to within 5 working days prior to submission.
2. Approved changes in Work scope and activities modified since submission.
3. Delays in Submittals or resubmittals, deliveries, or Work.
4. Adjusted or modified sequences of Work.
5. Other identifiable changes.
6. Revised projections of progress and completion.

B. Produce detailed subschedules during Project, upon request of Owner or Engineer, to further define critical portions of the Work such as facility shutdowns.

C. If an activity is not completed by its latest scheduled completion date and this failure is anticipated to extend Contract Times (or Milestones), submit, within 7 days of such failure, a written statement as to how nonperformance will be corrected to return Project to acceptable current Progress Schedule. Actions by Contractor to complete the Work within Contract Times (or Milestones) will not be justification for adjustment to Contract Price or Contract Times.

D. Owner may order Contractor to increase plant, equipment, labor force, or working hours if Contractor fails to:
 1. Complete a Milestone activity by its completion date.
 2. Satisfactorily execute Work as necessary to prevent delay to overall completion of Project, at no additional cost to Owner.

1.06 NARRATIVE PROGRESS REPORT

A. Format:
 1. Organize same as Progress Schedule.
 2. Identify, on a cover letter, reporting period, date submitted, and name of author of report.

B. Contents:
 1. Number of days worked over the period, work force on hand, construction equipment on hand (including utility vehicles such as pickup trucks, maintenance vehicles, stake trucks).
 2. General progress of Work, including a listing of activities started and completed over the reporting period, mobilization/demobilization of subcontractors, and major milestones achieved.
 3. Contractor’s plan for management of Site (for example, lay down and staging areas, construction traffic), use of construction equipment, buildup of trade labor, and identification of potential Contract changes.
 4. Identification of new activities and sequences as a result of executed Contract changes.
 5. Documentation of weather conditions over the reporting period, and any resulting impacts to the work.
6. Description of actual or potential delays, including related causes, and the steps taken or anticipated to mitigate their impact.
7. Changes to activity logic.
8. Changes to the critical path.
9. Identification of, and accompanying reason for, any activities added or deleted since the last report.
10. Steps taken to recover the schedule from Contractor-caused delays.

1.07 SCHEDULE ACCEPTANCE

A. Engineer’s acceptance will demonstrate agreement that:

1. Proposed schedule is accepted with respect to:
 a. Contract Times, including Final Completion and all intermediate Milestones, are within the specified times.
 b. Specified Work sequences and constraints are shown as specified.
 c. Specified Owner-furnished Equipment or Material arrival dates, or range of dates, are included.
 d. Access restrictions are accurately reflected.
 c. Startup and testing times are as specified.
 f. Submittal review times are as specified.

2. In all other respects, Engineer’s acceptance of Contractor’s schedule indicates that, in Engineer’s judgment, schedule represents reasonable plan for constructing Project in accordance with the Contract Documents. Engineer’s review will not make any change in Contract requirements. Lack of comment on any aspect of schedule that is not in accordance with the Contract Documents will not thereby indicate acceptance of that change, unless Contractor has explicitly called the nonconformance to Engineer’s attention in submittal. Schedule remains Contractor’s responsibility and Contractor retains responsibility for performing all activities, for activity durations, and for activity sequences required to construct Project in accordance with the Contract Documents.

B. Unacceptable Preliminary Progress Schedule:

1. Make requested corrections; resubmit within 10 days.
2. Until acceptable to Engineer as Baseline Progress Schedule, continue review and revision process, including updating schedule on a monthly basis to reflect actual progress and occurrences to date.
C. Unacceptable Detailed Progress Schedule:
 1. Make requested corrections; resubmit within 10 days.
 2. Until acceptable to Engineer as Baseline Progress Schedule, continue review and revision process.

D. Narrative Report: All changes to activity duration and sequences, including addition or deletion of activities subsequent to Engineer’s acceptance of Baseline Progress Schedule, shall be delineated in Narrative Report current with proposed Updated Progress Schedule.

1.08 ADJUSTMENT OF CONTRACT TIMES

A. Reference General Conditions.

B. Evaluation and reconciliation of Adjustments of Contract Times shall be based on the Updated Progress Schedule at the time of proposed adjustment or claimed delay.

C. Schedule Contingency:
 1. Contingency, when used in the context of the Progress Schedule, is time between Contractor’s proposed Completion Time and Contract Completion Time.
 2. Contingency included in Progress Schedule is a Project resource available to both Contractor and Owner to meet Contract Milestones and Contract Times. Use of Schedule contingency shall be shared to the proportionate benefit of both parties.
 3. Use of schedule contingency suppression techniques such as preferential sequencing and extended activity times is prohibited.
 4. Pursuant to Contingency sharing provisions of this specification, no time extensions will be granted, nor will delay damages be paid until a delay occurs which (i) consumes all available contingency time, and (ii) extends Work beyond the Contract Completion date.

D. Claims Based on Contract Times:
 1. Where Engineer has not yet rendered formal decision on Contractor’s Claim for adjustment of Contract Times, and parties are unable to agree as to amount of adjustment to be reflected in Progress Schedule, reflect an interim adjustment in the Progress Schedule as acceptable to Engineer.
 2. It is understood and agreed that such interim acceptance will not be binding on either Contractor or Owner, and will be made only for the purpose of continuing to schedule Work until such time as formal
decision has been rendered as to an adjustment, if any, of the Contract Times.

3. Revise Progress Schedule prepared thereafter in accordance with Engineer’s formal decision.

PART 2 PRODUCTS (NOT USED)

PART 3 EXECUTION (NOT USED)

END OF SECTION
SECTION 013300
SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Submittal schedule requirements.
2. Administrative and procedural requirements for submittals.

1.2 DEFINITIONS

A. Action Submittals: Written and graphic information and physical samples that require Engineer's and Construction Manager's responsive action. Action submittals are those submittals indicated in individual Specification Sections as "action submittals."

B. Informational Submittals: Written and graphic information and physical samples that do not require Engineer's and Construction Manager's responsive action. Submittals may be rejected for not complying with requirements. Informational submittals are those submittals indicated in individual Specification Sections as "informational submittals."

1.3 SUBMITTAL SCHEDULE

A. Submittal Schedule: Submit, as an action submittal, a list of submittals, arranged in chronological order by dates required by construction schedule. Include time required for review, ordering, manufacturing, fabrication, and delivery when establishing dates. Include additional time required for making corrections or revisions to submittals noted by Engineer and Construction Manager and additional time for handling and reviewing submittals required by those corrections.

1.4 SUBMITTAL FORMATS

A. Submittal Information: Include the following information in each submittal:

1. Project name.
2. Date.
3. Name of Engineer.
4. Name of Construction Manager.
5. Name of Contractor.
6. Name of firm or entity that prepared submittal.
7. Names of subcontractor, manufacturer, and supplier.
8. Unique submittal number, including revision identifier. Include Specification Section number with sequential alphanumeric identifier; and alphanumeric suffix
for resubmittals.

9. Category and type of submittal.
10. Submittal purpose and description.
11. Number and title of Specification Section, with paragraph number and generic name for each of multiple items.
12. Drawing number and detail references, as appropriate.
13. Indication of full or partial submittal.
14. Location(s) where product is to be installed, as appropriate.
15. Other necessary identification.
17. Signature of transmitter.

B. Options: Identify options requiring selection by Engineer.

C. Deviations and Additional Information: On each submittal, clearly indicate deviations from requirements in the Contract Documents, including minor variations and limitations; include relevant additional information and revisions, other than those requested by Engineer and Construction Manager on previous submittals. Indicate by highlighting on each submittal or noting on attached separate sheet.

D. Paper Submittals:

1. Place a permanent label or title block on each submittal item for identification; include name of firm or entity that prepared submittal.
2. Provide a space approximately 6 by 8 inches on label or beside title block to record Contractor's review and approval markings and action taken by Engineer and Construction Manager.
3. Action Submittals: Submit three paper copies of each submittal unless otherwise indicated. Engineer, through Construction Manager, will return two copies.
4. Informational Submittals: Submit two paper copies of each submittal unless otherwise indicated. Engineer and Construction Manager will not return copies.
5. Transmittal for Submittals: Assemble each submittal individually and appropriately for transmittal and handling. Transmit each submittal using AIA Document G810 transmittal form.

E. PDF Submittals: Prepare submittals as PDF package, incorporating complete information into each PDF file. Name PDF file with submittal number.

F. Submittals for Web-Based Project Software: Prepare submittals as PDF files, or other format indicated by Project software website.

1.5 SUBMITTAL PROCEDURES

A. Prepare and submit submittals required by individual Specification Sections. Types of submittals are indicated in individual Specification Sections.

1. Email: Prepare submittals as PDF package, and transmit to Engineer by sending via email. Include PDF transmittal form. Include information in email subject line as requested by Engineer.
2. Web-Based Project Software: Prepare submittals in PDF form, and upload to web-based Project software website. Enter required data in web-based software site to fully identify submittal.

3. Paper: Prepare submittals in paper form, and deliver to Engineer.

B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.

1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.

2. Submit all submittal items required for each Specification Section concurrently unless partial submittals for portions of the Work are indicated on approved submittal schedule.

3. Submit action submittals and informational submittals required by the same Specification Section as separate packages under separate transmittals.

C. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Engineer's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.

1. Initial Review: Allow 5 business days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Construction Manager will advise Contractor when a submittal being processed must be delayed for coordination.

2. Resubmittal Review: Allow 3 business days for review of each resubmittal.

D. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.

E. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.

F. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are marked with approval notation from Engineer's and Construction Manager's action stamp.

1.6 SUBMITTAL REQUIREMENTS

A. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.

1. If information must be specially prepared for submittal because standard published data are unsuitable for use, submit as Shop Drawings, not as Product Data.

2. Mark each copy of each submittal to show which products and options are applicable.

3. Include the following information, as applicable:

 a. Manufacturer's catalog cuts.

 b. Manufacturer's product specifications.
c. Standard color charts.
d. Statement of compliance with specified referenced standards.
c. Testing by recognized testing agency.
f. Application of testing agency labels and seals.
g. Notation of coordination requirements.
h. Availability and delivery time information.

4. For equipment, include the following in addition to the above, as applicable:
a. Wiring diagrams that show factory-installed wiring.
b. Printed performance curves.
c. Operational range diagrams.
d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.

5. Submit Product Data before Shop Drawings, and before or concurrent with Samples.

B. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data.

1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:

 a. Identification of products.
b. Schedules.
c. Compliance with specified standards.
d. Notation of coordination requirements.
e. Notation of dimensions established by field measurement.
f. Relationship and attachment to adjoining construction clearly indicated.
g. Seal and signature of professional engineer if specified.

2. Paper Sheet Size: Except for templates, patterns, and similar full-size Drawings, submit Shop Drawings on sheets at least 8-1/2 by 11 inches, but no larger than 30 by 42 inches.

 a. Two copies.
b. Three opaque copies of each submittal. Engineer and Construction Manager will retain two copies; remainder will be returned.

C. Samples: Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other materials.

 1. Transmit Samples that contain multiple, related components such as accessories together in one submittal package.
 2. Identification: Permanently attach label on unexposed side of Samples that includes the following:

 a. Project name and submittal number.
b. Generic description of Sample.
c. Product name and name of manufacturer.
d. Sample source.
c. Number and title of applicable Specification Section.
f. Specification paragraph number and generic name of each item.

3. Email Transmittal: Provide PDF transmittal. Include digital image file illustrating Sample characteristics, and identification information for record.

4. Web-Based Project Software: Prepare submittals in PDF form, and upload to web-based Project software website. Enter required data in web-based software site to fully identify submittal.

5. Paper Transmittal: Include paper transmittal including complete submittal information indicated.

6. Disposition: Maintain sets of approved Samples at Project site, available for quality-control comparisons throughout the course of construction activity. Sample sets may be used to determine final acceptance of construction associated with each set.
 a. Samples that may be incorporated into the Work are indicated in individual Specification Sections. Such Samples must be in an undamaged condition at time of use.
 b. Samples not incorporated into the Work, or otherwise designated as Owner's property, are the property of Contractor.

7. Samples for Initial Selection: Submit manufacturer's color charts consisting of units or sections of units showing the full range of colors, textures, and patterns available.
 a. Number of Samples: Submit one full set of available choices where color, pattern, texture, or similar characteristics are required to be selected from manufacturer's product line. Engineer, through Construction Manager, will return submittal with options selected.

8. Samples for Verification: Submit full-size units or Samples of size indicated, prepared from same material to be used for the Work, cured and finished in manner specified, and physically identical with material or product proposed for use, and that show full range of color and texture variations expected. Samples include, but are not limited to, the following: partial sections of manufactured or fabricated components; small cuts or containers of materials; complete units of repetitively used materials; swatches showing color, texture, and pattern; color range sets; and components used for independent testing and inspection.
 a. Number of Samples: Submit three sets of Samples. Engineer and Construction Manager will retain two Sample sets; remainder will be returned.
 1) Submit a single Sample where assembly details, workmanship, fabrication techniques, connections, operation, and other similar characteristics are to be demonstrated.
 2) If variation in color, pattern, texture, or other characteristic is inherent in material or product represented by a Sample, submit at least three sets of paired units that show approximate limits of variations.
D. Product Schedule: As required in individual Specification Sections, prepare a written summary indicating types of products required for the Work and their intended location. Include the following information in tabular form:

E. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of Engineers and owners, and other information specified.

F. Design Data: Prepare and submit written and graphic information indicating compliance with indicated performance and design criteria in individual Specification Sections. Include list of assumptions and summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Number each page of submittal.

G. Certificates:
1. Certificates and Certifications Submittals: Submit a statement that includes signature of entity responsible for preparing certification. Certificates and certifications shall be signed by an officer or other individual authorized to sign documents on behalf of that entity. Provide a notarized signature where indicated.
2. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.
3. Manufacturer Certificates: Submit written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.
4. Material Certificates: Submit written statements on manufacturer's letterhead certifying that material complies with requirements in the Contract Documents.
5. Product Certificates: Submit written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.

H. Test and Research Reports:
1. Compatibility Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion.
2. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.
3. Material Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents.
4. Preconstruction Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests
performed before installation of product, for compliance with performance requirements in the Contract Documents.

5. Product Test Reports: Submit written reports indicating that current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.

6. Research Reports: Submit written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project. Include the following information:
 a. Name of evaluation organization.
 b. Date of evaluation.
 c. Time period when report is in effect.
 d. Product and manufacturers’ names.
 e. Description of product.
 f. Test procedures and results.
 g. Limitations of use.
 h.

1.7 DELEGATED-DESIGN SERVICES

A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.

1. If criteria indicated are insufficient to perform services or certification required, submit a written request for additional information to Engineer.

B. Delegated-Design Services Certification: In addition to Shop Drawings, Product Data, and other required submittals, submit digitally signed PDF file and three paper copies of certificate, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.

1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.

1.8 CONTRACTOR’S REVIEW

A. Action Submittals and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Engineer and Construction Manager.

B. Contractor’s Approval: Indicate Contractor’s approval for each submittal with a uniform approval stamp or indication in web-based Project software. Include name of reviewer, date of Contractor’s approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.
1. Engineer and Construction Manager will not review submittals received from Contractor that do not have Contractor's review and approval.

1.9 ENGINEER'S AND CONSTRUCTION MANAGER'S REVIEW

A. Action Submittals: Engineer and Construction Manager will review each submittal, indicate corrections or revisions required, and return it.

1. PDF Submittals: Engineer and Construction Manager will indicate, via markup on each submittal, the appropriate action.
2. Paper Submittals: Engineer and Construction Manager will stamp each submittal with an action stamp and will mark stamp appropriately to indicate action.
3. Submittals by Web-Based Project Software: Engineer and Construction Manager will indicate, on Project software website, the appropriate action.

B. Informational Submittals: Engineer and Construction Manager will review each submittal and will not return it or will return it if it does not comply with requirements. Engineer and Construction Manager will forward each submittal to appropriate party. Partial submittals prepared for a portion of the Work will be reviewed when use of partial submittals has received prior approval from Engineer and Construction Manager.

C. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.

D. Engineer and Construction Manager will discard submittals received from sources other than Contractor.

E. Submittals not required by the Contract Documents will be returned by Engineer without action.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION
SECTION 013543
ENVIRONMENTAL PROCEDURES

PART 1 – GENERAL

1.1 SCOPE

A. This section is required in accordance with the terms and conditions of the contract provisions and clauses, including those concerning Safety & Health Standards, Accident Prevention, Protection of the Environment, Existing Vegetation, Structures, Utilities, and Improvements. The work covered by this section consists of furnishing all labor, material, and equipment and performing all work required for compliance with environmental regulations and preventing pollution during, and as a result of, construction operations under this contract, in addition to those measures set forth in other technical provisions of these specifications.

B. The Contractor and subcontractors must comply with all applicable federal, state and local laws and regulations related to the environment, health and safety.

1.2 NOTIFICATION

A. The Contractor must, after receiving a notice of noncompliance with the foregoing provisions, immediately take corrective action. The notice, when delivered to its Contractor or its authorized representative at the site of the work, is deemed sufficient for this purpose. If the Contractor fails or refuses to comply promptly, the Owner may issue an order stopping all or part of the work until satisfactory corrective action has been taken. No part of the time lost because of any such stop orders may be made the subject of a claim for extension of time or for excess costs or damages by the Contractor unless it is subsequently determined that the Contractor was in compliance and the Contractor demonstrates that it is otherwise entitled to an extension of time, excess costs or damages, under the applicable terms and conditions of the contract provisions and clauses.

1.3 ENVIRONMENTAL SITE CONTROLS

A. Location of Hazardous Materials: The location of the Contractor’s temporary storage of any hazardous materials and/or wastes must be appropriately marked and included in the health and Safety Plan (see Section 1.4 below).

B. Post-construction Cleanup or Obliteration: The Contractor must remove and properly dispose of all signs of temporary construction facilities such as haul roads, work area, structures, foundations of temporary structures, excess or waste materials, or any other vestiges of construction as directed by the COR. No separate or direct payment may be made for post-construction cleanup and all associated costs must be considered included in the contract price.

C. Dust Control: The Contractor must keep the site free from dust in accordance with applicable federal, state and/or local regulations.
1.4 HEALTH AND SAFETY

A. Prior to commencing on-site work, the Contractor must submit a project-specific Project Safety Plan to the Owner. The plan must include, but is not limited to, hazard communication, labeling, emergency response and preparedness and training.

B. Copies of Material Safety Data Sheets (MSDSs) for any hazardous material(s), as defined by OSHA’s Hazard Communications Standard, must be included whenever such materials arrive on-site. MSDSs must be kept together and maintained centrally on-site through to project completion. Provide a copy of each MSDS in the Operating and Maintenance Manual. The use of asbestos containing materials, in excess of one percent as defined by US Environmental Protection Agency regulations, is prohibited in the construction of this project. Provide an executed copy of the “Certificate of Asbestos and Lead-Based Paint (New Work)” in the Operating and Maintenance Manual and include a copy with the final payment request.

C. The use of lead-based paint is prohibited in the construction of this project.

D. The use of lead-containing solder for plumbing and plumbing fixtures is prohibited in the construction of this project.

E. In accordance with the terms and conditions of the contract provisions and clauses, including those concerning Asbestos Free and Lead-Based Paint Free Certification, the Contractor must sign and submit to the Owner the attached “Certification of Asbestos and Lead-Based Paint” for this project. The signed certificate is required to be included in the final payment request.

PART 2 – PRODUCTS (Not Applicable)

PART 3 – EXECUTION (Not Applicable)

END OF SECTION
SECTION 014000
QUALITY REQUIREMENTS PART

1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for quality assurance and quality control.

B. Testing and inspection services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.

1. Specified tests, inspections, and related actions do not limit Contractor’s other quality-assurance and quality-control procedures that facilitate compliance with the Contract Document requirements.

2. Requirements for Contractor to provide quality-assurance and quality-control services required by Engineer, Owner, Construction Manager, or authorities having jurisdiction are not limited by provisions of this Section.

1.2 DEFINITIONS

A. Experienced: When used with an entity or individual, "experienced" unless otherwise further described means having successfully completed a minimum of five previous projects similar in nature, size, and extent to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.

B. Field Quality-Control Tests: Tests and inspections that are performed on-site for installation of the Work and for completed Work.

C. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, assembly, and similar operations.

1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade(s).

D. Mockups: Full-size physical assemblies that are constructed on-site either as freestanding temporary built elements or as part of permanent construction. Mockups are constructed to verify selections made under Sample submittals; to demonstrate aesthetic effects and qualities of materials and execution; to review coordination, testing, or operation; to show interface between dissimilar materials; and to demonstrate compliance with specified installation tolerances. Mockups are not Samples. Unless otherwise indicated, approved mockups establish the standard by which the Work will
be judged. Mock ups shall be a safe distance from the construction and remain until substantial completion of the project.

1. Integrated Exterior Mockups: Mockups of the exterior envelope constructed on-site as part of permanent construction, consisting of multiple products, assemblies, and subassemblies.

2. Room Mockups: Mockups of typical interior spaces complete with wall, floor, and ceiling finishes; doors; windows; millwork; casework; specialties; furnishings and equipment; and lighting.

E. Preconstruction Testing: Tests and inspections performed specifically for Project before products and materials are incorporated into the Work, to verify performance or compliance with specified criteria.

F. Product Tests: Tests and inspections that are performed by a nationally recognized testing laboratory (NRTL) according to 29 CFR 1910.7, by a testing agency accredited according to NIST’s National Voluntary Laboratory Accreditation Program (NVLAP), or by a testing agency qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product performance and compliance with specified requirements.

G. Source Quality-Control Tests: Tests and inspections that are performed at the source; for example, plant, mill, factory, or shop.

H. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.

I. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.

J. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Contractor’s quality-control services do not include contract administration activities performed by Engineer or Construction Manager.

1.3 DELEGATED-DESIGN SERVICES

A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.

1.4 CONFLICTING REQUIREMENTS

A. Conflicting Standards and Other Requirements: If compliance with two or more standards or requirements are specified and the standards or requirements establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer conflicting requirements that are different, but
apparently equal, to Engineer for direction before proceeding.

B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Engineer for a decision before proceeding.

1.5 ACTION SUBMITTALS

A. Delegated-Design Services Submittal: In addition to Shop Drawings, Product Data, and other required submittals, submit a statement signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional, indicating that the products and systems are in compliance with performance and design criteria indicated. Include list of codes, loads, and other factors used in performing these services.

1.6 INFORMATIONAL SUBMITTALS

A. Contractor's Statement of Responsibility: When required by authorities having jurisdiction, submit copy of written statement of responsibility submitted to authorities having jurisdiction before starting work on the following systems:

1. Seismic-force-resisting system, designated seismic system, or component listed in the Statement of Special Inspections.
2. Main wind-force-resisting system or a wind-resisting component listed in the Statement of Special Inspections.

B. Testing Agency Qualifications: For testing agencies specified in "Quality Assurance" Article to demonstrate their capabilities and experience. Include proof of qualifications in the form of a recent report on the inspection of the testing agency by a recognized authority.

C. Permits, Licenses, and Certificates: For Owner's record, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents established for compliance with standards and regulations bearing on performance of the Work.

1.7 REPORTS AND DOCUMENTS

A. Test and Inspection Reports: Prepare and submit certified written reports specified in other Sections. Include the following:

1. Date of issue.
2. Project title and number.
3. Name, address, telephone number, and email address of testing agency.
4. Dates and locations of samples and tests or inspections.
5. Names of individuals making tests and inspections.
6. Description of the Work and test and inspection method.
8. Complete test or inspection data.
9. Test and inspection results and an interpretation of test results.
10. Record of temperature and weather conditions at time of sample taking and testing and inspection.
11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements.
12. Name and signature of laboratory inspector.
13. Recommendations on retesting and reinspecting.

B. Manufacturer's Technical Representative's Field Reports: Prepare written information documenting manufacturer's technical representative's tests and inspections specified in other Sections. Include the following:

2. Statement that products at Project site comply with requirements.
3. Summary of installation procedures being followed, whether they comply with requirements and, if not, what corrective action was taken.
4. Results of operational and other tests and a statement of whether observed performance complies with requirements.
5. Other required items indicated in individual Specification Sections.

C. Factory-Authorized Service Representative's Reports: Prepare written information documenting manufacturer's factory-authorized service representative's tests and inspections specified in other Sections. Include the following:

1. Statement that equipment complies with requirements.
2. Results of operational and other tests and a statement of whether observed performance complies with requirements.
3. Other required items indicated in individual Specification Sections.

1.8 QUALITY ASSURANCE

A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.

B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units. As applicable, procure products from manufacturers able to meet qualification requirements, warranty requirements, and technical or factory-authorized service representative requirements.

C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well
as sufficient production capacity to produce required units.

D. Installer Qualifications: A firm or individual experienced in installing, erecting, applying, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.

E. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or product that are similar in material, design, and extent to those indicated for this Project.

F. Specialists: Certain Specification Sections require that specific construction activities shall be performed by entities who are recognized experts in those operations. Specialists shall satisfy qualification requirements indicated and shall be engaged for the activities indicated.

1. Requirements of authorities having jurisdiction shall supersede requirements for specialists.

G. Testing Agency Qualifications: An NRTL, an NVLAP, or an independent agency with the experience and capability to conduct testing and inspection indicated, as documented according to ASTM E 329; and with additional qualifications specified in individual Sections; and, where required by authorities having jurisdiction, that is acceptable to authorities.

H. Manufacturer's Technical Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

I. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.

J. Preconstruction Testing: Where testing agency is indicated to perform preconstruction testing for compliance with specified requirements for performance and test methods, comply with the following:

1. Contractor responsibilities include the following:
 a. Provide test specimens representative of proposed products and construction.
 b. Submit specimens in a timely manner with sufficient time for testing and analyzing results to prevent delaying the Work.
 c. When testing is complete, remove test specimens and test assemblies; do not reuse products on Project.

2. Testing Agency Responsibilities: Submit a certified written report of each test, inspection, and similar quality-assurance service to Engineer through Construction Manager, with copy to Contractor. Interpret tests and inspections
and state in each report whether tested and inspected work complies with or deviates from the Contract Documents.

K. Mockups: Before installing portions of the Work requiring mockups, build mockups for each form of construction and finish required to comply with the following requirements, using materials indicated for the completed Work:

1. Build mockups of size indicated.
2. Build mockups in location indicated or, if not indicated, as directed by Engineer or Construction Manager.
3. Notify Engineer and Construction Manager seven days in advance of dates and times when mockups will be constructed.
4. Employ supervisory personnel who will oversee mockup construction. Employ workers that will be employed to perform same tasks during the construction at Project.
5. Demonstrate the proposed range of aesthetic effects and workmanship.
6. Obtain Engineer's and Construction Manager's approval of mockups before starting corresponding work, fabrication, or construction.
 a. Allow three days for initial review and each re-review of each mockup.
7. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
8. Demolish and remove mockups when directed unless otherwise indicated.

1.9 QUALITY CONTROL

A. Owner Responsibilities: Where quality-control services are indicated as Owner's responsibility, Owner will engage a qualified testing agency to perform these services.

1. Owner will furnish Contractor with names, addresses, and telephone numbers of testing agencies engaged and a description of types of testing and inspection they are engaged to perform.
2. Costs for retesting and reinspecting construction that replaces or is necessitated by work that failed to comply with the Contract Documents will be charged to Contractor.

B. Contractor Responsibilities: Tests and inspections not explicitly assigned to Owner are Contractor's responsibility. Perform additional quality-control activities, whether specified or not, to verify and document that the Work complies with requirements.

1. Engage a qualified testing agency to perform quality-control services.
 a. Contractor shall not employ same entity engaged by Owner, unless agreed to in writing by Owner.
2. Notify testing agencies at least 24 hours in advance of time when Work that requires testing or inspection will be performed.
3. Where quality-control services are indicated as Contractor's responsibility, submit a certified written report, in duplicate, of each quality-control service.
4. Testing and inspection requested by Contractor and not required by the Contract Documents are Contractor's responsibility.
5. Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct.

C. Retesting/Reinspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and reinspecting, for construction that replaced Work that failed to comply with the Contract Documents.

D. Testing Agency Responsibilities: Cooperate with Engineer, Construction Manager, and Contractor in performance of duties. Provide qualified personnel to perform required tests and inspections.
 1. Notify Engineer, Construction Manager, and Contractor promptly of irregularities or deficiencies observed in the Work during performance of its services.
 2. Determine the locations from which test samples will be taken and in which in-situ tests are conducted.
 3. Conduct and interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from requirements.
 4. Submit a certified written report, in duplicate, of each test, inspection, and similar quality-control service through Contractor.
 5. Do not release, revoke, alter, or increase the Contract Document requirements or approve or accept any portion of the Work.
 6. Do not perform duties of Contractor.

E. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections. Report results in writing as specified in Section 013300 "Submittal Procedures."

F. Manufacturer's Technical Services: Where indicated, engage a manufacturer's technical representative to observe and inspect the Work. Manufacturer's technical representative's services include participation in preinstallation conferences, examination of substrates and conditions, verification of materials, observation of Installer activities, inspection of completed portions of the Work, and submittal of written reports.

G. Associated Contractor Services: Cooperate with agencies and representatives performing required tests, inspections, and similar quality-control services. Notify agency sufficiently in advance of operations to permit assignment of personnel. Provide the following:
 1. Access to the Work.
 2. Incidental labor and facilities necessary to facilitate tests and inspections.
 3. Adequate quantities of representative samples of materials that require testing and inspection. Assist agency in obtaining samples.
 4. Facilities for storage and field curing of test samples.
 5. Preliminary design mix proposed for use for material mixes that require control by testing agency.
 6. Security and protection for samples and for testing and inspection equipment at Project site.
H. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and quality-control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspection.

1. Schedule times for tests, inspections, obtaining samples, and similar activities.

1.10 SPECIAL TESTS AND INSPECTIONS

A. The Owner will provide materials testing services listed below for compliance with Chapter 17 of the IBC, including submittal of the required records and report.

B. The Contractor will be completely responsible to notify the Testing Agency one week prior to the date of the construction/installation. If work is performed without the inspector present, the Contractor may be required to uncover the work at no cost to the Owner.

C. The Contractor is required to provide a Professional Engineer on site at all times during installation of the CMCs. The Contractor’s Engineer will be the Engineer of Record for the CMC design and installation.

PART 2 - PRODUCTS

(Not Used) PART 3 -

EXECUTION

3.1 TEST AND INSPECTION LOG

A. Test and Inspection Log: Prepare a record of tests and inspections. Include the following:

1. Date test or inspection was conducted.
2. Description of the Work tested or inspected.
3. Date test or inspection results were transmitted to Engineer.
4. Identification of testing agency or special inspector conducting test or inspection.

B. Maintain log at Project site. Post changes and revisions as they occur. Provide access to test and inspection log for Engineer’s and Construction Manager’s reference during normal working hours.

1. Submit log at Project closeout as part of Project Record Documents.

3.2 REPAIR AND PROTECTION

A. General: On completion of testing, inspection, sample taking, and similar services,
repair damaged construction and restore substrates and finishes.

1. Provide materials and comply with installation requirements specified in other Specification Sections or matching existing substrates and finishes. Restore patched areas and extend restoration into adjoining areas with durable seams that are as invisible as possible. Comply with the Contract Document requirements for cutting and patching in Section 017300 "Execution."

B. Protect construction exposed by or for quality-control service activities.

C. Repair and protection are Contractor's responsibility, regardless of the assignment of responsibility for quality-control services.

END OF SECTION
SECTION 015000
TEMPORARY FACILITIES AND CONTROLS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes requirements for temporary utilities, support facilities, and security and protection facilities.

1.2 INFORMATIONAL SUBMITTALS

A. Site Utilization Plan: Show temporary facilities, temporary utility lines and connections, staging areas, construction site entrances, vehicle circulation, and parking areas for construction personnel.

B. Project Identification and Temporary Signs: Show fabrication and installation details, including plans, elevations, details, layouts, typestyles, graphic elements, and message content.

C. Fire-Safety Program: Show compliance with requirements of NFPA 241 and authorities having jurisdiction. Indicate Contractor personnel responsible for management of fire-prevention program.

D. Moisture-and Mold-Protection Plan: Describe procedures and controls for protecting materials and construction from water absorption and damage and mold.

1.3 QUALITY ASSURANCE

A. Electric Service: Comply with NECA, NEMA, and UL standards and regulations for temporary electric service. Install service to comply with NFPA 70.

B. Tests and Inspections: Arrange for authorities having jurisdiction to test and inspect each temporary utility before use. Obtain required certifications and permits.

PART 2 - PRODUCTS

2.1 TEMPORARY FACILITIES

A. Field Offices, General: Prefabricated or mobile units with serviceable finishes, temperature controls, and foundations adequate for normal loading.

B. Common-Use Field Office: Of sufficient size to accommodate needs of Owner, Engineer (separate office with door), Construction Manager, and construction personnel office activities and to accommodate Project meetings specified in other Division 01 Sections. Keep office clean and orderly. Furnish and equip offices as follows:
1. Furniture required for Project-site documents including file cabinets, plan tables, plan racks, and bookcases.
2. Conference room of sufficient size to accommodate meetings of 10 individuals. Provide electrical power service and 120-V ac duplex receptacles, with no fewer than one receptacle on each wall. Furnish room with conference table, chairs, and 4-foot-square tack and marker boards.
3. Drinking water and private toilet.
4. Heating and cooling equipment necessary to maintain a uniform indoor temperature of 68 to 72 deg F.
5. Lighting fixtures capable of maintaining average illumination of 20 fc at desk height.
6. Internet service for the Owner and Engineer

2.2 EQUIPMENT

A. Fire Extinguishers: Portable, UL rated; with class and extinguishing agent as required by locations and classes of fire exposures.

B. HVAC Equipment: Unless Owner authorizes use of permanent HVAC system, provide vented, self-contained, liquid-propane-gas or fuel-oil heaters with individual space thermostatic control.

1. Use of gasoline-burning space heaters, open-flame heaters, or salamander-type heating units is prohibited.
2. Heating Units: Listed and labeled for type of fuel being consumed, by a qualified testing agency acceptable to authorities having jurisdiction, and marked for intended location and application.
3. Permanent HVAC System: If Owner authorizes use of permanent HVAC system for temporary use during construction, provide filter with MERV of 8 at each return-air grille in system and remove at end of construction and clean HVAC system as required in Section 017700 "Closeout Procedures."

C. Air-Filtration Units: Primary and secondary HEPA-filter-equipped portable units with four-stage filtration. Provide single switch for emergency shutoff. Configure to run continuously.

PART 3 - EXECUTION

3.1 TEMPORARY FACILITIES, GENERAL

A. Conservation: Coordinate construction and use of temporary facilities with consideration given to conservation of energy, water, and materials. Coordinate use of temporary utilities to minimize waste.

1. Salvage materials and equipment involved in performance of, but not actually incorporated into, the Work. See other Sections for disposition of salvaged materials that are designated as Owner’s property.
3.2 INSTALLATION, GENERAL

A. Locate facilities where they will serve Project adequately and result in minimum interference with performance of the Work. Relocate and modify facilities as required by progress of the Work.

B. Provide each facility ready for use when needed to avoid delay. Do not remove until facilities are no longer needed or are replaced by authorized use of completed permanent facilities.

3.3 TEMPORARY UTILITY INSTALLATION

A. General: Install temporary service or connect to existing service.

1. Arrange with utility company, Owner, and existing users for time when service can be interrupted, if necessary, to make connections for temporary services.

B. Sewers and Drainage: Provide temporary utilities to remove effluent lawfully.

1. Contractors will have to provide Porta Toilets.

C. Water Service: Install water service and distribution piping in sizes and pressures adequate for construction. Water currently is not available on site. Contractor will have to provide their own water until service is installed.

D. Sanitary Facilities: Provide temporary toilets, wash facilities, and drinking water for use of construction personnel. Comply with requirements of authorities having jurisdiction for type, number, location, operation, and maintenance of fixtures and facilities.

E. Temporary Heating and Cooling: Provide temporary heating and cooling required by construction activities for curing or drying of completed installations or for protecting installed construction from adverse effects of low temperatures or high humidity. Select equipment that will not have a harmful effect on completed installations or elements being installed.

1. Provide temporary dehumidification systems when required to reduce ambient and substrate moisture levels to level required to allow installation or application of finishes and their proper curing or drying.

F. Isolation of Work Areas in Occupied Facilities: Prevent dust, fumes, and odors from entering occupied areas.

G. Electric Power Service: Provide electric power service and distribution system of sufficient size, capacity, and power characteristics required for construction operations.

1. Install electric power service underground unless otherwise indicated.

H. Lighting: Provide temporary lighting with local switching that provides adequate illumination for construction operations, observations, inspections, and traffic conditions.

1. Install and operate temporary lighting that fulfills security and protection
requirements without operating entire system.

I. Telephone Service: Provide temporary telephone service in common-use facilities for use by all construction personnel. Install WiFi cell phone access equipment and one land-based telephone line(s) for each field office.

J. Electronic Communication Service: Provide a desktop computer in the primary field office adequate for use by Engineer and Owner to access Project electronic documents and maintain electronic communications. Equip computer with not less than the following:

1. Processor: Intel Core i5 or i7.
2. Memory: 4 gigabyte.
4. Display: 24-inch LCD monitor with 256-Mb dedicated video RAM.
5. Full-size keyboard and mouse.
8. Productivity Software:
 a. Microsoft Office Professional, 2010 or higher, including Word, Excel, and Outlook.
 b. Adobe Reader 11.0 or higher.
 c. WinZip 7.0 or higher.
9. Printer: "All-in-one" unit equipped with printer server, combining color printing, photocopying, scanning, and faxing, or separate units for each of these three functions.
10. Internet Service: Broadband modem, router and ISP, equipped with hardware firewall, providing minimum 1.0 Mbps upload and 15 Mbps download speeds at each computer.
11. Internet Security: Integrated software, providing software firewall, virus, spyware, phishing, and spam protection in a combined application.

3.4 SUPPORT FACILITIES INSTALLATION

A. General: Comply with the following:

1. Provide construction for temporary offices, shops, and sheds located within construction area or within 30 feet of building lines that is noncombustible according to ASTM E 136. Comply with NFPA 241.
2. Maintain support facilities until Engineer schedules Substantial Completion inspection. Remove before Substantial Completion. Personnel remaining after Substantial Completion will be permitted to use permanent facilities, under conditions acceptable to Owner.

B. Temporary Roads and Paved Areas: Construct and maintain temporary roads and paved areas adequate for construction operations. Locate temporary roads and paved areas within construction limits indicated on Drawings.
1. Provide dust-control treatment that is nonpolluting and nontracking. Reapply treatment as required to minimize dust.

C. Traffic Controls: Comply with requirements of authorities having jurisdiction.
 1. Protect existing site improvements to remain including curbs, pavement, and utilities.
 2. Maintain access for fire-fighting equipment and access to fire hydrants.

D. Dewatering Facilities and Drains: Comply with requirements of authorities having jurisdiction. Maintain Project site, excavations, and construction free of water.
 1. Dispose of rainwater in a lawful manner that will not result in flooding Project or adjoining properties or endanger permanent Work or temporary facilities.
 2. Remove snow and ice as required to minimize accumulations.

E. Project Signs: Provide Project signs as indicated. Unauthorized signs are not permitted.
 1. Identification Signs: Provide Project identification signs as indicated on Drawings.
 2. Temporary Signs: Provide other signs as indicated and as required to inform public and individuals seeking entrance to Project.
 a. Provide temporary, directional signs for construction personnel and visitors.
 3. Maintain and touch up signs so they are legible at all times.

F. Waste Disposal Facilities: Comply with requirements specified in Section 017419 "Construction Waste Management and Disposal."

G. Waste Disposal Facilities: Provide waste-collection containers in sizes adequate to handle waste from construction operations. Comply with requirements of authorities having jurisdiction. Comply with progress cleaning requirements in Section 017300 "Execution."

H. Lifts and Hoists: Provide facilities necessary for hoisting materials and personnel.
 1. Truck cranes and similar devices used for hoisting materials are considered "tools and equipment" and not temporary facilities.

3.5 SECURITY AND PROTECTION FACILITIES INSTALLATION

A. Protection of Existing Facilities: Protect existing vegetation, equipment, structures, utilities, and other improvements at Project site and on adjacent properties, except those indicated to be removed or altered. Repair damage to existing facilities.
 1. Where access to adjacent properties is required in order to affect protection of existing facilities, obtain written permission from adjacent property owner to access property for that purpose.

B. Environmental Protection: Provide protection, operate temporary facilities, and conduct
construction as required to comply with environmental regulations and that minimize possible air, waterway, and subsoil contamination or pollution or other undesirable effects.

C. Temporary Erosion and Sedimentation Control: Comply with requirements of EPA Construction General Permit or authorities having jurisdiction, whichever is more stringent.

D. Temporary Erosion and Sedimentation Control: Provide measures to prevent soil erosion and discharge of soil-bearing water runoff and airborne dust to undisturbed areas and to adjacent properties and walkways, according to erosion- and sedimentation-control Drawings and requirements of EPA Construction General Permit or authorities having jurisdiction, whichever is more stringent.

1. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross tree- or plant-protection zones.
2. Inspect, repair, and maintain erosion- and sedimentation-control measures during construction until permanent vegetation has been established.
3. Clean, repair, and restore adjoining properties and roads affected by erosion and sedimentation from Project site during the course of Project.
4. Remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal.

E. Stormwater Control: Comply with requirements of authorities having jurisdiction. Provide barriers in and around excavations and subgrade construction to prevent flooding by runoff of stormwater from heavy rains.

F. Pest Control: Engage pest-control service to recommend practices to minimize attraction and harboring of rodents, roaches, and other pests and to perform extermination and control procedures at regular intervals so Project will be free of pests and their residues at Substantial Completion. Perform control operations lawfully, using materials approved by authorities having jurisdiction.

G. Security Enclosure and Lockup: Install temporary enclosure around partially completed areas of construction. Provide lockable entrances to prevent unauthorized entrance, vandalism, theft, and similar violations of security. Lock entrances at end of each workday.

H. Barricades, Warning Signs, and Lights: Comply with requirements of authorities having jurisdiction for erecting structurally adequate barricades, including warning signs and lighting.

I. Temporary Egress: Maintain temporary egress from existing occupied facilities as indicated and as required by authorities having jurisdiction.

J. Temporary Enclosures: Provide temporary enclosures for protection of construction, in progress and completed, from exposure, foul weather, other construction operations, and similar activities. Provide temporary weathertight enclosure for building exterior.

1. Where heating or cooling is needed and permanent enclosure is incomplete, insulate temporary enclosures.
K. Temporary Fire Protection: Install and maintain temporary fire-protection facilities of types needed to protect against reasonably predictable and controllable fire losses. Comply with NFPA 241; manage fire-prevention program.

1. Prohibit smoking in construction areas. Comply with additional limits on smoking specified in other Sections.
2. Supervise welding operations, combustion-type temporary heating units, and similar sources of fire ignition according to requirements of authorities having jurisdiction.
3. Develop and supervise an overall fire-prevention and protection program for personnel at Project site. Review needs with local fire department and establish procedures to be followed. Instruct personnel in methods and procedures. Post warnings and information.

3.6 MOISTURE AND MOLD CONTROL

A. Contractor's Moisture-Protection Plan: Describe delivery, handling, storage, installation, and protection provisions for materials subject to water absorption or water damage.

1. Indicate procedures for discarding water-damaged materials, protocols for mitigating water intrusion into completed Work, and replacing water-damaged Work.
2. Indicate sequencing of work that requires water, such as sprayed fire-resistive materials, plastering, and terrazzo grinding, and describe plans for dealing with water from these operations. Show procedures for verifying that wet construction has dried sufficiently to permit installation of finish materials.
3. Indicate methods to be used to avoid trapping water in finished work.

B. Exposed Construction Period: Before installation of weather barriers, when materials are subject to wetting and exposure and to airborne mold spores, protect as follows:

1. Protect porous materials from water damage.
2. Protect stored and installed material from flowing or standing water.
3. Keep porous and organic materials from coming into prolonged contact with concrete.
4. Remove standing water from decks.
5. Keep deck openings covered or dammed.

C. Partially Enclosed Construction Period: After installation of weather barriers but before full enclosure and conditioning of building, when installed materials are still subject to infiltration of moisture and ambient mold spores, protect as follows:

1. Do not load or install drywall or other porous materials or components, or items with high organic content, into partially enclosed building.
2. Keep interior spaces reasonably clean and protected from water damage.
3. Periodically collect and remove waste containing cellulose or other organic matter.
4. Discard or replace water-damaged material.
5. Do not install material that is wet.
6. Discard and replace stored or installed material that begins to grow mold.
7. Perform work in a sequence that allows wet materials adequate time to dry before enclosing the material in gypsum board or other interior finishes.
D. Controlled Construction Period: After completing and sealing of the building enclosure but prior to the full operation of permanent HVAC systems, maintain as follows:

1. Control moisture and humidity inside building by maintaining effective dry-in conditions.
2. Use temporary or permanent HVAC system to control humidity within ranges specified for installed and stored materials.
3. Comply with manufacturer’s written instructions for temperature, relative humidity, and exposure to water limits.

3.7 OPERATION, TERMINATION, AND REMOVAL

A. Supervision: Enforce strict discipline in use of temporary facilities. To minimize waste and abuse, limit availability of temporary facilities to essential and intended uses.

B. Maintenance: Maintain facilities in good operating condition until removal.

1. Maintain operation of temporary enclosures, heating, cooling, humidity control, ventilation, and similar facilities on a 24-hour basis where required to achieve indicated results and to avoid possibility of damage.

C. Temporary Facility Changeover: Do not change over from using temporary security and protection facilities to permanent facilities until Substantial Completion.

D. Termination and Removal: Remove each temporary facility when need for its service has ended, when it has been replaced by authorized use of a permanent facility, or no later than Substantial Completion. Complete or, if necessary, restore permanent construction that may have been delayed because of interference with temporary facility. Repair damaged Work, clean exposed surfaces, and replace construction that cannot be satisfactorily repaired.

1. Materials and facilities that constitute temporary facilities are property of Contractor. Owner reserves right to take possession of Project identification signs.
2. At Substantial Completion, repair, renovate, and clean permanent facilities used during construction period. Comply with final cleaning requirements specified in Section 017700 “Closeout Procedures.”

END OF SECTION
SECTION 016000
PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; and comparable products.

1.2 DEFINITIONS

A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.

1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature that is current as of date of the Contract Documents.

2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.

3. Comparable Product: Product that is demonstrated and approved by Engineer and Construction Manager through submittal process to have the indicated qualities related to type, function, dimension, in-service performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.

B. Basis-of-Design Product Specification: A specification in which a single manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation. In addition to the basis-of-design product description, product attributes and characteristics may be listed to establish the significant qualities related to type, function, in-service performance and physical properties, weight, dimension, durability, visual characteristics, and other special features and requirements for purposes of evaluating comparable products of additional manufacturers named in the specification.

1.3 ACTION SUBMITTALS

A. Comparable Product Request Submittal: Submit request for consideration of each comparable product. Identify basis-of-design product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.

1. Include data to indicate compliance with the requirements specified in "Comparable Products" Article.

2. Engineer's Action: If necessary, Engineer will request additional information or
documentation for evaluation within seven days of receipt of a comparable product request. Engineer will notify Contractor through Construction Manager of approval or rejection of proposed comparable product request within 7 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.

a. Form of Engineer’s/Engineer’s Approval of Submittal: As specified in Section 013300 "Submittal Procedures."
b. Use product specified if Engineer does not issue a decision on use of a comparable product request within time allocated.

1.4 QUALITY ASSURANCE

A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options.

1.5 PRODUCT DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.

B. Delivery and Handling:

1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
4. Inspect products on delivery to determine compliance with the Contract Documents and to determine that products are undamaged and properly protected.

C. Storage:

1. Store products to allow for inspection and measurement of quantity or counting of units.
2. Store materials in a manner that will not endanger Project structure.
3. Store products that are subject to damage by the elements, under cover in a weathertight enclosure above ground, with ventilation adequate to prevent condensation.
4. Protect foam plastic from exposure to sunlight, except to extent necessary for
period of installation and concealment.
5. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
6. Protect stored products from damage and liquids from freezing.

1.6 PRODUCT WARRANTIES

A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.

1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for Owner.

B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution.

1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
2. Specified Form: When specified forms are included with the Specifications, prepare a written document using indicated form properly executed.
3. See other Sections for specific content requirements and particular requirements for submitting special warranties.

PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

A. General Product Requirements: Provide products that comply with the Contract Documents, are undamaged and, unless otherwise indicated, are new at time of installation.

1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.
2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.
3. Owner reserves the right to limit selection to products with warranties meeting requirements of the Contract Documents.
4. Where products are accompanied by the term "as selected," Engineer will make selection.

B. Product Selection Procedures:

1. Sole Product: Where Specifications name a single manufacturer and product,
provide the named product that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.

a. Sole product may be indicated by the phrase: “No substitutions allowed.”

2. Sole Manufacturer/Source: Where Specifications name a single manufacturer or source, provide a product by the named manufacturer or source that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.

a. Sole manufacturer/source may be indicated by the phrase: “No substitutions allowed”.

3. Limited List of Products: Where Specifications include a list of names of both manufacturers and products, provide one of the products listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will be considered unless otherwise indicated.

a. Limited list of products may be indicated by the phrase: “Subject to compliance with requirements, provide one of the following manufacturers or approved equal.”

4. Non-Limited List of Products: Where Specifications include a list of names of both available manufacturers and products, provide one of the products listed, or an unnamed product, which complies with requirements.

a. Non-limited list of products is indicated by the phrase: “Subject to compliance with requirements, available products that may be incorporated in the Work.”

5. Limited List of Manufacturers: Where Specifications include a list of manufacturers' names, provide a product by one of the manufacturers listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will be considered unless otherwise indicated.

a. Limited list of manufacturers is indicated by the phrase: “Subject to compliance with requirements, provide products by one of the following manufacturers or approved equal.”

6. Non-Limited List of Manufacturers: Where Specifications include a list of available manufacturers, provide a product by one of the manufacturers listed, or a product by an unnamed manufacturer, which complies with requirements.

a. Non-limited list of manufacturers is indicated by the phrase: “Subject to compliance with requirements, available manufacturers whose products may be incorporated in the Work.”

7. Basis-of-Design Product: Where Specifications name a product, or refer to a product indicated on Drawings, and include a list of manufacturers, provide the specified or indicated product or a comparable product by one of the other named
manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product by one of the other named manufacturers.

a. For approval of products by unnamed manufacturers, comply with requirements in Section 013300 "Submittal Procedures" for substitutions for convenience.

C. Visual Matching Specification: Where Specifications require "match Engineer's sample," provide a product that complies with requirements and matches Engineer's sample. Engineer's decision will be final on whether a proposed product matches.

1. If no product available within specified category matches and complies with other specified requirements, comply with requirements in Section 013300 "Submittal Procedures" for proposal of product.

D. Visual Selection Specification: Where Specifications include the phrase "as selected by Engineer from manufacturer's full range" or similar phrase, select a product that complies with requirements. Engineer will select color, gloss, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

2.2 COMPARABLE PRODUCTS

A. Conditions for Consideration of Comparable Products: Engineer will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Engineer may return requests without action, except to record noncompliance with these requirements:

1. Evidence that proposed product does not require revisions to the Contract Documents, is consistent with the Contract Documents, will produce the indicated results, and is compatible with other portions of the Work. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant product qualities include attributes such as type, function, in-service performance and physical properties, weight, dimension, durability, visual characteristics, and other specific features and requirements.

2. Evidence that proposed product provides specified warranty.

3. List of similar installations for completed projects with project names and addresses and names and addresses of Engineers and owners, if requested.

4. Samples, if requested.

PART 3 - EXECUTION (Not Used)

END OF SECTION
SECTION 017300
EXECUTION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes general administrative and procedural requirements governing execution of the Work including, but not limited to, the following:

2. Field engineering and surveying.
3. Installation of the Work.
4. Cutting and patching.
5. Progress cleaning.
6. Starting and adjusting.
7. Protection of installed construction.

1.2 INFORMATIONAL SUBMITTALS

A. Certificates: Submit certificate signed by professional engineer certifying that location and elevation of improvements comply with requirements.

B. Landfill Receipts: Submit copy of receipts issued by a landfill facility, licensed to accept hazardous materials, for hazardous waste disposal.

C. Certified Surveys: Submit two copies signed by professional engineer or a licensed surveyor.

D. Final Property Survey: Submit 2 copies showing the Work performed and record survey data.

1.3 QUALITY ASSURANCE

A. Land Surveyor Qualifications: A professional land surveyor who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing land-surveying services of the kind indicated.

B. Cutting and Patching: Comply with requirements for and limitations on cutting and patching of construction elements.

1. Structural Elements: When cutting and patching structural elements, notify Construction Manager of locations and details of cutting and await directions from Construction Manager before proceeding. Shore, brace, and support structural elements during cutting and patching. Do not cut and patch structural elements in a manner that could change their load-carrying capacity or increase deflection.

2. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as
intended or that results in increased maintenance or decreased operational life or safety. Other Construction Elements: Do not cut and patch other construction elements or components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended, or that results in increased maintenance or decreased operational life or safety.

3. Visual Elements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exposed construction in a manner that would, in Engineer’s opinion, reduce the building’s aesthetic qualities. Remove and replace construction that has been cut and patched in a visually unsatisfactory manner.

C. Manufacturer’s Installation Instructions: Obtain and maintain on-site manufacturer’s written recommendations and instructions for installation of products and equipment.

PART 2 - PRODUCTS

2.1 MATERIALS

A. General: Comply with requirements specified in other Sections.

1. For projects requiring compliance with sustainable design and construction practices and procedures, use products for patching that comply with sustainable design requirements.

B. In-Place Materials: Use materials for patching identical to in-place materials. For exposed surfaces, use materials that visually match in-place adjacent surfaces to the fullest extent possible.

1. If identical materials are unavailable or cannot be used, use materials that, when installed, will provide a match acceptable to Engineer for the visual and functional performance of in-place materials.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Existing Conditions: The existence and location of underground and other utilities and construction indicated as existing are not guaranteed. Before beginning sitework, investigate and verify the existence and location of underground utilities, plumbing and electrical systems, and other construction affecting the Work.

1. Before construction, verify the location and invert elevation at points of connection of sanitary sewer, storm sewer, and water-service piping; underground electrical services; and other utilities.

2. Furnish location data for work related to Project that must be performed by public utilities serving Project site.

B. Examination and Acceptance of Conditions: Before proceeding with each component of
the Work, examine substrates, areas, and conditions, with Installer or Applicator present where indicated, for compliance with requirements for installation tolerances and other conditions affecting performance. Record observations.

1. Examine roughing-in for mechanical and electrical systems to verify actual locations of connections before equipment and fixture installation.
2. Examine walls, floors, and roofs for suitable conditions where products and systems are to be installed.
3. Verify compatibility with and suitability of substrates, including compatibility with existing finishes or primers.

C. Proceed with installation only after unsatisfactory conditions have been corrected. Proceeding with the Work indicates acceptance of surfaces and conditions.

3.2 PREPARATION

A. Existing Utility Information: Furnish information to Construction Manager and Owner that is necessary to adjust, move, or relocate existing utility structures, utility poles, lines, services, or other utility appurtenances located in or affected by construction. Coordinate with authorities having jurisdiction.

B. Field Measurements: Take field measurements as required to fit the Work properly. Recheck measurements before installing each product. Where portions of the Work are indicated to fit to other construction, verify dimensions of other construction by field measurements before fabrication. Coordinate fabrication schedule with construction progress to avoid delaying the Work.

C. Space Requirements: Verify space requirements and dimensions of items shown diagrammatically on Drawings.

D. Review of Contract Documents and Field Conditions: Immediately on discovery of the need for clarification of the Contract Documents caused by differing field conditions outside the control of Contractor, submit a request for information to Engineer and Construction Manager.

3.3 CONSTRUCTION LAYOUT

A. Verification: Before proceeding to lay out the Work, verify layout information shown on Drawings, in relation to the property survey and existing benchmarks. If discrepancies are discovered, notify Engineer and Construction Manager promptly.

B. General: Engage a land surveyor to lay out the Work using accepted surveying practices.

1. Establish benchmarks and control points to set lines and levels at each story of construction and elsewhere as needed to locate each element of Project.
2. Establish limits on use of Project site.
3. Establish dimensions within tolerances indicated. Do not scale Drawings to obtain required dimensions.
4. Inform installers of lines and levels to which they must comply.
5. Check the location, level and plumb, of every major element as the Work progresses.
6. Notify Engineer and Construction Manager when deviations from required lines and levels exceed allowable tolerances.
7. Close site surveys with an error of closure equal to or less than the standard established by authorities having jurisdiction.

C. Site Improvements: Locate and lay out site improvements, including pavements, grading, fill and topsoil placement, utility slopes, and rim and invert elevations.

D. Building Lines and Levels: Locate and lay out control lines and levels for structures, building foundations, column grids, and floor levels, including those required for mechanical and electrical work. Transfer survey markings and elevations for use with control lines and levels. Level foundations and piers from two or more locations.

E. Record Log: Maintain a log of layout control work. Record deviations from required lines and levels. Include beginning and ending dates and times of surveys, weather conditions, name and duty of each survey party member, and types of instruments and tapes used. Make the log available for reference by Engineer and Construction Manager.

3.4 FIELD ENGINEERING

A. Identification: Owner will identify existing benchmarks, control points, and property corners.

B. Reference Points: Locate existing permanent benchmarks, control points, and similar reference points before beginning the Work. Preserve and protect permanent benchmarks and control points during construction operations.

C. Benchmarks: Establish and maintain a minimum of two permanent benchmarks on Project site, referenced to data established by survey control points. Comply with authorities having jurisdiction for type and size of benchmark.

1. Record benchmark locations, with horizontal and vertical data, on Project Record Documents.

D. Certified Survey: On completion of foundation walls, major site improvements, and other work requiring field-engineering services, prepare a certified survey showing dimensions, locations, angles, and elevations of construction and sitework.

E. Final Property Survey: Engage a land surveyor to prepare a final property survey showing significant features (real property) for Project. Include on the survey a certification, signed by professional engineer, that principal metes, bounds, lines, and levels of Project are accurately positioned as shown on the survey.

1. Recording: At Substantial Completion, have the final property survey recorded by or with authorities having jurisdiction as the official "property survey."

3.5 INSTALLATION

A. General: Locate the Work and components of the Work accurately, in correct alignment and elevation, as indicated.

1. Make vertical work plumb and make horizontal work level.
2. Where space is limited, install components to maximize space available for maintenance and ease of removal for replacement.
3. Conceal pipes, ducts, and wiring in finished areas unless otherwise indicated.

B. Comply with manufacturer's written instructions and recommendations for installing products in applications indicated.

C. Install products at the time and under conditions that will ensure the best possible results. Maintain conditions required for product performance until Substantial Completion.

D. Conduct construction operations so no part of the Work is subjected to damaging operations or loading in excess of that expected during normal conditions of occupancy.

E. Sequence the Work and allow adequate clearances to accommodate movement of construction items on site and placement in permanent locations.

F. Tools and Equipment: Where possible, select tools or equipment that minimize production of excessive noise levels.

G. Templates: Obtain and distribute to the parties involved templates for work specified to be factory prepared and field installed. Check Shop Drawings of other portions of the Work to confirm that adequate provisions are made for locating and installing products to comply with indicated requirements.

H. Attachment: Provide blocking and attachment plates and anchors and fasteners of adequate size and number to securely anchor each component in place, accurately located and aligned with other portions of the Work. Where size and type of attachments are not indicated, verify size and type required for load conditions.

1. Mounting Heights: Where mounting heights are not indicated, mount components at heights directed by Engineer.
2. Allow for building movement, including thermal expansion and contraction.
3. Coordinate installation of anchorages. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

I. Joints: Make joints of uniform width. Where joint locations in exposed work are not indicated, arrange joints for the best visual effect. Fit exposed connections together to form hairline joints.

J. Remove and replace damaged, defective, or non-conforming Work.

3.6 CUTTING AND PATCHING

A. Cutting and Patching, General: Employ skilled workers to perform cutting and patching. Proceed with cutting and patching at the earliest feasible time, and complete without delay.

1. Cut in-place construction to provide for installation of other components or performance of other construction, and subsequently patch as required to restore
surfaces to their original condition.

B. Existing Warranties: Remove, replace, patch, and repair materials and surfaces cut or damaged during installation or cutting and patching operations, by methods and with materials so as not to void existing warranties.

C. Temporary Support: Provide temporary support of work to be cut.

D. Protection: Protect in-place construction during cutting and patching to prevent damage. Provide protection from adverse weather conditions for portions of Project that might be exposed during cutting and patching operations.

E. Adjacent Occupied Areas: Where interference with use of adjoining areas or interruption of free passage to adjoining areas is unavoidable, coordinate cutting and patching.

F. Existing Utility Services and Mechanical/Electrical Systems: Where existing services/systems are required to be removed, relocated, or abandoned, bypass such services/systems before cutting to prevent interruption to occupied areas.

G. Cutting: Cut in-place construction by sawing, drilling, breaking, chipping, grinding, and similar operations, including excavation, using methods least likely to damage elements retained or adjoining construction. If possible, review proposed procedures with original Installer; comply with original Installer's written recommendations.

1. In general, use hand or small power tools designed for sawing and grinding, not hammering and chopping. Cut holes and slots neatly to minimum size required, and with minimum disturbance of adjacent surfaces. Temporarily cover openings when not in use.

2. Finished Surfaces: Cut or drill from the exposed or finished side into concealed surfaces.

3. Concrete and Masonry: Cut using a cutting machine, such as an abrasive saw or a diamond-core drill.

4. Excavating and Backfilling: Comply with requirements in applicable Sections where required by cutting and patching operations.

5. Mechanical and Electrical Services: Cut off pipe or conduit in walls or partitions to be removed. Cap, valve, or plug and seal remaining portion of pipe or conduit to prevent entrance of moisture or other foreign matter after cutting.

6. Proceed with patching after construction operations requiring cutting are complete.

H. Patching: Patch construction by filling, repairing, refinishing, closing up, and similar operations following performance of other work. Patch with durable seams that are as invisible as practicable. Provide materials and comply with installation requirements specified in other Sections, where applicable.

1. Inspection: Where feasible, test and inspect patched areas after completion to demonstrate physical integrity of installation.

2. Exposed Finishes: Restore exposed finishes of patched areas and extend finish restoration into retained adjoining construction in a manner that will minimize evidence of patching and refinishing.

3. Floors and Walls: Where walls or partitions that are removed extend one finished area into another, patch and repair floor and wall surfaces in the new space. Provide an even surface of uniform finish, color, texture, and appearance. Remove
in-place floor and wall coverings and replace with new materials, if necessary, to achieve uniform color and appearance.

4. Ceilings: Patch, repair, or rehang in-place ceilings as necessary to provide an even-plane surface of uniform appearance.

5. Exterior Building Enclosure: Patch components in a manner that restores enclosure to a weathertight condition and ensures thermal and moisture integrity of building enclosure.

I. Cleaning: Clean areas and spaces where cutting and patching are performed. Remove paint, mortar, oils, putty, and similar materials from adjacent finished surfaces.

3.7 PROGRESS CLEANING

A. General: Clean Project site and work areas daily, including common areas. Enforce requirements strictly. Dispose of materials lawfully.

2. Do not hold waste materials more than seven days during normal weather or three days if the temperature is expected to rise above 80 deg F.

3. Containerize hazardous and unsanitary waste materials separately from other waste. Mark containers appropriately and dispose of legally, according to regulations.

 a. Use containers intended for holding waste materials of type to be stored.

4. Coordinate progress cleaning for joint-use areas where Contractor and other contractors are working concurrently.

B. Site: Maintain Project site free of waste materials and debris.

C. Work Areas: Clean areas where work is in progress to the level of cleanliness necessary for proper execution of the Work.

1. Remove liquid spills promptly.

2. Where dust would impair proper execution of the Work, broom-clean or vacuum the entire work area, as appropriate.

D. Installed Work: Keep installed work clean. Clean installed surfaces according to written instructions of manufacturer or fabricator of product installed, using only cleaning materials specifically recommended. If specific cleaning materials are not recommended, use cleaning materials that are not hazardous to health or property and that will not damage exposed surfaces.

E. Concealed Spaces: Remove debris from concealed spaces before enclosing the space.

F. Exposed Surfaces in Finished Areas: Clean exposed surfaces and protect as necessary to ensure freedom from damage and deterioration at time of Substantial Completion.

G. Waste Disposal: Do not bury or burn waste materials on-site. Do not wash waste materials down sewers or into waterways.
H. During handling and installation, clean and protect construction in progress and adjoining materials already in place. Apply protective covering where required to ensure protection from damage or deterioration at Substantial Completion.

I. Clean and provide maintenance on completed construction as frequently as necessary through the remainder of the construction period. Adjust and lubricate operable components to ensure operability without damaging effects.

J. Limiting Exposures: Supervise construction operations to ensure that no part of the construction, completed or in progress, is subject to harmful, dangerous, damaging, or otherwise deleterious exposure during the construction period.

3.8 STARTING AND ADJUSTING

A. Coordinate startup and adjusting of equipment and operating components.

B. Start equipment and operating components to confirm proper operation. Remove malfunctioning units, replace with new units, and retest.

C. Adjust equipment for proper operation. Adjust operating components for proper operation without binding.

D. Test each piece of equipment to verify proper operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

E. Manufacturer's Field Service: Comply with qualification requirements in Section 014000 "Quality Requirements."

3.9 PROTECTION OF INSTALLED CONSTRUCTION

A. Provide final protection and maintain conditions that ensure installed Work is without damage or deterioration at time of Substantial Completion.

B. Protection of Existing Items: Provide protection and ensure that existing items to remain undisturbed by construction are maintained in condition that existed at commencement of the Work.

C. Comply with manufacturer's written instructions for temperature and relative humidity.

END OF SECTION
SECTION 017419
CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes administrative and procedural requirements for the following:

1. Salvaging nonhazardous construction waste.
2. Recycling nonhazardous construction waste.
3. Disposing of nonhazardous construction waste.

1.2 DEFINITIONS

A. Construction Waste: Building, structure, and site improvement materials and other solid waste resulting from construction, remodeling, renovation, or repair operations. Construction waste includes packaging.

B. Demolition Waste: Building, structure, and site improvement materials resulting from demolition operations.

C. Disposal: Removal of demolition or construction waste and subsequent salvage, sale, recycling, or deposit in landfill, incinerator acceptable to authorities having jurisdiction, or designated spoil areas on Owner’s property.

D. Recycle: Recovery of demolition or construction waste for subsequent processing in preparation for reuse.

E. Salvage: Recovery of demolition or construction waste and subsequent sale or reuse in another facility.

F. Salvage and Reuse: Recovery of demolition or construction waste and subsequent incorporation into the Work.

1.3 ACTION SUBMITTALS

A. Waste Management Plan: Submit plan within 30 days of date established for commencement of the Work.

1.4 INFORMATIONAL SUBMITTALS

A. Waste Reduction Progress Reports: Concurrent with each Application for Payment, submit report. Include the following information:

1. Material category.
2. Generation point of waste.
3. Total quantity of waste in tons.
4. Quantity of waste salvaged, both estimated and actual in tons.
5. Quantity of waste recycled, both estimated and actual in tons.
6. Total quantity of waste recovered (salvaged plus recycled) in tons.
7. Total quantity of waste recovered (salvaged plus recycled) as a percentage of total waste.

B. Waste Reduction Calculations: Before request for Substantial Completion, submit calculated end-of-Project rates for salvage, recycling, and disposal as a percentage of total waste generated by the Work.

C. Records of Donations: Indicate receipt and acceptance of salvageable waste donated to individuals and organizations. Indicate whether organization is tax exempt.

D. Records of Sales: Indicate receipt and acceptance of salvageable waste sold to individuals and organizations. Indicate whether organization is tax exempt.

E. Recycling and Processing Facility Records: Indicate receipt and acceptance of recyclable waste by recycling and processing facilities licensed to accept them. Include manifests, weight tickets, receipts, and invoices.

F. Landfill and Incinerator Disposal Records: Indicate receipt and acceptance of waste by landfills and incinerator facilities licensed to accept them. Include manifests, weight tickets, receipts, and invoices.

1.5 QUALITY ASSURANCE

A. Waste Management Coordinator Qualifications: Experienced firm, or individual employed and assigned by General Contractor, with a record of successful waste management coordination of projects with similar requirements.

B. Waste Management Conference(s): Conduct conference(s) at Project site to comply with requirements in Section 017419 “Construction Waste Management and Disposal.”

1.6 WASTE MANAGEMENT PLAN

A. General: Develop a waste management plan according to requirements in this Section. Plan shall consist of waste identification, waste reduction work plan, and cost/revenue analysis. Indicate quantities by weight or volume, but use same units of measure throughout waste management plan.

C. Waste Reduction Work Plan: List each type of waste and whether it will be salvaged, recycled, or disposed of in landfill or incinerator. Include points of waste generation, total quantity of each type of waste, quantity for each means of recovery, and handling and transportation procedures.
1. Salvaged Materials for Reuse: For materials that will be salvaged and reused in this Project, describe methods for preparing salvaged materials before incorporation into the Work.

2. Salvaged Materials for Sale: For materials that will be sold to individuals and organizations, include list of their names, addresses, and telephone numbers.

3. Salvaged Materials for Donation: For materials that will be donated to individuals and organizations, include list of their names, addresses, and telephone numbers.

4. Recycled Materials: Include list of local receivers and processors and type of recycled materials each will accept. Include names, addresses, and telephone numbers.

5. Disposed Materials: Indicate how and where materials will be disposed of. Include name, address, and telephone number of each landfill and incinerator facility.

6. Handling and Transportation Procedures: Include method that will be used for separating recyclable waste including sizes of containers, container labeling, and designated location where materials separation will be performed.

PART 2 - PRODUCTS

(Not Used) PART 3 -

EXECUTION

3.1 PLAN IMPLEMENTATION

A. General: Implement approved waste management plan. Provide handling, containers, storage, signage, transportation, and other items as required to implement waste management plan during the entire duration of the Contract.

B. Waste Management Coordinator: Engage a waste management coordinator to be responsible for implementing, monitoring, and reporting status of waste management work plan.

C. Training: Train workers, subcontractors, and suppliers on proper waste management procedures, as appropriate for the Work.

1. Distribute waste management plan to everyone concerned within three days of start of construction.

2. Distribute waste management plan to entities when they first begin work on-site. Review plan procedures and locations established for salvage, recycling, and disposal.

D. Site Access and Temporary Controls: Conduct waste management operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.

1. Designate and label specific areas on Project site necessary for separating
materials that are to be salvaged and recycled.
2. Comply with Section 015000 "Temporary Facilities and Controls" for controlling dust and dirt, environmental protection, and noise control.

3.2 RECYCLING CONSTRUCTION WASTE, GENERAL

A. General: Recycle paper and beverage containers used by on-site workers.

B. Recycling Incentives: Revenues, savings, rebates, tax credits, and other incentives received for recycling waste materials shall accrue to Contractor.

C. Preparation of Waste: Prepare and maintain recyclable waste materials according to recycling or reuse facility requirements. Maintain materials free of dirt, adhesives, solvents, petroleum contamination, and other substances deleterious to the recycling process.

D. Procedures: Separate recyclable waste from other waste materials, trash, and debris. Separate recyclable waste by type at Project site to the maximum extent practical according to approved construction waste management plan.
 1. Provide appropriately marked containers or bins for controlling recyclable waste until removed from Project site. Include list of acceptable and unacceptable materials at each container and bin.
 a. Inspect containers and bins for contamination and remove contaminated materials if found.
 2. Stockpile processed materials on-site without intermixing with other materials. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
 3. Stockpile materials away from construction area. Do not store within drip line of remaining trees.
 4. Store components off the ground and protect from the weather.
 5. Remove recyclable waste from Owner's property and transport to recycling receiver or processor as often as required to prevent overfilling bins.

3.3 RECYCLING CONSTRUCTION WASTE

A. Packaging:
 1. Cardboard and Boxes: Break down packaging into flat sheets. Bundle and store in a dry location.
 3. Pallets: As much as possible, require deliveries using pallets to remove pallets from Project site. For pallets that remain on-site, break down pallets into component wood pieces and comply with requirements for recycling wood.
 4. Crates: Break down crates into component wood pieces and comply with requirements for recycling wood.

B. Wood Materials:
1. Clean Cut-Offs of Lumber: Grind or chip into small pieces.
2. Clean Sawdust: Bag sawdust that does not contain painted or treated wood.

C. Gypsum Board: Stack large clean pieces on wood pallets or in container and store in a dry location.
 1. Clean Gypsum Board: Grind scraps of clean gypsum board using small mobile chipper or hammer mill. Screen out paper after grinding.

D. Paint: Seal containers and store by type.

3.4 DISPOSAL OF WASTE

A. General: Except for items or materials to be salvaged or recycled, remove waste materials from Project site and legally dispose of them in a landfill or incinerator acceptable to authorities having jurisdiction.
 1. Except as otherwise specified, do not allow waste materials that are to be disposed of accumulate on-site.
 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.

B. General: Except for items or materials to be salvaged or recycled, remove waste materials and legally dispose of at designated spoil areas on Owner’s property.

C. Burning: Do not burn waste materials.

D. Burning: Burning of waste materials is permitted only at designated areas on Owner's property, provided required permits are obtained. Provide full-time monitoring for burning materials until fires are extinguished.

END OF SECTION
SECTION 017700
CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:
 1. Substantial Completion procedures.
 2. Final completion procedures.
 3. Warranties.
 4. Final cleaning.
 5. Repair of the Work.
 6. O +M manuals

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of cleaning agent.
 B. Contractor's List of Incomplete Items: Initial submittal at Substantial Completion.
 C. Certified List of Incomplete Items: Final submittal at final completion.

1.3 CLOSEOUT SUBMITTALS
 A. Certificates of Release: From authorities having jurisdiction.
 B. Certificate of Insurance: For continuing coverage.
 C. Field Report: For pest control inspection.

1.4 SUBSTANTIAL COMPLETION PROCEDURES
 A. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's punch list), indicating the value of each item on the list and reasons why the Work is incomplete.
 B. Submittals Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 1. Certificates of Release: Obtain and submit releases from authorities having jurisdiction permitting Owner unrestricted use of the Work and access to services
and utilities. Include occupancy permits, operating certificates, and similar releases.

2. Submit closeout submittals specified in other Division 01 Sections, including project record documents, operation and maintenance manuals, damage or settlement surveys, property surveys, and similar final record information.

3. Submit closeout submittals specified in individual Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.

4. Submit maintenance material submittals specified in individual Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Construction Manager. Label with manufacturer's name and model number.

5. Submit testing, adjusting, and balancing records.

6. Submit sustainable design submittals not previously submitted.

7. Submit changeover information related to Owner's occupancy, use, operation, and maintenance.

C. Procedures Prior to Substantial Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.

1. Advise Owner of pending insurance changeover requirements.

2. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's personnel of changeover in security provisions.

3. Complete startup and testing of systems and equipment.

4. Perform preventive maintenance on equipment used prior to Substantial Completion.

5. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems. Submit demonstration and training video.

6. Advise Owner of changeover in utility services.

7. Participate with Owner in conducting inspection and walkthrough with local emergency responders.

8. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.

9. Complete final cleaning requirements.

10. Touch up paint and otherwise repair and restore marred exposed finishes to eliminate visual defects.

D. Inspection: Submit a written request for inspection to determine Substantial Completion a minimum of 10 days prior to date the Work will be completed and ready for final inspection and tests. On receipt of request, Engineer and Construction Manager will either proceed with inspection or notify Contractor of unfulfilled requirements. Engineer will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Engineer, that must be completed or corrected before certificate will be issued.

1.5 FINAL COMPLETION PROCEDURES

A. Submittals Prior to Final Completion: Before requesting final inspection for determining final completion, complete the following:
1. Submit a final Application for Payment according to "Closeout Payment Procedures."

2. Certified List of Incomplete Items: Submit certified copy of Engineer's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Engineer. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.

3. Certificate of Insurance: Submit evidence of final, continuing insurance coverage complying with insurance requirements.

4. Submit pest-control final inspection report.

B. Inspection: Submit a written request for final inspection to determine acceptance a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Engineer and Construction Manager will either proceed with inspection or notify Contractor of unfulfilled requirements. Engineer will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.

1.6 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.

1. Organize list of spaces in sequential order, starting with exterior areas first and proceeding from lowest floor to highest floor.

2. Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems.

3. Submit list of incomplete items in the following format:

 a. MS Excel electronic file. Engineer, through Construction Manager, will return annotated file.

1.7 SUBMITTAL OF PROJECT WARRANTIES

A. Time of Submittal: Submit written warranties on request of Engineer for designated portions of the Work where warranties are indicated to commence on dates other than date of Substantial Completion, or when delay in submittal of warranties might limit Owner's rights under warranty.

B. Organize warranty documents into an orderly sequence based on the table of contents of Project Manual.

C. Warranty Electronic File: Provide warranties and bonds in PDF format. Assemble complete warranty and bond submittal package into a single electronic PDF file with bookmarks enabling navigation to each item. Provide bookmarked table of contents at beginning of document.

1. Submit on digital media acceptable to Engineer by email to Engineer.

D. Warranties in Paper Form:
1. Bind warranties and bonds in heavy-duty, three-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch paper.

E. Provide additional copies of each warranty to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

PART 3 - EXECUTION

3.1 FINAL CLEANING

A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.

B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.

1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:

 a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.

 b. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.

 c. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.

 d. Sweep concrete floors broom clean in unoccupied spaces.

 e. Vacuum carpet and similar soft surfaces, removing debris and excess nap; clean according to manufacturer's recommendations if visible soil or stains remain.

 f. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.

 g. Replace disposable air filters and clean permanent air filters. Clean
exposed surfaces of diffusers, registers, and grills.
 h. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency.
 i. Leave Project clean and ready for occupancy.

C. Pest Control: Comply with pest control requirements in Section 015000 "Temporary Facilities and Controls." Prepare written report.

D. Construction Waste Disposal: Comply with waste disposal requirements in Section 015000 "Temporary Facilities and Controls" and Section 017419 "Construction Waste Management and Disposal."

3.2 REPAIR OF THE WORK

A. Complete repair and restoration operations, before requesting inspection for determination of Substantial Completion.

B. Repair, or remove and replace, defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition. Repairs for actual construction shall be done prior to July 31, 2019. Repairs to defective construction will be the terms and conditions of the warranties.

3.3 OPERATIONAL AND MAINTENANCE MANUALS

A. Contractor shall provide all O+M manuals for equipment or controls requiring maintenance.

END OF SECTION
PART 1 - GENERAL

1.01 SUMMARY

A. This Section includes the following:
 1. Demolition and removal of selected site elements.
 2. Patching and repairs.

1.02 DEFINITIONS

A. Remove: Remove and legally dispose of items except those indicated to be reinstalled, salvaged, or to remain the owner's property.

B. Remove and Salvage: Items indicated to be removed and salvaged remain the Owner’s property. Remove, clean and pack or crate items to protect against damage. Identify contents of containers and deliver to Owner's designated storage area.

C. Existing to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by the Engineer, items may be removed to a suitable, protected storage location during selective demolition and then cleaned and reinstalled in their original locations.

1.03 MATERIALS OWNERSHIP

A. Except for items or materials indicated to be reused, salvaged or otherwise indicated to remain the Owner's property, demolished materials shall become the Contractor's property and shall be removed from the site with further disposition at the Contractor's option.

1.04 SUBMITTALS

A. General: Submit each item in this Article according to the Conditions of the Contract and Division 1 Specification Sections, for information only, unless otherwise indicated.

B. Proposed dust-control measures.

C. Proposed noise-control measures.

1.05 QUALITY ASSURANCE

A. Demolition Firm Qualifications: Engage an experienced firm that has successfully completed selective demolition Work similar to that indicated for this Project.
B. Regulatory Requirements: Comply with governing EPA notification regulations before starting selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.

C. Predemolition Conference: Conduct conference at Project site to comply with preinstallation conference requirements of Division 1 Section "Project Meetings."

1.06 SCHEDULING

A. Arrange selective demolition schedule so as not to interfere with Owner's on-site operations.

PART 2 - PRODUCTS

2.01 REPAIR MATERIALS

A. Use repair materials identical to existing materials.

 1. Where identical materials are unavailable or cannot be used for exposed surfaces, use materials that visually match existing adjacent surfaces to the fullest extent possible.
 2. Use materials whose installed performance equals or surpasses that of existing materials.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Verify that utilities have been disconnected and capped.

B. Survey existing conditions and correlate with requirements indicated to determine extent of selective demolition required.

C. Inventory and record the condition of items to be removed and reinstalled and items to be removed and salvaged.

D. When unanticipated electrical or structural elements that conflict with the intended function or design are encountered, investigate and measure the nature and extent of the conflict. Promptly submit a written report to the Engineer.

E. Perform surveys as the Work progresses to detect hazards resulting from selective demolition activities.

3.02 UTILITY SERVICES

A. Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.
1. Do not interrupt existing utilities serving occupied or operating facilities, except when authorized in writing by owner and authorities having jurisdiction. Provide temporary services during interruptions to existing utilities, as acceptable to owner and to governing authorities.

 a. Provide not less than 72 hours' notice to Owner/Engineer if shutdown of service is required during changeover.

B. Utility Requirements: Locate, identify, disconnect and seal or cap off indicated utility services.

1. Arrange to shut off indicated utilities with utility companies.
2. Where utility services are required to be removed, relocated or abandoned, provide bypass connections to maintain continuity of service before proceeding with selective demolition.
3. Cut off pipe or conduit to be removed. Cap, valve or plug and seal the remaining portion of pipe or conduit after bypassing.

C. Utility Requirements: Do not start selective demolition work until utility disconnecting and sealing have been completed and verified in writing.

3.03 PREPARATION

A. Drain, purge or otherwise remove, collect and dispose of chemicals, gases, explosives, acids, flammables or other dangerous materials before proceeding with selective demolition operations.

B. Conduct demolition operations and remove debris to insure minimum interference with roads, streets, walks and other adjacent occupied and used facilities.

1. Do not close or obstruct streets, walks or other adjacent occupied or used facilities without permission from Lower Merion Township and other authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by governing regulations.

C. Conduct demolition operations to prevent injury to people and damage to adjacent buildings and facilities to remain. Ensure safe passage of people around selective demolition area.

1. Erect temporary protection, such as walks, fences, railings, canopies and covered passageways, where required by authorities having jurisdiction.
2. Protect existing site improvements, appurtenances and landscaping to remain.
3. Erect a plainly visible fence around drip line of individual trees or around perimeter drip line of groups of trees to remain.
4. Provide temporary weather protection, during interval between demolition and removal of existing construction, on exterior surfaces and new construction to insure that no water leakage or damage occurs to structure or interior areas.

3.04 POLLUTION CONTROLS
A. Use water mist, temporary enclosures and other suitable methods to limit the spread of dust and dirt. Comply with governing environmental protection regulations.

1. Do not use water when it may damage existing construction or create hazardous or objectionable conditions, such as ice, flooding and pollution.

B. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.

C. Clean adjacent structures and improvements of dust, dirt and debris caused by selective demolition operations. Return adjacent areas to condition existing before start of selective demolition.

3.05 SELECTIVE DEMOLITION

A. Demolish and remove existing above and below grade construction only to the extent necessary to facilitate new construction and as indicated. Use methods required to complete Work within limitations of governing regulations and as follows:

1. Proceed with selective demolition systematically, from higher to lower level.
2. Neatly cut openings and holes plumb, square and true to dimensions required. Use cutting methods least likely to damage construction to remain or adjoining construction. To minimize disturbance of adjacent surfaces, use hand or small power tools designed for sawing or grinding, not hammering and chopping. Temporarily cover openings to remain.
3. Dispose of demolished items and materials promptly. On-site storage or sale of removed items is prohibited.
4. Return elements of construction and surfaces to remain to condition existing before start of selective demolition operations.

B. Demolish concrete and masonry in small sections. Cut concrete and masonry at junctures with construction to remain, using power-driven masonry saw or hand tools; do not use power-driven impact tools.

C. Remove slabs, paving, curbs, and all aggregate bases as indicated.

1. Unless existing full-depth joints coincide with line of demolition, neatly saw-cut length of existing pavement to remain before removing existing pavement. Saw-cut faces vertically.

D. Removal of existing paving includes removal of all subbase materials to a firm subgrade.

3.06 PATCHING AND REPAIRS

A. Promptly patch and repair holes and damaged surfaces caused to adjacent construction by selective demolition operations.
B. Where repairs to existing surfaces are required, patch to produce surfaces suitable for new materials.

1. Completely fill holes and depressions in existing masonry walls to remain with an approved masonry patching material, applied according to manufacturer's printed recommendations.

C. Restore exposed finishes of patched areas and extend finish restoration into adjoining construction to remain in a manner that eliminates evidence of patching and refinishing.

D. Patch and repair sidewalk surfaces where demolition extends from one finished area onto another. Provide a flush and even surface of uniform color and appearance.

1. Closely match texture and finish of existing adjacent surface.
2. Patch with durable seams that are as invisible as possible. Comply with specified tolerances.
3. Inspect and test patched areas to demonstrate integrity of the installation, where feasible.

3.07 DISPOSAL OF DEMOLISHED MATERIALS

A. General: Promptly dispose of demolished materials. Do not allow demolished materials to accumulate on-site.

B. Burning: Do not burn demolished materials.

C. Disposal: Transport demolished materials to be salvaged at area designated by Owner.

D. Disposal: Transport demolished materials off Owner's property and legally dispose of them.

END OF SECTION 02 41 19
PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section includes cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes.

1.03 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash, slag cement, other pozzolans, and silica fume; materials subject to compliance with requirements.

B. W/C Ratio: The ratio by weight of water to cementitious materials.

1.04 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project Site

1. Before submitting design mixtures, review concrete design mixture and examine procedures for ensuring quality of concrete materials. Require representatives of each entity directly concerned with cast-in-place concrete to attend, including the following:

 a. Contractor's superintendent.
 b. Independent testing agency responsible for concrete design mixtures.
 c. Ready-mix concrete manufacturer.
 d. Concrete Subcontractor.
 e. Special concrete finish Subcontractor.

2. Review special inspection and testing and inspecting agency procedures for field quality control, concrete finishes and finishing, cold- and hot-weather concreting procedures, curing procedures, construction joints, forms and form removal limitations, vapor-retarder installation, anchor rod and anchorage device installation tolerances, steel reinforcement installation, methods for achieving specified floor and slab flatness and levelness floor and slab flatness and levelness measurement, concrete repair procedures, and concrete protection.
1.05 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Design Mixtures: For each concrete mixture. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

1. Indicate amounts of mixing water to be withheld for later addition at Project site.

C. Steel Reinforcement Shop Drawings: Placing Drawings that detail fabrication, bending, and placement. Include bar sizes, lengths, material, grade, bar schedules, stirrup spacing, bent bar diagrams, bar arrangement, splices and laps, mechanical connections, tie spacing, hoop spacing, and supports for concrete reinforcement.

D. Construction Joint Layout: Indicate proposed construction joints required to construct the structure.

1. Location of construction joints is subject to approval of the Architect.

1.06 INFORMATIONAL SUBMITTALS

A. Qualification Data: For concrete ready mix supplier and concrete slab contractor.

B. Welding certificates.

C. Material Certificates: For each of the following, signed by manufacturers:

1. Cementitious materials.
2. Admixtures.
3. Form materials and form-release agents.
4. Steel reinforcement and accessories.
5. Fiber reinforcement.
6. Curing compounds.
7. Floor and slab treatments.
10. Vapor retarders.

D. Material Test Reports: For the following, from a qualified testing agency:

1. Aggregates: Include service record data indicating absence of deleterious expansion of concrete due to alkali aggregate reactivity.

E. Formwork Shop Drawings: Prepared by or under the supervision of a qualified professional engineer, detailing fabrication, assembly, and support of formwork.
F. Floor surface flatness and levelness measurements indicating compliance with specified tolerances.

G. Field quality-control reports.

H. Minutes of preinstallation conference.

1.07 QUALITY ASSURANCE

A. Installer Qualifications: A qualified installer who employs on Project personnel qualified as ACI-certified Flatwork Technician and Finisher and a supervisor who is an ACI-certified Concrete Flatwork Technician.

B. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C94/C94M requirements for production facilities and equipment.

1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."

C. Testing Agency Qualifications: An independent agency qualified according to ASTM C1077 and ASTM E329 for testing indicated.

1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade I, according to ACI CP-1 or an equivalent certification program.

2. Personnel performing laboratory tests shall be ACI-certified Concrete Strength Testing Technician and Concrete Laboratory Testing Technician, Grade I. Testing agency laboratory supervisor shall be an ACI-certified Concrete Laboratory Testing Technician, Grade II.

D. Welding Qualifications: Qualify procedures and personnel according to AWS D1.4/D 1.4M.

1.08 PRECONSTRUCTION TESTING

A. Preconstruction Testing Service: Engage a qualified testing agency to perform preconstruction testing on concrete mixtures.

1.09 DELIVERY, STORAGE, AND HANDLING

A. Steel Reinforcement: Deliver, store, and handle steel reinforcement to prevent bending and damage.

1.10 FIELD CONDITIONS

A. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
1. When average high and low temperature is expected to fall below 40 deg F for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.
2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.

B. Hot-Weather Placement: Comply with ACI 301 and ACI 305.1, and as follows:

1. Maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
2. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas.

PART 2 - PRODUCTS

2.01 CONCRETE, GENERAL

A. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:

1. ACI 301.
2. ACI 117.

2.02 FORM-FACING MATERIALS

A. Smooth-Formed Finished Concrete: Form-facing panels that provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.

1. Plywood, metal, or other approved panel materials.
2. Exterior-grade plywood panels, suitable for concrete forms, complying with DOC PS 1, and as follows:

 a. High-density overlay, Class 1 or better.
 b. Medium-density overlay, Class 1 or better; mill-release agent treated, and edge sealed.
 c. Structural 1, B-B or better; mill oiled, and edge sealed.
 d. B-B (Concrete Form), Class 1 or better; mill oiled, and edge sealed.

B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.

C. Forms for Cylindrical Columns, Pedestals, and Supports: Metal, glass-fiber-reinforced plastic, paper, or fiber tubes that produce surfaces with gradual or abrupt irregularities not exceeding
specified formwork surface class. Provide units with sufficient wall thickness to resist plastic concrete loads without detrimental deformation.

E. Rustication Strips: Wood, metal, PVC, or rubber strips, kerfed for ease of form removal.

F. Form-Release Agent: Commercially formulated form-release agent that does not bond with, stain, or adversely affect concrete surfaces and does not impair subsequent treatments of concrete surfaces.

G. Form Ties: Factory-fabricated, removable or snap-off glass-fiber-reinforced plastic or metal form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.

1. Furnish units that leave no corrodible metal closer than 1 inch to the plane of exposed concrete surface.
2. Furnish ties that, when removed, leave holes no larger than 1 inch in diameter in concrete surface.
3. Furnish ties with integral water-barrier plates to walls indicated to receive damp proofing or waterproofing.

2.03 STEEL REINFORCEMENT

A. Reinforcing Bars: ASTM A615/A615M, Grade 60, deformed.

B. Plain-steel Welded-Wire Reinforcement: ASTM A1064/A1064M, plain, fabricated from as-drawn steel wire into flat sheets.

2.04 REINFORCEMENT ACCESSORIES

A. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded-wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice," of greater compressive strength than concrete and as follows:

2.05 CONCRETE MATERIALS

A. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from single source, and obtain admixtures from single source from single manufacturer.

B. Cementitious Materials:

C. Normal-Weight Aggregates: ASTM C33

Provide aggregates from a single source with documented service record data of at least 10 years' satisfactory service in similar applications and service conditions using similar aggregates and cementitious materials.

2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.

E. Air-Entraining Admixture: ASTM C260/C260M.

F. Chemical Admixtures: Certified by manufacturer to be compatible with other admixtures and that do not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.

1. Water-Reducing Admixture: ASTM C494/C494M, Type A.
2. Retarding Admixture: ASTM C494/C494M, Type B.
3. Water-Reducing and Retarding Admixture: ASTM C494/C494M, Type D.
4. High-Range, Water-Reducing Admixture: ASTM C494/C494M, Type F.
5. High-Range, Water-Reducing and Retarding Admixture: ASTM C494/C494M, Type G.
6. Plasticizing and Retarding Admixture: ASTM C1017/C1017M, Type II.

G. Set-Accelerating Corrosion-Inhibiting Admixture: Commercially formulated, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete and complying with ASTM C494/C494M, Type C.

H. Non-Set-Accelerating Corrosion-Inhibiting Admixture: Commercially formulated, non-set-accelerating, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete.

2.06 VAPOR RETARDERS

A. Sheet Vapor Retarder: ASTM E1745, Class A. Include manufacturer's recommended adhesive or pressure-sensitive tape.

2.07 FLOOR AND SLAB TREATMENTS

A. Unpigmented Chemical Floor Hardener: Factory-packaged.

1. Seal Hard manufactured by L&M Construction Chemicals, or approved equal.

2.08 CURING MATERIALS

A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete, compatible with Seal Hard.
B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. when dry.

C. Moisture-Retaining Cover: ASTM C171, polyethylene film or white burlap-polyethylene sheet.

D. Water: Potable.

E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C309, Type 1, Class B, dissipating – to be compatible with Seal Hard.

2.09 RELATED MATERIALS

A. Bonding Agent: ASTM C1059/C1059M, Type II, non-redispersible, acrylic emulsion or styrene butadiene.

2.10 REPAIR MATERIALS

A. Repair Overlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/4 inch and that can be filled in over a scarified surface to match adjacent floor elevations.

2. Primer: Product of topping manufacturer recommended for substrate, conditions, and application.
3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by topping manufacturer.
4. Compressive Strength: Not less than 5000 psi at 28 days when tested according to ASTM C109/C109M.

2.11 CONCRETE MIXTURES, GENERAL

A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.

1. Use a qualified independent testing agency for preparing and reporting proposed mixture designs based on laboratory trial mixtures.

B. Limit water-soluble, chloride-ion content in hardened concrete to 0.10 percent by weight of cement.

C. Admixtures: Use admixtures according to manufacturer's written instructions.

1. Use water-reducing or high-range water-reducing or plasticizing admixture in concrete, as required, for placement and workability.
2. Use water-reducing and -retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.

3. Use water-reducing admixture in pumped concrete, concrete for heavy-use industrial slabs and parking structure slabs, concrete required to be watertight, and concrete with a w/c ratio as indicated on the Drawings.

4. Use corrosion-inhibiting admixture in concrete mixtures where indicated.

D. Color Pigment: Add color pigment to concrete mixture according to manufacturer's written instructions and to result in hardened concrete color consistent with approved mockup.

2.12 CONCRETE MIXTURES FOR BUILDING ELEMENTS

1. Minimum Compressive Strength: As indicated on the Drawings

2. Maximum W/C Ratio: As indicated on the Drawings

3. Slump Limit: As indicated on the Drawings

4. Air Content: As indicated on the Drawings

2.13 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.14 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C94/C94M and ASTM C1116 and furnish batch ticket information.

1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.01 FORMWORK INSTALLATION

A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.

B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.

C. Limit concrete surface irregularities, designated by ACI 347 as abrupt or gradual, as follows:

D. Construct forms tight enough to prevent loss of concrete mortar.
E. Construct forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast-concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical.

 1. Install keyways, reglets, recesses, and the like, for easy removal.
 2. Do not use rust-stained steel form-facing material.

F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.

G. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.

H. Chamfer exterior corners and edges of permanently exposed concrete.

I. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.

J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.

K. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.

L. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

3.02 EMBEDDED ITEM INSTALLATION

A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

 1. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of AISC 303.

3.03 REMOVING AND REUSING FORMS

A. General: Formwork for sides of beams, walls, columns, and similar parts of the Work that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F for 24 hours after placing concrete. Concrete has to be hard enough to not be damaged by form-removal operations, and curing and protection operations need to be maintained.

 1. Leave formwork for beam soffits, joists, slabs, and other structural elements that support weight of concrete in place until concrete has achieved at least 70 percent of its 28-day design compressive strength.
2. Remove forms only if shores have been arranged to permit removal of forms without loosening or disturbing shores.

B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material are not acceptable for exposed surfaces. Apply new form-release agent.

C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Architect.

3.04 VAPOR-RETARDER INSTALLATION

A. Sheet Vapor Retarders: Place, protect, and repair sheet vapor retarder according to ASTM E1643 and manufacturer's written instructions.

1. Lap joints 6 inches and seal with manufacturer's recommended tape.

3.05 STEEL REINFORCEMENT INSTALLATION

A. General: Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.

1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.

B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that reduce bond to concrete.

C. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.

1. Weld reinforcing bars according to AWS D1.4/D 1.4M, where indicated.

D. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.

E. Install welded-wire reinforcement in longest practicable lengths on bar supports spaced to minimize sagging. Lap edges and ends of adjoining sheets at least one mesh spacing. Offset laps of adjoining sheet widths to prevent continuous laps in either direction. Lace overlaps with wire.

3.06 JOINTS

A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.

B. Construction Joints: Install as indicated on the drawings.

C. Contraction Joints in Slabs-on-Grade: Install as indicated on the drawings.
D. Isolation Joints in Slabs-on-Grade: Install as indicated on the drawings.

E. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections are completed.

F. Do not add water to concrete during delivery, at Project site, or during placement unless approved by Architect.

G. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301.
 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.

H. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete is placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.
 1. Deposit concrete in horizontal layers of depth not to exceed formwork design pressures and in a manner to avoid inclined construction joints.
 2. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301 (.
 3. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate.

I. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 1. Consolidate concrete during placement operations, so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
 3. Screed slab surfaces with a straightridge and strike off to correct elevations.
 4. Slope surfaces uniformly to drains where required.
 5. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, before excess bleedwater appears on the surface. Do not further disturb slab surfaces before starting finishing operations.

3.07 FINISHING FORMED SURFACES

A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 1. Apply to concrete surfaces not exposed to public view.
3.08 FINISHING FLOORS AND SLABS

A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.

B. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.

1. Apply a trowel finish to surfaces exposed surfaces.
2. Finish surfaces to the following tolerances, according to ASTM E1155 for a randomly trafficked floor surface:

 a. Specified overall values of flatness, F_F; and of levelness, F_L; with minimum local values of flatness, F_F; and of levelness, F_L.

C. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, ramps, and elsewhere as indicated.

1. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route. Coordinate required final finish with Architect before application.

3.09 MISCELLANEOUS CONCRETE ITEM INSTALLATION

A. Filling In: Fill in holes and openings left in concrete structures after work of other trades is in place unless otherwise indicated. Mix, place, and cure concrete, as specified, to blend with in-place construction. Provide other miscellaneous concrete filling indicated or required to complete the Work.

B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.

C. Equipment Bases and Foundations:

1. Coordinate sizes and locations of concrete bases with actual equipment provided.
2. Construct concrete bases height as indicated unless otherwise indicated, and extend base not less than 6 inches in each direction beyond the maximum dimensions of supported equipment unless otherwise indicated or unless required for seismic anchor support.
3. Minimum Compressive Strength: 4000 psi at 28 days.
4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete substrate.
6. Prior to pouring concrete, place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
7. Cast anchor-bolt insert into bases. Install anchor bolts to elevations required for proper attachment to supported equipment.
3.10 CONCRETE PROTECTING AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 305.1 for hot-weather protection during curing.

B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb./sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.

C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for remainder of curing period.

D. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces.

1. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period. Curing compound to be compatible with Seal Hard.

 a. Removal: After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer unless manufacturer certifies curing compound does not interfere with bonding of floor covering used on Project.

2. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.

3.11 JOINT FILLING

A. Prepare, clean, and install joint filler according to manufacturer's written instructions.

 1. Defer joint filling until concrete has aged at least one month(s). Do not fill joints until construction traffic has permanently ceased.

B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joints clean and dry.

C. Install semirigid joint filler full depth in saw-cut joints and at least 2 inches deep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.
CAST-IN-PLACE CONCRETE

3.12 CONCRETE SURFACE REPAIRS

A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval.

B. Patching Mortar: Mix dry-pack patching mortar, consisting of 1 part Portland cement to 2-1/2 parts fine aggregate passing a No. 16 sieve, using only enough water for handling and placing.

C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.
 1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch in any dimension to solid concrete. Limit cut depth to 3/4 inch. Make edges of cuts perpendicular to concrete surface. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.
 2. Repair defects on surfaces exposed to view by blending white Portland cement and standard Portland cement so that, when dry, patching mortar matches surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.
 3. Repair defects on concealed formed surfaces that affect concrete's durability and structural performance as determined by Architect.

D. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.
 1. Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.
 2. After concrete has cured at least 14 days, correct high areas by grinding.
 3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.
 4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.
 5. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch to match adjacent floor elevations. Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.
 6. Repair defective areas, except random cracks and single holes 1 inch or less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least a 3/4-inch clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mixture as original concrete, except without
coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.

7. Repair random cracks and single holes 1 inch or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.

E. Perform structural repairs of concrete, subject to Architect's approval, using epoxy adhesive and patching mortar.

F. Repair materials and installation not specified above may be used, subject to Architect's approval.

3.13 FIELD QUALITY CONTROL

A. Special Inspections: Owner will engage a special inspector and qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.

B. to perform tests and inspections and to submit reports.

C. Inspections:

1. Steel reinforcement placement.
2. Steel reinforcement welding.
3. Headed bolts and studs.
4. Verification of use of required design mixture.
5. Concrete placement, including conveying and depositing.
6. Curing procedures and maintenance of curing temperature.
7. Verification of concrete strength before removal of shores and forms from beams and slabs.

D. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C172/C172M shall be performed according to the following requirements:

1. Testing Frequency: Obtain one composite sample for each day's pour of each concrete mixture exceeding 5 cu. yd., but less than 25 cu. yd., plus one set for each additional 50 cu. yd. or fraction thereof.
2. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd. or fraction thereof of each concrete mixture placed each day.

a. When frequency of testing provides fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.

3. Slump: ASTM C143/C143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.
4. Air Content: ASTM C231/C231M, pressure method, for normal-weight concrete; ASTM C173/C173M, volumetric method, for structural lightweight concrete; one test for
each composite sample, but not less than one test for each day's pour of each concrete mixture.

5. Concrete Temperature: ASTM C1064/C1064M; one test hourly when air temperature is 40 deg F and below or 80 deg F and above, and one test for each composite sample.

6. Unit Weight: ASTM C567/C567M, fresh unit weight of structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.

7. Compression Test Specimens: ASTM C31/C31M.

a. Cast and laboratory cure two sets of two standard cylinder specimens for each composite sample.

b. Cast and field cure two sets of two standard cylinder specimens for each composite sample.

8. Compressive-Strength Tests: ASTM C39/C39M; test one set of two laboratory-cured specimens at 7 days and one set of two specimens at 28 days.

a. Test one set of two field-cured specimens at 7 days and one set of two specimens at 28 days.

b. A compressive-strength test shall be the average compressive strength from a set of two specimens obtained from same composite sample and tested at age indicated.

9. When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.

10. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.

11. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.

12. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.

13. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C42/C42M or by other methods as directed by Architect.

14. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

15. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.

E. Measure floor and slab flatness and levelness according to ASTM E1155 within 24 hours of finishing.
PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
 1. Insulated, architectural precast concrete units.

B. Related Requirements:
 1. Section 033000 "Cast-in-Place Concrete" for installing connection anchors in concrete.
 2. Section 051200 "Structural Steel Framing" for furnishing and installing connections attached to structural-steel framing.
 3. Section 071900 "Water Repellents" for water-repellent finish treatments.

1.03 ALLOWANCES
A. Preconstruction, source quality-control and field quality-control testing are part of testing and inspecting allowance.

1.04 DEFINITIONS
A. Design Reference Sample: Sample of approved architectural precast concrete color, finish and texture, preapproved by Architect.

1.05 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at project site.
1.06 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Design Mixtures: For each precast concrete mixture. Include compressive strength and water-absorption tests.

C. Shop Drawings:
 1. Detail fabrication and installation of architectural precast concrete units.
 2. Indicate locations, plans, elevations, dimensions, shapes, and cross sections of each unit.
 3. Indicate joints, reveals, drips, chamfers, and extent and location of each surface finish.
 4. Indicate details at building corners.
 5. Indicate separate face and backup mixture locations and thicknesses.
 6. Indicate type, size, and length of welded connections by AWS standard symbols. Detail loose and cast-in hardware and connections.
 7. Indicate locations, tolerances, and details of anchorage devices to be embedded in or attached to structure or other construction.
 8. Indicate locations, extent, and treatment of dry joints if two-stage casting is proposed.
 9. Include plans and elevations showing unit location and sequence of erection for special conditions.
 10. Indicate location of each architectural precast concrete unit by same identification mark placed on panel.
 11. Indicate relationship of architectural precast concrete units to adjacent materials.
 12. Indicate locations, dimensions, and details of thin-brick units, including corner units and special shapes, and joint treatment.
 13. Indicate locations, dimensions, and details of stone facings, anchors, and joint widths.
 14. If design modifications are proposed to meet performance requirements and field conditions, submit design calculations and Shop Drawings. Do not adversely affect the appearance, durability, or strength of units when modifying details or materials and maintain the general design concept.

D. Samples: Design reference samples for initial verification of design intent, for each type of finish indicated on exposed surfaces of architectural precast concrete units, in sets of three, representative of finish, color, and texture variations expected; approximately 12 by 12 by 2 inches.

 1. When other faces of precast concrete unit are exposed, include Samples illustrating workmanship, color, and texture of backup concrete as well as facing concrete.
 2. Samples for each thin-brick unit required, showing full range of color and texture expected. Include Sample showing color and texture of joint treatment.

 a. Grout Samples for Initial Selection: Color charts consisting of actual sections of grout showing manufacturer's full range of colors.
E. Delegated-Design Submittal: For architectural precast concrete indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Show governing panel types, connections, types of reinforcement, including special reinforcement, and concrete cover on reinforcement. Indicate location, type, magnitude, and direction of loads imposed on the building structural frame from architectural precast concrete.

1.07 INFORMATIONAL SUBMITTALS

A. Qualification Data: For installer, fabricator and testing agency.

B. Welding certificates.

C. Material Certificates: For the following items:

1. Cementitious materials.
2. Reinforcing materials and prestressing tendons.
3. Admixtures.
5. Structural-steel shapes and hollow structural sections.
6. Insulation.

D. Material Test Reports: For aggregates.

E. Preconstruction test reports.

F. Source quality-control test reports.

G. Field quality-control and special inspection reports.

1.08 QUALITY ASSURANCE

A. Installer Qualifications: A precast concrete erector qualified and designated by PCI's Certificate of Compliance to erect Category A (Architectural Systems) for non-load-bearing members or C (Commercial Systems).

B. Installer Qualifications: A precast concrete erector who has retained a "PCI-Certified Field Auditor" to conduct a field audit of a project in same category as this Project and who can produce an Erectors' Post-Audit Declaration.

C. Fabricator Qualifications: A firm that assumes responsibility for engineering architectural and hollowcore precast concrete units to comply with performance requirements. This responsibility includes preparation of Shop Drawings and comprehensive engineering analysis by a qualified professional engineer.
1. Designated as a PCI-certified plant for Group A, Category A1 - Architectural Cladding and Load Bearing Units at time of bidding and or Group C, Category C1 – Commercial products.

D. Testing Agency Qualifications: An independent testing agency, acceptable to authorities having jurisdiction, qualified according to ASTM C1077 and ASTM E329 for testing indicated.

E. Quality-Control Standard: For manufacturing procedures and testing requirements, quality-control recommendations, and dimensional tolerances for types of units required, comply with PCI MNL 116 and 117.

1.09 PRECONSTRUCTION TESTING

A. Preconstruction Stone Anchor Testing: Engage a qualified testing agency to perform preconstruction testing according to ASTM C1354/C1354M or ASTM E488, modified as follows:

1. Furnish test specimens, including stone anchors, that are representative of materials proposed for incorporation into the Work.
2. Anchorage Tests: Test 12 inches square samples for each combination of stone variety, orientation of cut, finish, and anchor type proposed for use on Project. Test for shear and tensile strength of anchorage system.

1.10 COORDINATION

A. Furnish loose connection hardware and anchorage items to be embedded in or attached to other construction without delaying the Work. Provide locations, setting diagrams, templates, instructions, and directions, as required, for installation.

1.11 DELIVERY, STORAGE, AND HANDLING

A. Deliver architectural and hollowcore precast concrete units in such quantities and at such times to limit unloading units temporarily on the ground or other re-handling.

B. Support units during shipment on non-staining shock-absorbing material.

C. Store units with adequate dunnage and bracing and protect units to prevent contact with soil, to prevent staining, and to prevent cracking, distortion, warping or other physical damage.

D. Place stored units so identification marks are clearly visible, and units can be inspected.
E. Handle and transport units in a manner that avoids excessive stresses that cause cracking or damage.

F. Lift and support units only at designated points indicated on Shop Drawings.

PART 2 - PRODUCTS

2.01 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design architectural and hollowcore precast concrete units.

B. Design Standards: Comply with ACI 318 and design recommendations of PCI MNL 120, "PCI Design Handbook - Precast and Prestressed Concrete," applicable to types of architectural and hollowcore precast concrete units indicated.

C. Calculated Fire-Test-Response Characteristics: Provide architectural and hollowcore precast concrete units with fire-resistance rating indicated as calculated according to ACI 216.1, PCI MNL 124, "Design for Fire Resistance of Precast Prestressed Concrete, and acceptable to authorities having jurisdiction.

D. Structural Performance: Provide architectural and hollowcore precast concrete units and connections capable of withstanding the following design loads within limits and under conditions indicated:

 1. Loads: As indicated.
 2. Design precast concrete units and connections to maintain clearances at openings, to allow for fabrication and construction tolerances.
 3. Thermal Movements: Provide for in-plane thermal movements resulting from annual ambient temperature changes of 80 deg F.
 4. Fire-Resistance Rating: Select material and minimum thicknesses to provide 1 hour fire rating.

2.02 MOLD MATERIALS

A. Molds: Rigid, dimensionally stable, non-absorptive material, warp and buckle free, that provides continuous and true precast concrete surfaces within fabrication tolerances indicated; nonreactive with concrete and suitable for producing required finishes.

 1. Mold-Release Agent: Commercially produced form-release agent that does not bond with, stain or adversely affect precast concrete surfaces and does not impair subsequent surface or joint treatments of precast concrete.
2.03 REINFORCING MATERIALS

A. Low-Alloy-Steel Reinforcing Bars: ASTM A706/A706M, deformed.

C. Supports: Suspend reinforcement from back of mold or use bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place according to PCI MNL 116 and 117.

2.04 PRESTRESSING TENDONS

1. Coat unbonded post-tensioning strand with post-tensioning coating complying with ACI 423.7 and sheath with polypropylene tendon sheathing complying with ACI 423.7. Include anchorage devices and coupler assemblies.

2.05 CONCRETE MATERIALS

A. Portland Cement: ASTM C150/C150M, Type I or Type III, gray, unless otherwise indicated.

1. For surfaces exposed to view in finished structure, use gray or white cement, of same type, brand, and mill source.

B. Normal-Weight Aggregates: Except as modified by PCI MNL 116 and 117, ASTM C33/C33M, with coarse aggregates complying with Class 5S. Stockpile fine and coarse aggregates for each type of exposed finish from a single source (pit or quarry) for Project.

C. Coloring Admixture: ASTM C979/C979M, synthetic or natural mineral-oxide pigments or colored water-reducing admixtures, temperature stable, and nonfading.

D. Water: Potable; free from deleterious material that may affect color stability, setting, or strength of concrete and complying with chemical limits of PCI MNL 116 and 117.

E. Air-Entraining Admixture: ASTM C260, certified by manufacturer to be compatible with other required admixtures.

F. Chemical Admixtures: Certified by manufacturer to be compatible with other admixtures and to not contain calcium chloride, or more than 0.15 percent chloride ions or other salts by weight of admixture.

1. Water-Reducing Admixtures: ASTM C494/C494M, Type A.
2. Retarding Admixture: ASTM C494/C494M, Type B.
3. Water-Reducing and Retarding Admixture: ASTM C494/C494M, Type D.
4. Water-Reducing and Accelerating Admixture: ASTM C494/C494M, Type E.
5. High-Range, Water-Reducing Admixture: ASTM C494/C494M, Type F.
6. High-Range, Water-Reducing and Retarding Admixture: ASTM C494/C494M, Type G.
7. Plasticizing Admixture: ASTM C1017/C1017M, Type I.
8. Plasticizing and Retarding Admixture: ASTM C1017/C1017M, Type II.
9. Corrosion Inhibiting Admixture: ASTM C1582/C1582M.

2.06 STEEL CONNECTION MATERIALS

A. Carbon-Steel Shapes and Plates: ASTM A36/A36M.

B. Carbon-Steel-Headed Studs: ASTM A108, AISI 1018 through AISI 1020, cold finished, AWS D1.1/D1.1M, Type A or Type B, with arc shields and with minimum mechanical properties of PCI MNL 116 and 117.

C. Carbon-Steel Plate: ASTM A283/A283M, Grade C.

D. Malleable Iron Castings: ASTM A47/A47M, Grade 32510 or Grade 35028.

F. High-Strength, Low-Alloy Structural Steel: ASTM A572/A572M.

G. Carbon-Steel Structural Tubing: ASTM A500/A500M, Grade B or Grade C.

H. Wrought Carbon-Steel Bars: ASTM A675/A675M, Grade 65.

I. Deformed-Steel Wire or Bar Anchors: ASTM A496/A496M or ASTM A706/A706M.

J. Carbon-Steel Bolts and Studs: ASTM A307, Grade A or ASTM F1554, Grade 36 carbon-steel, hex-head bolts and studs; carbon-steel nuts, ASTM A563; and flat, unhardened steel washers, ASTM F844.

K. High-Strength Bolts, Nuts, and Washers: ASTM F3125/F3125M, Grade A325, Type 1, heavy-hex steel structural bolts; ASTM A563, Grade DH, heavy-hex carbon-steel nuts; and ASTM F436/F436M, Type 1, hardened carbon-steel washers.

L. Zinc-Coated Finish: For exterior steel items and items indicated for galvanizing, apply zinc coating by hot-dip process according to ASTM A123/A123M or ASTM A153/A153M.

1. For steel shapes, plates, and tubing to be galvanized, limit silicon content of steel to less than 0.03 percent or to between 0.15 and 0.25 percent or limit sum of silicon and 2.5 times phosphorous content to 0.09 percent.
2. Galvanizing Repair Paint: High-zinc-dust-content paint with dry film containing not less than 94 percent zinc dust by weight, and complying with DOD-P-21035B or SSPC-Paint 20.

M. Shop-Primed Finish: Prepare surfaces of nongalvanized steel items, except those surfaces to be embedded in concrete, according to requirements in SSPC-SP 3 and shop-apply lead- and chromate-free, rust-inhibitive primer, complying with performance requirements in MPI 79 according to SSPC-PA 1.

N. Welding Electrodes: Comply with AWS standards.

2.07 STAINLESS STEEL CONNECTION MATERIALS

A. Stainless Steel Plate: ASTM A666, Type 304, Type 316, or Type 201.

B. Stainless Steel Bolts and Studs: ASTM F593, Alloy Group 1 or 2 hex-head bolts and studs; ASTM F594, Alloy Group 1 or 2 stainless steel nuts; and flat, stainless steel washers.

1. Lubricate threaded parts of stainless steel bolts with an anti-seize thread lubricant during assembly.

C. Stainless Steel-Headed Studs: ASTM A276, Alloy 304 or Alloy 316, with minimum mechanical properties of PCI MNL 116 and 117.

2.08 BEARING PADS

A. Provide one of the following bearing pads for architectural and hollowcore precast concrete units as recommended by precast fabricator for application:

1. Elastomeric Pads: AASHTO M 251, plain, vulcanized, 100 percent polychloroprene (neoprene) elastomer, molded to size or cut from a molded sheet, Type A durometer hardness of 50 to 70, ASTM D2240, minimum tensile strength 2250 psi ASTM D412.

2. Random-Oriented-Fiber-Reinforced Elastomeric Pads: Preformed, randomly oriented synthetic fibers set in elastomer. Type A durometer hardness of 70 to 90, ASTM D2240; capable of supporting a compressive stress of 3000 psi with no cracking, splitting, or delaminating in the internal portions of pad. Test one specimen for every 200 pads used in Project.

3. Cotton-Duck-Fabric-Reinforced Elastomeric Pads: Preformed, horizontally layered cotton-duck fabric bonded to an elastomer; Type A durometer hardness of 80 to 100, ASTM D2240; complying with AASHTO's "AASHTO LRFD Bridge Design Specifications," Division II, Section 18.10.2; or with MIL-C-882E.

4. Frictionless Pads: PTFE, glass-fiber reinforced, bonded to stainless or mild-steel plate, or random-oriented-fiber-reinforced elastomeric pads; of type required for in-service stress.

ACCESSORIES

A. Reglets: Specified in Section 076200 "Sheet Metal Flashing and Trim."

B. Precast Accessories: Provide clips, hangers, high-density plastic or steel shims, and other accessories required to install architectural and hollowcore precast concrete units.

GROUT MATERIALS

A. Sand-Cement Grout: Portland cement, ASTM C150/C150M, Type I, and clean, natural sand, ASTM C144 or ASTM C404. Mix at ratio of 1 part cement to 2-1/2 to 3 parts sand, by volume, with minimum water required for placement and hydration. Water-soluble chloride ion content less than 0.06 percent by weight of cement when tested according to ASTM C1218/C1218M.

B. Nonmetallic, Non-shrink Grout: Packaged, nonmetallic, noncorrosive, non-staining grout containing selected silica sands, Portland cement, shrinkage-compensating agents, plasticizing and water-reducing agents, complying with ASTM C1107/C1107M, Grade A for dry pack and Grades B and C for flowable grout and of consistency suitable for application within a 30-minute working time. Water-soluble chloride ion content less than 0.06 percent by weight of cement when tested according to ASTM C1218/C1218M.

C. Epoxy-Resin Grout: Two-component, mineral-filled epoxy resin; ASTM C881/C881M, of type, grade, and class to suit requirements.

INSULATED PANEL ACCESSORIES

A. Extruded-Polystyrene (XPS) Board Insulation: Minimum R-5.6 /inch per ASTM C518; minimum 0.7% water absorption per ASTM C272, minimum 25 kPa compressive strength per ASTM D1621 ship-lap edges; with thickness of 3-inch

B. Wythe Connectors: manufactured to connect wythes of precast concrete panels.

CONCRETE MIXTURES

A. Prepare design mixtures for each type of precast concrete required.
 1. Use a single design mixture for units with more than one major face or edge exposed.
 2. Where only one face of unit is exposed use either a single design mixture or separate mixtures for face and backup.

B. Limit use of fly ash and ground granulated blast-furnace slag to 20 percent of Portland cement by weight; limit metakaolin and silica fume to 10 percent of Portland cement by weight.
C. Design mixtures may be prepared by a qualified independent testing agency or by qualified precast plant personnel at architectural and hollowcore precast concrete fabricator's option.

D. Limit water-soluble chloride ions to maximum percentage by weight of cement permitted by ACI 318 or PCI MNL 116 and 117 when tested according to ASTM C1218/C1218M.

E. Normal-Weight Concrete Mixtures: Proportion face and backup mixtures by either laboratory trial batch or field test data methods according to ACI 211.1, with materials to be used on Project, to provide normal-weight concrete with the following properties:

2. Maximum Water-Cementitious Materials Ratio: 0.45.

F. Water Absorption: 6 percent by weight or 14 percent by volume, tested according to ASTM C642, except for boiling requirement.

G. Add air-entraining admixture at manufacturer's prescribed rate to result in concrete at point of placement having an air content complying with PCI MNL 116 and 117.

H. When included in design mixtures, add other admixtures to concrete mixtures according to manufacturer's written instructions.

2.13 MOLD FABRICATION

A. Molds: Accurately construct molds, mortar tight, of sufficient strength to withstand pressures due to concrete-placement operations and temperature changes and for prestressing and detensioning operations. Coat contact surfaces of molds with release agent before reinforcement is placed. Avoid contamination of reinforcement and prestressing tendons by release agent.

1. Place form liners accurately to provide finished surface texture indicated. Provide solid backing and supports to maintain stability of liners during concrete placement. Coat form liner with form-release agent.

B. Maintain molds to provide completed architectural and hollowcore precast concrete units of shapes, lines, and dimensions indicated, within fabrication tolerances specified.

1. Form joints are not permitted on faces exposed to view in the finished work.
2. Edge and Corner Treatment: Uniformly chamfered.

2.14 FABRICATION

A. Cast-in Anchors, Inserts, Plates, Angles, and Other Anchorage Hardware: Fabricate anchorage hardware with sufficient anchorage and embedment to comply with design requirements. Accurately position for attachment of loose hardware, and secure in place during precasting operations. Locate anchorage hardware where it does not affect position of main reinforcement or concrete placement.
1. Weld-headed studs and deformed bar anchors used for anchorage according to AWS D1.1/D1.1M and AWS C5.4, "Recommended Practices for Stud Welding."

B. Furnish loose hardware items including steel plates, clip angles, seat angles, anchors, dowels, cramps, hangers, and other hardware shapes for securing architectural and hollowcore precast concrete units to supporting and adjacent construction.

C. Cast-in reglets, slots, holes, and other accessories in architectural and hollowcore precast concrete units as indicated on the Contract Drawings.

D. Cast-in openings larger than 10 inches in any dimension. Do not drill or cut openings or prestressing strand without Architect's approval.

E. Reinforcement: Comply with recommendations in PCI MNL 116 and 117 for fabricating, placing, and supporting reinforcement.

1. Clean reinforcement of loose rust and mill scale, earth, and other materials that reduce or destroy the bond with concrete. When damage to epoxy-coated reinforcing exceeds limits specified in ASTM A775/A775M, repair with patching material compatible with coating material and epoxy coat bar ends after cutting.

2. Accurately position, support, and secure reinforcement against displacement during concrete-placement and consolidation operations. Completely conceal support devices to prevent exposure on finished surfaces.

3. Place reinforcing steel and prestressing strands to maintain at least 3/4-inch minimum concrete cover. Increase cover requirements for reinforcing steel to 1-1/2 inches when units are exposed to corrosive environment or severe exposure conditions. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position while placing concrete. Direct wire tie ends away from finished, exposed concrete surfaces.

4. Install welded wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh spacing and wire tie laps, where required by design. Offset laps of adjoining widths to prevent continuous laps in either direction.

F. Reinforce architectural and hollowcore precast concrete units to resist handling, transportation, and erection stresses and specified in-place loads.

G. Prestress tendons for architectural and hollowcore precast concrete units by either pretensioning or post-tensioning methods. Comply with PCI MNL 116 and 117.

1. Delay detensioning or post-tensioning of precast, prestressed architectural and hollowcore concrete units until concrete has reached its indicated minimum design release compressive strength as established by test cylinders cured under same conditions as concrete unit.

2. Detension pretensioned tendons either by gradually releasing tensioning jacks or by heat-cutting tendons, using a sequence and pattern to prevent shock or unbalanced loading.

3. If concrete has been heat cured, detension while concrete is still warm and moist to avoid dimensional changes that may cause cracking or undesirable stresses.

4. Protect strand ends and anchorages with bituminous, zinc-rich, or epoxy paint to avoid corrosion and possible rust spots.
H. Comply with requirements in PCI MNL 116 and 117 and requirements in this Section for measuring, mixing, transporting, and placing concrete. After concrete batching, no additional water may be added.

I. Place face mixture to a minimum thickness after consolidation of the greater of 1 inch or 1.5 times the maximum aggregate size, but not less than the minimum reinforcing cover specified.

J. Place concrete in a continuous operation to prevent cold joints or planes of weakness from forming in precast concrete units.

1. Place backup concrete mixture to ensure bond with face-mixture concrete.

K. Thoroughly consolidate placed concrete by internal and external vibration without dislocating or damaging reinforcement and built-in items, and minimize pour lines, honeycombing, or entrapped air voids on surfaces. Use equipment and procedures complying with PCI MNL 116 and 117.

1. Place self-consolidating concrete without vibration according to PCI TR-6, "Interim Guidelines for the Use of Self-Consolidating Concrete in Precast/Prestressed Concrete Institute Member Plants." Ensure adequate bond between face and backup concrete, if used.

L. Comply with PCI MNL 116 and 117 for hot- and cold-weather concrete placement.

M. Identify pickup points of architectural and hollowcore precast concrete units and orientation in structure with permanent markings, complying with markings indicated on Shop Drawings. Imprint or permanently mark casting date on each architectural and hollowcore precast concrete unit on a surface that does not show in finished structure.

N. Cure concrete, according to requirements in PCI MNL 116 and 117, by moisture retention without heat or by accelerated heat curing using low-pressure live steam or radiant heat and moisture. Cure units until compressive strength is high enough to ensure that stripping does not have an effect on performance or appearance of final product.

O. Discard and replace architectural and hollowcore precast concrete units that do not comply with requirements, including structural, manufacturing tolerance, and appearance, unless repairs meet requirements in PCI MNL 116 and 117 and Architect's approval.

2.15 INSULATED PANEL CASTING

A. Cast, screed, and consolidate bottom concrete wythe supported by mold.

B. Place insulation boards abutting edges and ends of adjacent boards. Insert wythe connectors through insulation holes, and consolidate concrete around connectors according to connector manufacturer's written instructions.

C. Ensure bottom wythe and insulation layer are not disturbed after bottom wythe reaches initial set.
D. Cast, screed, and consolidate top wythe to meet required finish.

E. Maintain temperature below 150 deg F in bottom concrete wythe.

2.16 FABRICATION TOLERANCES

A. Fabricate architectural and hollowcore precast concrete units to shapes, lines, and dimensions indicated so each finished unit complies with PCI MNL 116 and 117 product tolerances as well as position tolerances for cast-in items.

B. Fabricate architectural and hollowcore precast concrete units to shapes, lines, and dimensions indicated so each finished unit complies with the PCI product tolerances:

C. Position Tolerances: For cast-in items measured from datum line location, in compliance with the PCI product tolerances:

2.17 FINISHES

A. Exposed faces shall be free of joint marks, grain, and other obvious defects. Corners, including false joints shall be uniform, straight, and sharp. Finish exposed-face surfaces of architectural and hollowcore precast concrete units to match approved sample panels and as follows:

1. Design Reference Sample: Steel form finish ready for field paint application
2. Light Sand Blast Finish: Provide surfaces to match approved sample for acceptable surface, air voids, sand streaks, and honeycomb.

B. Finish exposed back surfaces of architectural and hollowcore precast concrete units. With steel troweled finish ready for field paint.

C. Finish unexposed surfaces of architectural and hollowcore precast concrete units with steel trowel finish.

2.18 SOURCE QUALITY CONTROL

B. Owner will employ an independent testing agency to evaluate architectural and hollowcore precast concrete fabricator's quality-control and testing methods.

1. Allow Owner's testing agency access to material storage areas, concrete production equipment, concrete placement, and curing facilities. Cooperate with Owner's testing agency and provide samples of materials and concrete mixtures as may be requested for additional testing and evaluation.

C. Strength of precast concrete units is considered deficient if units fail to comply with ACI 318 requirements for concrete strength.
D. Testing: If there is evidence that strength of precast concrete units may be deficient or may not comply with ACI 318 requirements, precaster will employ an independent testing agency to obtain, prepare, and test cores drilled from hardened concrete to determine compressive strength according to ASTM C42/C42M and ACI 318.

1. A minimum of three representative cores shall be taken from units of suspect strength, from locations directed by Architect.
2. Test cores in an air-dry condition.
3. Strength of concrete for each series of three cores is considered satisfactory if average compressive strength is equal to at least 85 percent of 28-day design compressive strength and no single core is less than 75 percent of 28-day design compressive strength.
4. Report test results in writing on same day that tests are performed, with copies to Architect, Contractor, and precast concrete fabricator. Test reports include the following:
 a. Project identification name and number.
 b. Date when tests were performed.
 c. Name of precast concrete fabricator.
 d. Name of concrete testing agency.
 e. Identification letter, name, and type of precast concrete unit(s) represented by core tests; design compressive strength; type of break; compressive strength at breaks, corrected for length-diameter ratio; and direction of applied load to core in relation to horizontal plane of concrete as placed.

E. Patching: If core test results are satisfactory and precast concrete units comply with requirements, clean and dampen core holes and solidly fill with precast concrete mixture that has no coarse aggregate, and finish to match adjacent precast concrete surfaces.

F. Defective Units: Discard and replace recast architectural and hollowcore concrete units that do not comply with acceptability requirements in PCI MNL 116 and 117, including concrete strength, manufacturing tolerances, and color and texture range. Chipped, spalled, or cracked units may be repaired, subject to Architect's approval. Architect reserves the right to reject precast units that do not match approved samples, sample panels, and mockups. Replace unacceptable units with precast concrete units that comply with requirements.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine supporting structural frame or foundation and conditions for compliance with requirements for installation tolerances, bearing surface tolerances, and other conditions affecting performance of the Work.

B. Do not install precast concrete units until supporting cast-in-place concrete has attained minimum allowable design compressive strength and supporting steel or other structure is structurally ready to receive loads from precast concrete units.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
Installation

A. Install clips, hangers, bearing pads, and other accessories required for connecting architectural and hollowcore precast concrete units to supporting members and backup materials.

B. Erect architectural and hollowcore precast concrete level, plumb, and square within specified allowable tolerances. Provide temporary supports and bracing as required to maintain position, stability, and alignment of units until permanent connections are completed.

1. Install temporary steel or plastic spacing shims as precast concrete units are being erected. Tack weld steel shims to each other to prevent shims from separating.
2. Maintain horizontal and vertical joint alignment and uniform joint width as erection progresses.
3. Remove projecting lifting devices and grout fill voids within recessed lifting devices flush with surface of adjacent precast surfaces when recess is exposed.
4. Unless otherwise indicated, maintain uniform joint widths of 3/4 inch.

C. Connect architectural and hollowcore precast concrete units in position by bolting, welding, grouting, or as otherwise indicated on Shop Drawings. Remove temporary shims, wedges, and spacers as soon as practical after connecting and grouting are completed.

1. Do not permit connections to disrupt continuity of roof flashing.

D. Welding: Comply with applicable requirements in AWS D1.1/D1.1M and AWS D1.4/D1.4M for welding, welding electrodes, appearance, quality of welds, and methods used in correcting welding work.

1. Protect architectural and hollowcore precast concrete units and bearing pads from damage by field welding or cutting operations, and provide noncombustible shields as required.
2. Welds not specified shall be continuous fillet welds, using no less than the minimum fillet as specified by AWS.
3. Clean weld-affected metal surfaces with chipping hammer followed by brushing, and apply a minimum 4.0-mil thick coat of galvanized repair paint to galvanized surfaces according to ASTM A780/A780M.
5. Visually inspect welds and remove, reweld, or repair incomplete and defective welds.

E. At bolted connections, use lock washers, tack welding, or other approved means to prevent loosening of nuts after final adjustment.

1. Where slotted connections are used, verify bolt position and tightness. For sliding connections, properly secure bolt but allow bolt to move within connection slot.

2. For slip-critical connections, use one of the following methods to assure proper bolt pretension:

c. Twist-off Tension Control Bolt: ASTM F3125/F3125M, Grade 1852.

d. Direct-Tension Control Bolt: ASTM F3125/F3125M, Grade 1852.

3. For slip-critical connections, use method and inspection procedure approved by Architect and coordinated with inspection agency.

F. Grouting or Dry-Packing Connections and Joints: Grout connections where required or indicated. Retain flowable grout in place until hard enough to support itself. Alternatively, pack spaces with stiff dry-pack grout material, tamping until voids are completely filled. Place grout and finish smooth, level, and plumb with adjacent concrete surfaces. Promptly remove grout material from exposed surfaces before it affects finishes or hardens. Keep grouted joints damp for not less than 24 hours after initial set.

3.03 ERECTION TOLERANCES

A. Erect architectural and hollowcore precast concrete units level, plumb, square, and in alignment without exceeding the noncumulative erection tolerances of PCI MNL 116 and 117, Appendix I.

B. Erect architectural and hollowcore precast concrete units level, plumb, square, and in alignment, without exceeding PCI erection tolerances.

3.04 FIELD QUALITY CONTROL

A. Special Inspections: Owner will engage a qualified special inspector to perform the following special inspections and prepare reports:

 1. Erection of loadbearing precast concrete members.

B. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections and prepare test reports.

C. Visually inspect field welds and test according to ASTM E165 or to ASTM E709 and ASTM E1444. High-strength bolted connections are subject to inspections.

D. Testing agency will report test results promptly and in writing to Contractor and Architect.

E. Repair or remove and replace work where tests and inspections indicate that it does not comply with specified requirements.

F. Additional testing and inspecting, at Contractor's expense, shall be performed to determine compliance of replaced or additional work with specified requirements.
A. Repair architectural and hollowcore precast concrete units if permitted by Architect. Architect reserves the right to reject repaired units that do not comply with requirements.

B. Mix patching materials and repair units so cured patches blend with color, texture, and uniformity of adjacent exposed surfaces and show no apparent line of demarcation between original and repaired work, when viewed in typical daylight illumination from a distance of 20 feet.

C. Prepare and repair damaged galvanized coatings with galvanizing repair paint according to ASTM A780/A780M.

D. Wire brush, clean, and paint damaged prime-painted components with same type of shop primer.

E. Remove and replace damaged architectural and hollowcore precast concrete units when repairs do not comply with requirements.

3.06 CLEANING

A. Clean surfaces of precast concrete units exposed to view.

B. Clean mortar, plaster, fireproofing, weld slag, and other deleterious material from concrete surfaces and adjacent materials immediately.

C. Clean exposed surfaces of precast concrete units after erection and completion of joint treatment to remove weld marks, other markings, dirt, and stains.

1. Perform cleaning procedures, if necessary, according to precast concrete fabricator's recommendations. Protect other work from staining or damage due to cleaning operations.

2. Do not use cleaning materials or processes that could change the appearance of exposed concrete finishes or damage adjacent materials.
SECTION 042200
CONCRETE UNIT MASONRY

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Concrete masonry units.
 2. Mortar and grout.
 3. Steel reinforcing bars.
 5. Embedded flashing.
 6. Miscellaneous masonry accessories.
 7. Masonry-cell fill.

B. Products Installed but not Furnished under This Section:

C. Related Requirements:
 1. Section 033000 "Cast-in-Place Concrete" for installing dovetail slots for masonry anchors.
 2. Section 051200 "Structural Steel Framing" for installing anchor sections of adjustable masonry anchors for connecting to structural steel frame.

1.03 DEFINITIONS

A. CMU(s): Concrete masonry unit(s).

B. Reinforced Masonry: Masonry containing reinforcing steel in grouted cells.
1.04 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at the project site.

1.05 ACTION SUBMITTALS

A. Shop Drawings: For the following:

1. Masonry Units: Show sizes, profiles, coursing, and locations of special shapes.
2. Reinforcing Steel: Detail bending, lap lengths, and placement of unit masonry reinforcing bars. Comply with ACI 315. Show elevations of reinforced walls.
3. Fabricated Flashing: Detail corner units, end-dam units, and other special applications.

1.06 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Material Certificates: For each type and size of the following:

1. Masonry units.
 a. Include data on material test reports substantiating compliance with requirements.
 b. For masonry units used in structural masonry, include data and calculations establishing average net-area compressive strength of units.

2. Integral water repellant used in CMUs.
3. Cementitious materials. Include name of manufacturer, brand name, and type.
5. Preblended, dry mortar mixes. Include description of type and proportions of ingredients.
6. Grout mixes. Include description of type and proportions of ingredients.
7. Reinforcing bars.
8. Joint reinforcement.
9. Anchors, ties, and metal accessories.

C. Mix Designs: For each type of mortar and grout. Include description of type and proportions of ingredients.

1. Include test reports for mortar mixes required to comply with property specification. Test according to ASTM C109/C109M for compressive strength, ASTM C1506 for water retention, and ASTM C91/C91M for air content.
2. Include test reports, according to ASTM C1019, for grout mixes required to comply with compressive strength requirement.

D. Statement of Compressive Strength of Masonry: For each combination of masonry unit type and mortar type, provide statement of average net-area compressive strength of masonry units, mortar type, and resulting net-area compressive strength of masonry determined according to TMS 602/ACI 530.1/ASCE 6.
E. Cold-Weather and Hot-Weather Procedures: Detailed description of methods, materials, and equipment to be used to comply with requirements.

1.07 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM C1093 for testing indicated.

1.08 DELIVERY, STORAGE, AND HANDLING

A. Store masonry units on elevated platforms in a dry location. If units are not stored in an enclosed location, cover tops and sides of stacks with waterproof sheeting, securely tied. If units become wet, do not install until they are dry.

B. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials that have become damp.

C. Store aggregates where grading and other required characteristics can be maintained, and contamination avoided.

D. Deliver preblended, dry mortar mix in moisture-resistant containers. Store preblended, dry mortar mix in delivery containers on elevated platforms in a dry location or in covered weatherproof dispensing silos.

E. Store masonry accessories, including metal items, to prevent corrosion and accumulation of dirt and oil.

1.09 FIELD CONDITIONS

A. Protection of Masonry: During construction, cover tops of walls, projections, and sills with waterproof sheeting at end of each day's work. Cover partially completed masonry when construction is not in progress.

1. Extend cover a minimum of 24 inches down both sides of walls, and hold cover securely in place.

B. Do not apply uniform floor or roof loads for at least 12 hours and concentrated loads for at least three days after building masonry walls or columns.

C. Stain Prevention: Prevent grout, mortar, and soil from staining the face of masonry to be left exposed or painted. Immediately remove grout, mortar, and soil that come in contact with such masonry.

1. Protect base of walls from rain-splashed mud and from mortar splatter by spreading coverings on ground and over wall surface.
2. Protect sills, ledges, and projections from mortar droppings.
3. Protect surfaces of window and door frames, as well as similar products with painted and integral finishes, from mortar droppings.
Turn scaffold boards near the wall on edge at the end of each day to prevent rain from splashing mortar and dirt onto completed masonry.

D. Cold-Weather Requirements: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen substrates. Remove and replace unit masonry damaged by frost or by freezing conditions. Comply with cold-weather construction requirements contained in TMS 602/ACI 530.1/ASCE 6.

1. Cold-Weather Cleaning: Use liquid cleaning methods only when air temperature is 40 deg F and higher and will remain so until masonry has dried, but not less than seven days after completing cleaning.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Source Limitations for Masonry Units: Obtain exposed masonry units of a uniform texture and color, or a uniform blend within the ranges accepted for these characteristics, from single source from single manufacturer for each product required.

B. Source Limitations for Mortar Materials: Obtain mortar ingredients of a uniform quality, including color for exposed masonry, from single manufacturer for each cementitious component and from single source or producer for each aggregate.

2.02 PERFORMANCE REQUIREMENTS

A. Provide structural unit masonry that develops indicated net-area compressive strengths at 28 days.

1. Determine net-area compressive strength of masonry from average net-area compressive strengths of masonry units and mortar types (unit-strength method) according to TMS 602/ACI 530.1/ASCE 6.

2. Determine net-area compressive strength of masonry by testing masonry prisms according to ASTM C1314.

2.03 UNIT MASONRY, GENERAL

A. Masonry Standard: Comply with TMS 602/ACI 530.1/ASCE 6 except as modified by requirements in the Contract Documents.

B. Defective Units: Referenced masonry unit standards may allow a certain percentage of units to contain chips, cracks, or other defects exceeding limits stated. Do not use units where such defects are exposed in the completed Work.
C. Fire-Resistance Ratings: Comply with requirements for fire-resistance-rated assembly designs indicated.

1. Where fire-resistance-rated construction is indicated, units shall be listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction.

2.04 CONCRETE MASONRY UNITS

A. Shapes: Provide shapes indicated and as follows, with exposed surfaces matching exposed faces of adjacent units unless otherwise indicated.

1. Provide special shapes for lintels, corners, jambs, sashes, movement joints, headers, bonding, and other special conditions.
2. Provide bullnose units for outside corners unless otherwise indicated.

B. CMUs: ASTM C90.

1. Unit Compressive Strength: Provide units with minimum average net-area compressive strength as indicated on the Drawings.
2. Density Classification: Normal weight unless otherwise indicated.
4. Exposed Faces: Provide color and texture matching the range represented by Architect's sample.

2.05 LINTELS

A. General: Provide one of the following:

B. Concrete Lintels: ASTM C1623, matching CMUs in color, texture, and density classification; and with reinforcing bars indicated. Provide lintels with net-area compressive strength not less than that of CMUs.

C. Concrete Lintels: Precast or formed-in-place concrete lintels complying with requirements in Section 033000 "Cast-in-Place Concrete," and with reinforcing bars indicated.

D. Masonry Lintels: Prefabricated or built-in-place masonry lintels made from bond beam CMUs matching adjacent CMUs in color, texture, and density classification, with reinforcing bars placed as indicated and filled with coarse grout. Cure precast lintels before handling and installing. Temporarily support built-in-place lintels until cured.

2.06 MORTAR AND GROUT MATERIALS

A. Portland Cement: ASTM C150/C150M, Type I or II, except Type III may be used for cold-weather construction. Provide natural color or white cement as required to produce mortar color indicated.

1. Alkali content shall not be more than 0.1 percent when tested according to ASTM C114.
B. Hydrated Lime: ASTM C207, Type S.

C. Portland Cement-Lime Mix: Packaged blend of Portland cement and hydrated lime containing no other ingredients.

D. Mortar Pigments: Natural and synthetic iron oxides and chromium oxides, compounded for use in mortar mixes and complying with ASTM C979/C979M. Use only pigments with a record of satisfactory performance in masonry mortar.

E. Aggregate for Mortar: ASTM C144.
 1. For mortar that is exposed to view, use washed aggregate consisting of natural sand or crushed stone.
 2. For joints less than 1/4 inch thick, use aggregate graded with 100 percent passing the No. 16 sieve.
 3. White-Mortar Aggregates: Natural white sand or crushed white stone.
 4. Colored-Mortar Aggregates: Natural sand or crushed stone of color necessary to produce required mortar color.

F. Aggregate for Grout: ASTM C404.

G. Cold-Weather Admixture: Nonchloride, noncorrosive, accelerating admixture complying with ASTM C494/C494M, Type C, and recommended by manufacturer for use in masonry mortar of composition indicated.

H. Water: Potable.

2.07 REINFORCEMENT

A. Uncoated Steel Reinforcing Bars: ASTM A615/A615M or ASTM A996/A996M, Grade 60.

B. Reinforcing Bar Positioners: Wire units designed to fit into mortar bed joints spanning masonry unit cells and to hold reinforcing bars in center of cells. Units are formed from 0.148-inch steel wire, hot-dip galvanized after fabrication. Provide units designed for number of bars indicated.

C. Masonry-Joint Reinforcement, General: Ladder type complying with ASTM A951/A951M.
 1. Interior Walls: Mill galvanized carbon steel.
 2. Wire Size for Side Rods: 0.148-inch diameter.
 4. Spacing of Cross Rods: Not more than 16 inches o.c.
 5. Provide in lengths of not less than 10 feet.

2.08 TIES AND ANCHORS

A. General: Ties and anchors shall extend at least 1-1/2 inches into masonry but with at least a 5/8-inch cover on outside face.
B. Materials: Provide ties and anchors specified in this article that are made from materials that comply with the following unless otherwise indicated:

3. Steel Plates, Shapes, and Bars: ASTM A36/A36M.

C. Adjustable Anchors for Connecting to Structural Steel Framing: Provide anchors that allow vertical or horizontal adjustment but resist tension and compression forces perpendicular to plane of wall.

1. Anchor Section for Welding to Steel Frame: Crimped 1/4-inch-diameter.
2. Tie Section: Triangular-shaped wire tie made from 0.187-inch diameter.

2.09 MISCELLANEOUS MASONRY ACCESSORIES

A. Compressible Filler: Premolded filler strips complying with ASTM D1056, Grade 2A1; compressible up to 35 percent; of width and thickness indicated; formulated from neoprene or PVC.

B. Preformed Control-Joint Gaskets: Made from styrene-butadiene-rubber compound, complying with ASTM D2000, Designation M2AA-80 or PVC, complying with ASTM D2287, Type PVC-65406 and designed to fit standard sash block and to maintain lateral stability in masonry wall; size and configuration as indicated.

C. Bond-Breaker Strips: Asphalt-saturated felt complying with ASTM D226/D226M, Type I (No. 15 asphalt felt).

2.10 MASONRY-CELL FILL

A. Loose-Fill Insulation: Perlite complying with ASTM C549, Type II (surface treated for water repellency and limited moisture absorption) or Type IV (surface treated for water repellency and to limit dust generation).
2.11 MORTAR AND GROUT MIXES

A. General: Do not use admixtures, including pigments, air-entaining agents, accelerators, retarders, water-repellent agents, antifreeze compounds, or other admixtures unless otherwise indicated.

1. Do not use calcium chloride in mortar or grout.
2. Use Portland cement-lime, masonry cement mortar unless otherwise indicated.
3. Add cold-weather admixture (if used) at same rate for all mortar that will be exposed to view, regardless of weather conditions, to ensure that mortar color is consistent.

B. Preblended, Dry Mortar Mix: Furnish dry mortar ingredients in form of a preblended mix. Measure quantities by weight to ensure accurate proportions, and thoroughly blend ingredients before delivering to Project site.

C. Mortar for Unit Masonry: Comply with ASTM C270 Specification. Provide the following types of mortar for applications stated unless another type is indicated on the Drawings.

D. Grout for Unit Masonry: Comply with ASTM C476.

1. Use grout of type indicated or, if not otherwise indicated, of type (fine or coarse) that will comply with TMS 602/ACI 530.1/ASCE 6 for dimensions of grout spaces and pour height.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

1. For the record, prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
2. Verify that foundations are within tolerances specified.
3. Verify that reinforcing dowels are properly placed.
4. Verify that substrates are free of substances that would impair mortar bond.

B. Before installation, examine rough-in and built-in construction for piping systems to verify actual locations of piping.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION, GENERAL

A. Build chases and recesses to accommodate items specified in this and other Sections.
B. Leave openings for equipment to be installed before completing masonry. After installing equipment, complete masonry to match construction immediately adjacent to opening.

C. Use full-size units without cutting if possible. If cutting is required to provide a continuous pattern or to fit adjoining construction, cut units with motor-driven saws; provide clean, sharp, unchipped edges. Allow units to dry before laying unless wetting of units is specified. Install cut units with cut surfaces and, where possible, cut edges concealed.

3.03 TOLERANCES

A. Dimensions and Locations of Elements:

1. For dimensions in cross section or elevation, do not vary by more than plus 1/2 inch or minus 1/4 inch.
2. For location of elements in plan, do not vary from that indicated by more than plus or minus 1/2 inch.
3. For location of elements in elevation, do not vary from that indicated by more than plus or minus 1/4 inch in a story height or 1/2 inch total.

B. Lines and Levels:

1. For bed joints and top surfaces of bearing walls, do not vary from level by more than 1/4 inch in 10 feet or 1/2-inch maximum.
2. For conspicuous horizontal lines, such as lintels, sills, parapets, and reveals, do not vary from level by more than 1/8 inch in 10 1/4 inch in 20 feet or 1/2-inch maximum.
3. For vertical lines and surfaces do not vary from plumb by more than 1/4 inch in 10 feet, 3/8 inch in 20 feet or 1/2-inch maximum.

C. Joints:

1. For bed joints, do not vary from thickness indicated by more than plus or minus 1/8 inch with a maximum thickness limited to 1/2 inch.
2. For exposed bed joints, do not vary from bed-joint thickness of adjacent courses by more than 1/8 inch.

3.04 LAYING MASONRY WALLS

A. Lay out walls in advance for accurate spacing of surface bond patterns with uniform joint thicknesses and for accurate location of openings, movement-type joints, returns, and offsets. Avoid using less-than-half-size units, particularly at corners, jambs, and, where possible, at other locations.

B. Bond Pattern for Exposed Masonry: Unless otherwise indicated, lay exposed masonry in bond pattern indicated on Drawings; do not use units with less-than-nominal 4-inch horizontal face dimensions at corners or jambs.
C. Stopping and Resuming Work: Stop work by stepping back units in each course from those in course below; do not tooth. When resuming work, clean masonry surfaces that are to receive mortar, remove loose masonry units and mortar, and wet brick if required before laying fresh masonry.

D. Built-in Work: As construction progresses, build in items specified in this and other Sections. Fill in solidly with masonry around built-in items.

E. Fill space between steel frames and masonry solidly with mortar unless otherwise indicated.

F. Where built-in items are to be embedded in cores of hollow masonry units, place a layer of metal lath, wire mesh, or plastic mesh in the joint below, and rod mortar or grout into core.

G. Fill cores in hollow CMUs with grout 24 inches under bearing plates, beams, lintels, posts, and similar items unless otherwise indicated.

H. Build nonload-bearing interior partitions full height of story to underside of solid floor or roof structure above unless otherwise indicated.
 1. Install compressible filler in joint between top of partition and underside of structure above.
 2. Fasten partition top anchors to structure above and build into top of partition. Grout cells of CMUs solidly around plastic tubes of anchors and push tubes down into grout to provide 1/2-inch clearance between end of anchor rod and end of tube. Space anchors as indicated on the Drawings.
 3. Wedge nonload-bearing partitions against structure above with small pieces of tile, slate, or metal. Fill joint with mortar after dead-load deflection of structure above approaches final position.
 4. At fire-rated partitions, treat joint between top of partition and underside of structure above to comply with Section 078443 "Joint Firestopping."

3.05 MORTAR BEDDING AND JOINTING

A. Lay hollow CMUs as follows:
 1. Bed face shells in mortar and make head joints of depth equal to bed joints.
 2. Bed webs in mortar in all courses of piers, columns, and pilasters.
 3. Bed webs in mortar in grouted masonry, including starting course on footings.
 4. Fully bed entire units, including areas under cells, at starting course on footings where cells are not grouted.

B. Lay solid CMUs with completely filled bed and head joints; butter ends with sufficient mortar to fill head joints and shove into place. Do not deeply furrow bed joints or slush head joints.

C. Set cast-stone trim units in full bed of mortar with full vertical joints. Fill dowel, anchor, and similar holes.
1. Clean soiled surfaces with fiber brush and soap powder and rinse thoroughly with clear water.
2. Wet joint surfaces thoroughly before applying mortar.
3. Rake out mortar joints for pointing with sealant.

D. Tool exposed joints slightly concave when thumbprint hard, using a jointer larger than joint thickness unless otherwise indicated.

E. Cut joints flush for masonry walls to receive plaster or other direct-applied finishes (other than paint) unless otherwise indicated.

F. Cut joints flush where indicated to receive waterproofing unless otherwise indicated.

3.06 MASONRY-JOINT REINFORCEMENT

A. General: Install entire length of longitudinal side rods in mortar with a minimum cover of 5/8 inch on exterior side of walls, 1/2 inch elsewhere. Lap reinforcement a minimum of 6 inches.

1. Space reinforcement not more than 16 inches o.c.

B. Interrupt joint reinforcement at control and expansion joints unless otherwise indicated.

C. Provide continuity at wall intersections by using prefabricated T-shaped units.

D. Provide continuity at corners by using prefabricated L-shaped units.

E. Cut and bend reinforcing units as directed by manufacturer for continuity at corners, returns, offsets, column fireproofing, pipe enclosures, and other special conditions.

3.07 ANCHORING MASONRY TO STRUCTURAL STEEL AND CONCRETE

A. Anchor masonry to structural steel and concrete, where masonry abuts or faces structural steel or concrete, to comply with the following:

1. Provide an open space not less than 1/2 inch wide between masonry and structural steel or concrete unless otherwise indicated. Keep open space free of mortar and other rigid materials.
2. Anchor masonry with anchors embedded in masonry joints and attached to structure.
3. Space anchors as indicated on the Drawings.

3.08 CONTROL AND EXPANSION JOINTS

A. General: Install control- and expansion-joint materials in unit masonry as masonry progresses. Do not allow materials to span control and expansion joints without provision to allow for in-plane wall or partition movement.

B. Form control joints in concrete masonry as follows:
1. Fit bond-breaker strips into hollow contour in ends of CMUs on one side of control joint. Fill resultant core with grout, and rake out joints in exposed faces for application of sealant.
2. Install preformed control-joint gaskets designed to fit standard sash block.
3. Install interlocking units designed for control joints. Install bond-breaker strips at joint. Keep head joints free and clear of mortar, or rake out joint for application of sealant.
4. Install temporary foam-plastic filler in head joints, and remove filler when unit masonry is complete for application of sealant.

3.09 LINTELS
A. Provide lintels where shown on the Drawings.
B. Provide minimum bearing of 8 inches at each jamb unless otherwise indicated.

3.10 REINFORCED UNIT MASONRY INSTALLATION
A. Temporary Formwork and Shores: Construct formwork and shores as needed to support reinforced masonry elements during construction.
 1. Construct formwork to provide shape, line, and dimensions of completed masonry as indicated. Make forms sufficiently tight to prevent leakage of mortar and grout. Brace, tie and support forms to maintain position and shape during construction and curing of reinforced masonry.
 2. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and other loads that may be placed on them during construction.
B. Placing Reinforcement: Comply with requirements in TMS 602/ACI 530.1/ASCE 6.
C. Grouting: Do not place grout until entire height of masonry to be grouted has attained enough strength to resist grout pressure.
 1. Comply with requirements in TMS 602/ACI 530.1/ASCE 6 for cleanouts and for grout placement, including minimum grout space and maximum pour height.

3.11 FIELD QUALITY CONTROL
A. Testing and Inspecting: Owner will engage special inspectors to perform tests and inspections and prepare reports. Allow inspectors access to scaffolding and work areas as needed to perform tests and inspections. Retesting of materials that fail to comply with specified requirements shall be done at Contractor's expense.
B. Inspections: Special inspections according to TMS 402/ACI 530/ASCE 5.
1. Begin masonry construction only after inspectors have verified proportions of site-prepared mortar.
2. Place grout only after inspectors have verified compliance of grout spaces and of grades, sizes, and locations of reinforcement.
3. Place grout only after inspectors have verified proportions of site-prepared grout.

C. Testing Prior to Construction: One set of tests.
D. Testing Frequency: One set of tests for each 5000 sq. ft. of wall area or portion thereof.
E. Concrete Masonry Unit Test: For each type of unit provided, according to ASTM C140 for compressive strength.
F. Mortar Aggregate Ratio Test (Proportion Specification): For each mix provided, according to ASTM C780.
G. Mortar Test (Property Specification): For each mix provided, according to ASTM C780.
H. Grout Test (Compressive Strength): For each mix provided, according to ASTM C1019.
I. Prism Test: For each type of construction provided, according to ASTM C1314 at 28 days.

3.12 REPAIRING, POINTING, AND CLEANING
A. Remove and replace masonry units that are loose, chipped, broken, stained, or otherwise damaged or that do not match adjoining units. Install new units to match adjoining units; install in fresh mortar, pointed to eliminate evidence of replacement.
B. Pointing: During the tooling of joints, enlarge voids and holes, except weep holes, and completely fill with mortar. Point up joints, including corners, openings, and adjacent construction, to provide a neat, uniform appearance. Prepare joints for sealant application, where indicated.
C. In-Progress Cleaning: Clean unit masonry as work progresses by dry brushing to remove mortar fins and smears before tooling joints.
D. Final Cleaning: After mortar is thoroughly set and cured, clean exposed masonry as follows:
 1. Remove large mortar particles by hand with wooden paddles and nonmetallic scrape hoes or chisels.
 2. Test cleaning methods on sample wall panel; leave one-half of panel uncleaned for comparison purposes. Obtain Architect's approval of sample cleaning before proceeding with cleaning of masonry.
 3. Protect adjacent stone and nonmasonry surfaces from contact with cleaner by covering them with liquid strippable masking agent or polyethylene film and waterproof masking tape.
 4. Wet wall surfaces with water before applying cleaners; remove cleaners promptly by rinsing surfaces thoroughly with clear water.
5. Clean concrete masonry by applicable cleaning methods indicated in NCMA TEK 8-4A.

3.13 MASONRY WASTE DISPOSAL

A. Salvageable Materials: Unless otherwise indicated, excess masonry materials are Contractor's property. At completion of unit masonry work, remove from Project site.

B. Waste Disposal as Fill Material: Dispose of clean masonry waste, including excess or soil-contaminated sand, waste mortar, and broken masonry units, by crushing and mixing with fill material as fill is placed.

1. Crush masonry waste to less than 4 inches in each dimension.
2. Mix masonry waste with at least two parts of specified fill material for each part of masonry waste. Fill material is specified in Section 312000 "Earth Moving."
3. Do not dispose of masonry waste as fill within 18 inches of finished grade.

C. Masonry Waste Recycling: Return broken CMUs not used as fill to manufacturer for recycling.

D. Excess Masonry Waste: Remove excess clean masonry waste that cannot be used as fill, as described above or recycled, and other masonry waste, and legally dispose of off Owner's property.

END OF SECTION 042200
PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:

1. Structural steel.
2. Prefabricated building columns.
3. Field-installed shear connectors.

B. Related Requirements:

1. Section 053100 "Steel Decking" for field installation of shear connectors through deck.

1.03 DEFINITIONS

A. Structural Steel: Elements of the structural frame indicated on Drawings and as described in AISC 303, "Code of Standard Practice for Steel Buildings and Bridges."

B. Seismic-Load-Resisting System: Elements of structural-steel frame designated as "SLRS" or along grid lines designated as "SLRS" on Drawings, including columns, beams, and braces and their connections.

C. Protected Zone: Structural members or portions of structural members indicated as "Protected Zone" on Drawings. Connections of structural and nonstructural elements to protected zones are limited.

D. Demand Critical Welds: Those welds, the failure of which would result in significant degradation of the strength and stiffness of the Seismic-Load-Resisting System and which are indicated as "Demand Critical" or "Seismic Critical" on Drawings.

1.04 COORDINATION

A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.
B. Coordinate installation of anchorage items to be embedded in or attached to other construction without delaying the Work. Provide setting diagrams, sheet metal templates, instructions, and directions for installation.

1.05 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at the project site.

1.06 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: Show fabrication of structural-steel components.

1. Include details of cuts, connections, splices, camber, holes, and other pertinent data.
2. Include embedment Drawings.
3. Indicate welds by standard AWS symbols, distinguishing between shop and field welds, and show size, length, and type of each weld. Show backing bars that are to be removed and supplemental fillet welds where backing bars are to remain.
4. Indicate type, size, and length of bolts, distinguishing between shop and field bolts. Identify pretensioned and slip-critical, high-strength bolted connections.
5. Identify members and connections of the Seismic-Load-Resisting System.
6. Indicate locations and dimensions of protected zones.
7. Identify demand critical welds.

C. Welding Procedure Specifications (WPSs) and Procedure Qualification Records (PQRs): Provide according to AWS D1.1/D1.1M, "Structural Welding Code - Steel," for each welded joint whether prequalified or qualified by testing, including the following:

1. Power source (constant current or constant voltage).
2. Electrode manufacturer and trade name, for demand critical welds.

D. Delegated-Design Submittal: For structural-steel connections indicated to comply with design loads, include analysis data, signed and sealed by the qualified professional engineer responsible for their preparation.

1.07 INFORMATIONAL SUBMITTALS

A. Qualification Data: For installer, fabricator, shop-painting applicators, professional engineer and testing agency.

B. Welding certificates.
C. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers, certifying that shop primers are compatible with topcoats.

D. Mill test reports for structural steel, including chemical and physical properties.

E. Product Test Reports: For the following:
 1. Bolts, nuts, and washers including mechanical properties and chemical analysis.
 2. Direct-tension indicators.
 3. Tension-control, high-strength, bolt-nut-washer assemblies.
 4. Shear stud connectors.
 5. Shop primers.

F. Survey of existing conditions.

G. Source quality-control reports.

H. Field quality-control and special inspection reports.

1.08 QUALITY ASSURANCE

A. Fabricator Qualifications: A qualified fabricator that participates in the AISC Quality Certification Program and is designated an AISC-Certified Plant, Category STD.

B. Installer Qualifications: A qualified installer who participates in the AISC Quality Certification Program and is designated an AISC-Certified Erector, Category CSE.

C. Shop-Painting Applicators: Qualified according to AISC's Sophisticated Paint Endorsement P1 or to SSPC-QP 3, "Standard Procedure for Evaluating Qualifications of Shop Painting Applicators."

D. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
 1. Welders and welding operators performing work on bottom-flange, demand-critical welds shall pass the supplemental welder qualification testing, as required by AWS D1.8/D1.8M. FCAW-S and FCAW-G shall be considered separate processes for welding personnel qualification.

E. Comply with applicable provisions of the following specifications and documents:
 1. AISC 303.
 2. AISC 341 and AISC 341s1.
 3. AISC 360.
1.09 DELIVERY, STORAGE, AND HANDLING

A. Store materials to permit easy access for inspection and identification. Keep steel members off ground and spaced by using pallets, dunnage, or other supports and spacers. Protect steel members and packaged materials from corrosion and deterioration.

 1. Do not store materials on structure in a manner that might cause distortion, damage, or overload to members or supporting structures. Repair or replace damaged materials or structures as directed.

B. Store fasteners in a protected place in sealed containers with manufacturer's labels intact.

 1. Fasteners may be repackaged provided Owner's testing and inspecting agency observes repackaging and seals containers.
 2. Clean and relubricate bolts and nuts that become dry or rusty before use.
 3. Comply with manufacturers' written recommendations for cleaning and lubricating ASTM F3125/F3125M, Grade F1852 bolt assemblies and for retesting bolt assemblies after lubrication.

PART 2 - PRODUCTS

2.01 PERFORMANCE REQUIREMENTS

A. Connections: Provide details of simple shear connections required by the Contract Documents to be selected or completed by structural-steel fabricator, including comprehensive design by a qualified professional engineer, to withstand loads indicated and comply with other information and restrictions indicated.

 1. Select and complete connections using schematic details indicated and AISC 360
 2. Use Load and Resistance Factor Design; data are given at factored-load level

B. Moment Connections: Type FR, fully restrained.

C. Construction: Braced frame

2.02 STRUCTURAL-STEEL MATERIALS

A. W-Shapes: ASTM A992/A992M

B. Channels, Angles-Shapes: ASTM A36

C. Plate and Bar: ASTM A36/A36M
D. Corrosion-Resisting Structural-Steel Shapes, Plates, and Bars: ASTM A588/A588M, Grade 50.

E. Hollow Structural Sections: ASTM A500/A500M, Grade C, structural tubing.

F. Corrosion-Resisting, Hollow Structural Sections: ASTM A847/A847M, structural tubing.

G. Steel Castings: ASTM A216/A216M, Grade WCB with supplementary requirement S11.

H. Steel Forgings: ASTM A668/A668M.

I. Welding Electrodes: Comply with AWS requirements.

2.03 BOLTS, CONNECTORS, AND ANCHORS

A. Shear Connectors: ASTM A108, Grades 1015 through 1020, headed-stud type, cold-finished carbon steel; AWS D1.1/D1.1M, Type B.

B. Headed Anchor Rods: ASTM F1554, Grade 36, straight.
 3. Washers: ASTM F436, Type 1, hardened carbon steel.

C. Threaded Rods: ASTM A36/A36M
 2. Washers: ASTM F436, Type 1, hardened carbon steel.

2.04 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C1107/C1107M, factory-packaged, nonmetallic aggregate grout, noncorrosive and nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

2.05 FABRICATION

 1. Camber structural-steel members where indicated.
 2. Fabricate beams with rolling camber up.
 3. Identify high-strength structural steel according to ASTM A6/A6M and maintain markings until structural steel has been erected.
 4. Mark and match-mark materials for field assembly.
 5. Complete structural-steel assemblies, including welding of units, before starting shop-priming operations.

B. Thermal Cutting: Perform thermal cutting by machine to greatest extent possible.
1. Plane thermally cut edges to be welded to comply with requirements in AWS D1.1/D1.1M.

C. Bolt Holes: Cut, drill, or punch standard bolt holes perpendicular to metal surfaces.

D. Finishing: Accurately finish ends of columns and other members transmitting bearing loads.

E. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1/D1.1M and manufacturer's written instructions.

F. Steel Wall-Opening Framing: Select true and straight members for fabricating steel wall-opening framing to be attached to structural-steel frame. Straighten as required to provide uniform, square, and true members in completed wall framing. Build up welded framing, weld exposed joints continuously, and grind smooth.

G. Welded Door Frames: Build up welded door frames attached to structural-steel frame. Weld exposed joints continuously and grind smooth. Plug-weld fixed steel bar stops to frames. Secure removable stops to frames with countersunk machine screws, uniformly spaced not more than 10 inches o.c. unless otherwise indicated.

H. Holes: Provide holes required for securing other work to structural steel and for other work to pass through steel members.
 1. Cut, drill, or punch holes perpendicular to steel surfaces. Do not thermally cut bolt holes or enlarge holes by burning.
 2. Baseplate Holes: Cut, drill, mechanically thermal cut, or punch holes perpendicular to steel surfaces.
 3. Weld threaded nuts to framing and other specialty items indicated to receive other work.

2.06 SHOP CONNECTIONS

A. High-Strength Bolts: Shop install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A325 or A 490 Bolts" for type of bolt and type of joint specified.
 1. Joint Type: as indicated on the Drawings.

B. Weld Connections: Comply with AWS D1.1/D1.1M and AWS D1.8/D1.8M for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.
 1. Assemble and weld built-up sections by methods that maintain true alignment of axes without exceeding tolerances in AISC 303 for mill material.
2.07 SHOP PRIMING

A. Shop prime steel surfaces except the following:

1. Surfaces embedded in concrete or mortar. Extend priming of partially embedded members to a depth of 2 inches.
2. Surfaces to be field welded.
4. Surfaces to receive sprayed fire-resistive materials (applied fireproofing).
5. Galvanized surfaces.

B. Surface Preparation: Clean surfaces to be painted. Remove loose rust and mill scale and spatter, slag, or flux deposits. Prepare surfaces according to the following specifications and standards:

1. SSPC-SP 2, "Hand Tool Cleaning."
2. SSPC-SP 3, "Power Tool Cleaning."
3. SSPC-SP 7/NACE No. 4, "Brush-off Blast Cleaning."
4. SSPC-SP 11, "Power Tool Cleaning to Bare Metal."
5. SSPC-SP 14/NACE No. 8, "Industrial Blast Cleaning."
6. SSPC-SP 6/NACE No. 3, "Commercial Blast Cleaning."
7. SSPC-SP 10/NACE No. 2, "Near-White Blast Cleaning."
8. SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning."
9. SSPC-SP 8, "Pickling."

C. Priming: Immediately after surface preparation, apply primer according to manufacturer's written instructions and at rate recommended by SSPC to provide a minimum dry film thickness of 1.5 mils. Use priming methods that result in full coverage of joints, corners, edges, and

1. Stripe paint corners, crevices, bolts, welds, and sharp edges.
2. Apply two coats of shop paint to surfaces that are inaccessible after assembly or erection. Change color of second coat to distinguish it from first.

D. Painting: Prepare steel and apply a one-coat, nonasphaltic primer complying with SSPC-PS Guide 7.00, "Painting System Guide 7.00: Guide for Selecting One-Coat Shop Painting Systems," to provide a dry film thickness of not less than 1.5 mils.

2.08 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform shop tests and inspections.

1. Provide testing agency with access to places where structural-steel work is being fabricated or produced to perform tests and inspections.
B. Bolted Connections: Inspect and test shop-bolted connections according to RCSC’s "Specification for Structural Joints Using ASTM A325 or A 490 Bolts."

C. Welded Connections: Visually inspect shop-welded connections according to AWS D1.1/D1.1M and the following inspection procedures, at testing agency's option:

1. Liquid Penetrant Inspection: ASTM E165.
2. Magnetic Particle Inspection: ASTM E709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration are not accepted.
4. Radiographic Inspection: ASTM E94.

D. In addition to visual inspection, test and inspect shop-welded shear connectors according to requirements in AWS D1.1/D1.1M for stud welding and as follows:

1. Perform bend tests if visual inspections reveal either a less-than-continuous 360-degree flash or welding repairs to any shear connector.
2. Conduct tests according to requirements in AWS D1.1/D1.1M on additional shear connectors if weld fracture occurs on shear connectors already tested.

E. Prepare test and inspection reports.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Verify, with certified steel erector present, elevations of concrete- and masonry-bearing surfaces and locations of anchor rods, bearing plates, and other embedments for compliance with requirements.

1. Prepare a certified survey of existing conditions. Include bearing surfaces, anchor rods, bearing plates, and other embedments showing dimensions, locations, angles, and elevations.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION

A. Provide temporary shores, guys, braces, and other supports during erection to keep structural steel secure, plumb, and in alignment against temporary construction loads and loads equal in intensity to design loads. Remove temporary supports when permanent structural steel, connections, and bracing are in place unless otherwise indicated.
1. Do not remove temporary shoring supporting composite deck construction until cast-in-place concrete has attained its design compressive strength.

3.03 ERECTION

A. Set structural steel accurately in locations and to elevations indicated and according to AISC 303 and AISC 360.

 1. Set plates for structural members on wedges, shims, or setting nuts as required.
 2. Weld plate washers to top of baseplate.
 3. Snug-tighten anchor rods after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of plate before packing with grout.
 4. Promptly pack grout solidly between bearing surfaces and plates so no voids remain. Neatly finish exposed surfaces; protect grout and allow to cure. Comply with manufacturer's written installation instructions for shrinkage-resistant grouts.

C. Maintain erection tolerances of structural steel within AISC 303, "Code of Standard Practice for Steel Buildings and Bridges."

D. Align and adjust various members that form part of complete frame or structure before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that are in permanent contact with members. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.

 1. Level and plumb individual members of structure.
 2. Make allowances for difference between temperature at time of erection and mean temperature when structure is completed and in service.

E. Splice members only where indicated.

F. Do not use thermal cutting during erection unless approved by Engineer. Finish thermally cut sections within smoothness limits in AWS D1.1/D1.1M.

G. Do not enlarge unfair holes in members by burning or using drift pins. Ream holes that must be enlarged to admit bolts.

H. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1/D1.1M and manufacturer's written instructions.
3.04 FIELD CONNECTIONS

A. High-Strength Bolts: Install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A325 or A 490 Bolts" for type of bolt and type of joint specified.
 1. Joint Type: as indicated on the Drawings

B. Weld Connections: Comply with AWS D1.1/D1.1M and AWS D1.8/D1.8M for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.
 1. Comply with AISC 303 and AISC 360 for bearing, alignment, adequacy of temporary connections, and removal of paint on surfaces adjacent to field welds.
 2. Remove backing bars or runoff tabs, back gouge, and grind steel smooth.

3.05 PREFABRICATED BUILDING COLUMNS

A. Install prefabricated building columns to comply with AISC 360, manufacturer's written recommendations, and requirements of testing and inspecting agency that apply to the fire-resistance rating indicated.

3.06 FIELD QUALITY CONTROL

A. Special Inspections: Engage a qualified special inspector to perform the following special inspections:
 1. Verify structural-steel materials and inspect steel frame joint details.
 2. Verify weld materials and inspect welds.
 3. Verify connection materials and inspect high-strength bolted connections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Bolted Connections: Inspect and test bolted connections according to RCSC's "Specification for Structural Joints Using ASTM A325 or A 490 Bolts."

D. Welded Connections: Visually inspect field welds according to AWS D1.1/D1.1M.
1. In addition to visual inspection, test and inspect field welds according to AWS D1.1/D1.1M and the following inspection procedures, at testing agency's option:

 a. Liquid Penetrant Inspection: ASTM E165.
 b. Magnetic Particle Inspection: ASTM E709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration are not accepted.
 c. Ultrasonic Inspection: ASTM E164.
 d. Radiographic Inspection: ASTM E94.

E. In addition to visual inspection, test and inspect field-welded shear connectors according to requirements in AWS D1.1/D1.1M for stud welding and as follows:

1. Perform bend tests if visual inspections reveal either a less-than-continuous 360-degree flash or welding repairs to any shear connector.
2. Conduct tests according to requirements in AWS D1.1/D1.1M on additional shear connectors if weld fracture occurs on shear connectors already tested.

3.07 REPAIRS AND PROTECTION

A. Touchup Painting: Immediately after erection, clean exposed areas where primer is damaged or missing and paint with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.

1. Clean and prepare surfaces by SSPC-SP 2 hand-tool cleaning or SSPC-SP 3 power-tool cleaning.

B. Touchup Priming: Cleaning and touchup priming are specified in Section 099600 "High-Performance Coatings."

END OF SECTION 051200
SECTION 052100

STEEL JOIST FRAMING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 2. KCS-type K-series steel joists.
 5. Joist accessories.

B. Related Requirements:
 1. Section 033000 "Cast-in-Place Concrete" for installing bearing plates in concrete.
 2. Section 051200 "Structural Steel Framing" for field-welded shear connectors.

1.03 DEFINITIONS

A. SJI's "Specifications": Steel Joist Institute's "Standard Specifications, Load Tables and Weight Tables for Steel Joists and Joist Girders."

B. Special Joists: Steel joists or joist girders requiring modification by manufacturer to support nonuniform, unequal, or special loading conditions that invalidate load tables in SJI's "Specifications."

1.04 ACTION SUBMITTALS

A. Product Data: For each type of joist, accessory, and product.

B. Shop Drawings:
 1. Include layout, designation, number, type, location, and spacing of joists.
 2. Include joining and anchorage details; bracing, bridging, and joist accessories; splice and connection locations and details; and attachments to other construction.
 3. Indicate locations and details of bearing plates to be embedded in other construction.
INFORMATIONAL SUBMITTALS

A. Qualification Data: For manufacturer.
B. Welding certificates.
C. Manufacturer certificates.
D. Mill Certificates: For each type of bolt.
E. Comprehensive engineering analysis of special joists signed and sealed by the qualified professional engineer responsible for its preparation.
F. Field quality-control reports.

QUALITY ASSURANCE

A. Manufacturer Qualifications: A manufacturer certified by SJI to manufacture joists complying with applicable standard specifications and load tables in SJI's "Specifications"
 1. Manufacturer's responsibilities include providing professional engineering services for designing special joists to comply with performance requirements.
B. Welding Qualifications: Qualify field-welding procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle joists as recommended in SJI's "Specifications"
B. Protect joists from corrosion, deformation, and other damage during delivery, storage, and handling.

PART 2 - PRODUCTS

PERFORMANCE REQUIREMENTS

K-SERIES STEEL JOISTS

B. Steel Joist Substitutes: Manufacture according to "Standard Specifications for Open Web Steel Joists, K-Series" in SJI's "Specifications," with steel-angle or -channel members.
C. Provide holes in chord members for connecting and securing other construction to joists.

D. Top-Chord Extensions: Extend top chords of joists with SJI's Type S top-chord extensions where indicated, complying with SJI's "Specifications."

E. Extended Ends: Extend bearing ends of joists with SJI's Type R extended ends where indicated, complying with SJI's "Specifications."

F. Do not camber joists.

G. Equip bearing ends of joists with manufacturer's standard beveled ends or sloped shoes if joist slope exceeds 1/4 inch per 12 inches.

2.03 JOIST GIRDERs

B. Provide holes in chord members for connecting and securing other construction to joist girders.

C. Equip bearing ends of joists with manufacturer's standard beveled ends or sloped shoes if joist slope exceeds 1/4 inch per 12 inches.

2.04 PRIMERS

A. Primer: SSPC-Paint 15, or manufacturer's standard shop primer complying with performance requirements in SSPC-Paint 15.

2.05 JOIST ACCESSORIES

A. Bridging: Provide bridging anchors and number of rows of as indicated on drawings, bridging of material, size, and type required by SJI's "Specifications" for type of joist, chord size, spacing, and span. Furnish additional erection bridging if required for stability.

B. Bridging: Schematically indicated. Detail and fabricate according to SJI's "Specifications. Furnish additional erection bridging if required for stability.

C. Furnish ceiling extensions, either extended bottom-chord elements or a separate extension unit of enough strength to support ceiling construction. Extend ends to within 1/2 inch of finished wall surface unless otherwise indicated.

D. High-Strength Bolts, Nuts, and Washers: ASTM F3125/F3125M, Grade A325 Type 1, heavy-hex steel structural bolts; ASTM A563, Grade DH, heavy-hex carbon-steel nuts; and ASTM F436/F436M, Type 1, hardened carbon-steel washers.

E. Welding Electrodes: Comply with AWS standards.
F. Furnish miscellaneous accessories including splice plates and bolts required by joist manufacturer to complete joist assembly.

2.06 CLEANING AND SHOP PAINTING

A. Clean and remove loose scale, heavy rust, and other foreign materials from fabricated joists and accessories by hand-tool cleaning, SSPC-SP 2.

B. Apply one coat of shop primer to joists and joist accessories to be primed to provide a continuous, dry paint film not less than 1 mil thick.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine supporting substrates, embedded bearing plates, and abutting structural framing for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Do not install joists until supporting construction is in place and secured.

B. Install joists and accessories plumb, square, and true to line; securely fasten to supporting construction according to SJI's "Specifications joist manufacturer's written instructions, and requirements in this Section.

1. Before installation, splice joists delivered to Project site in more than one piece.

2. Space, adjust, and align joists accurately in location before permanently fastening.

3. Install temporary bracing and erection bridging, connections, and anchors to ensure that joists are stabilized during construction.

4. Delay rigidly connecting bottom-chord extensions to columns or supports until dead loads are applied.

C. Field weld joists to supporting steel bearing plates. Coordinate welding sequence and procedure with placement of joists. Comply with AWS requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.

D. Bolt joists to supporting steel framework using carbon-steel bolts.
E. Bolt joists to supporting steel framework using high-strength structural bolts. Comply with RCSC's "Specification for Structural Joints Using ASTM A325 or ASTM A490 Bolts" for high-strength structural bolt installation and tightening requirements.

F. Install and connect bridging concurrently with joist erection, before construction loads are applied. Anchor ends of bridging lines at top and bottom chords if terminating at walls or beams.

3.03 FIELD QUALITY CONTROL

A. Testing Agency: Owner to engage a qualified testing agency to perform tests and inspections.

B. Visually inspect field welds according to AWS D1.1/D1.1M.

 1. In addition to visual inspection, test field welds according to AWS D1.1/D1.1M and the following procedures, at testing agency's option:

 a. Liquid Penetrant Inspection: ASTM E165/E165M.
 b. Magnetic Particle Inspection: ASTM E709.

C. Visually inspect bolted connections.

D. Prepare test and inspection reports.

3.04 PROTECTION

A. Repair damaged galvanized coatings on galvanized items with galvanized repair paint according to ASTM A780/A780M and manufacturer's written instructions.

B. Touchup Painting: After installation, promptly clean, prepare, and prime or reprime field connections, rust spots, and abraded surfaces of prime-painted joists, bearing plates, abutting structural steel, and accessories.

 1. Clean and prepare surfaces by hand-tool cleaning according to SSPC-SP 2 or power-tool cleaning according to SSPC-SP 3.
 2. Apply a compatible primer of same type as primer used on adjacent surfaces.

END OF SECTION 052100
SECTION 053100
STEEL DECKING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
 1. Roof deck.
 2. Composite floor deck.
B. Related Requirements:
 1. Section 033000 "Cast-in-Place Concrete" for normal-weight and lightweight structural concrete fill over steel deck.
 2. Section 051200 "Structural Steel Framing" for shop- and field-welded shear connectors.

1.03 ACTION SUBMITTALS
A. Product Data: For each type of deck, accessory, and product indicated.
B. Shop Drawings:
 1. Include layout and types of deck panels, anchorage details, reinforcing channels, pans, cut deck openings, special jointing, accessories, and attachments to other construction.

1.04 INFORMATIONAL SUBMITTALS
A. Welding certificates.
B. Product Certificates: For each type of steel deck.
C. Product Test Reports: For tests performed by a qualified testing agency, indicating that each of the following complies with requirements:
 1. Power-actuated mechanical fasteners.
 2. Acoustical roof deck.
D. Evaluation Reports: For steel deck, from ICC-ES.
E. Field quality-control reports.

1.05 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E329 for testing indicated.

C. Electrical Raceway Units: Provide UL-labeled cellular floor-deck units complying with UL 209 and listed in UL's "Electrical Construction Equipment Directory" for use with standard header ducts and outlets for electrical distribution systems.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Protect steel deck from corrosion, deformation, and other damage during delivery, storage, and handling.

B. Stack steel deck on platforms or pallets and slope to provide drainage. Protect with a waterproof covering and ventilate to avoid condensation.

1. Protect and ventilate acoustical cellular roof deck with factory-installed insulation to maintain insulation free of moisture.

PART 2 - PRODUCTS

2.01 PERFORMANCE REQUIREMENTS

A. AISI Specifications: Comply with calculated structural characteristics of steel deck according to AISI's "North American Specification for the Design of Cold-Formed Steel Structural Members."

B. Fire-Resistance Ratings: Comply with ASTM E119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Indicate design designations from UL's "Fire Resistance Directory" or from the listings of another qualified testing agency.
2.02 ROOF DECK

A. Roof Deck: Fabricate panels, without top-flange stiffening grooves, to comply with "SDI Specifications and Commentary for Steel Roof Deck," in SDI Publication No. 31, and with the following:

1. Galvanized-Steel Sheet: ASTM A653/A653M, Structural Steel (SS), G60 zinc coating.
2. Deck Profile: As indicated on the Drawings.
3. Profile Depth: As indicated on the Drawings.
4. Design Uncoated-Steel Thickness: As indicated on the Drawings.
5. Design Uncoated-Steel Thicknesses; Deck Unit/Bottom Plate: As indicated on the Drawings.
6. Span Condition: Triple span or more.
7. Side Laps: Overlapped or interlocking seam at Contractor's option.

2.03 COMPOSITE FLOOR DECK

A. Composite Floor Deck: Fabricate panels, with integrally embossed or raised pattern ribs and interlocking side laps, to comply with "SDI Specifications and Commentary for Composite Steel Floor Deck," in SDI Publication No. 31, with the minimum section properties indicated, and with the following:

1. Galvanized-Steel Sheet: ASTM A653/A653M, Structural Steel (SS), G60 zinc coating.
2. Profile Depth: As indicated on the Drawings.
3. Design Uncoated-Steel Thickness: As indicated.
4. Span Condition: Triple span or more.

2.04 ACCESSORIES

A. General: Provide manufacturer's standard accessory materials for deck that comply with requirements indicated.

B. Mechanical Fasteners: Corrosion-resistant, low-velocity, power-actuated or pneumatically driven carbon-steel fasteners; or self-drilling, self-threading screws.

C. Side-Lap Fasteners: Corrosion-resistant, hexagonal washer head; self-drilling, carbon-steel screws, No. 10 minimum diameter.

D. Flexible Closure Strips: Vulcanized, closed-cell, synthetic rubber.

E. Miscellaneous Sheet Metal Deck Accessories: Steel sheet, minimum yield strength of 33,000 psi not less than 0.0359-inch design uncoated thickness, of same material and finish as deck; of profile indicated or required for application.

F. Pour Stops and Girder Fillers: Steel sheet, minimum yield strength of 33,000 psi of same material and finish as deck, and of thickness and profile recommended by SDI Publication No. 31 for overhang and slab depth.
G. Column Closures, End Closures, Z-Closures, and Cover Plates: Steel sheet, of same material, finish, and thickness as deck unless otherwise indicated.

H. Piercing Hanger Tabs: Piercing steel sheet hanger attachment devices for use with floor deck.

I. Weld Washers: Uncoated steel sheet, shaped to fit deck rib, thickness as indicated, with factory-punched hole of 3/8-inch minimum diameter.

J. Flat Sump Plates: Single-piece steel sheet, thickness as indicated, of same material and finish as deck. For drains, cut holes in the field.

K. Recessed Sump Pans: Single-piece steel sheet, thickness as indicated, of same material and finish as deck, with 3-inch wide flanges and recessed pans of 1-1/2-inch minimum depth. For drains, cut holes in the field.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine supporting frame and field conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION, GENERAL

A. Install deck panels and accessories according to applicable specifications and commentary in SDI Publication No. 31, manufacturer's written instructions, and requirements in this Section.

B. Install temporary shoring before placing deck panels if required to meet deflection limitations.

C. Locate deck bundles to prevent overloading of supporting members.

D. Place deck panels on supporting frame and adjust to final position with ends accurately aligned and bearing on supporting frame before being permanently fastened. Do not stretch or contract side-lap interlocks.

E. Place deck panels flat and square and fasten to supporting frame without warp or deflection.

F. Cut and neatly fit deck panels and accessories around openings and other work projecting through or adjacent to deck.

G. Provide additional reinforcement and closure pieces at openings as required for strength, continuity of deck, and support of other work.

H. Comply with AWS requirements and procedures for manual shielded metal arc welding, appearance and quality of welds, and methods used for correcting welding work.
I. Mechanical fasteners may be used in lieu of welding to fasten deck. Locate mechanical fasteners and install according to deck manufacturer’s written instructions.

3.03 ROOF-DECK INSTALLATION

A. Fasten roof-deck panels to steel supporting members by arc spot (puddle) welds of the surface diameter indicated or arc seam welds with an equal perimeter that is not less than 1-1/2 inches long, and as follows:

2. Weld Spacing: Weld edge and interior ribs of deck units with a minimum of two welds per deck unit at each support. Space welds as indicated on the Drawings.
3. Weld Washers: Install weld washers at each weld location.

B. Side-Lap and Perimeter Edge Fastening: Fasten side laps and perimeter edges of panels between supports, at intervals not exceeding the lesser of one-half of the span or 12 inches and as follows:

1. Mechanically fasten with self-drilling, No. 10 diameter or larger, carbon-steel screws.
2. Mechanically clinch or button punch.
3. Fasten with a minimum of 1-1/2-inch-long welds.

C. End Bearing: Install deck ends over supporting frame with a minimum end bearing of 1-1/2 inches, with end joints as follows:

1. End Joints: Lapped 3 inches minimum

D. Roof Sump Pans and Sump Plates: Install over openings provided in roof deck and See drawings for additional information.

E. Miscellaneous Roof-Deck Accessories: Install ridge and valley plates, finish strips, end closures, and reinforcing channels according to deck manufacturer’s written instructions. Weld or mechanically fasten to substrate to provide a complete deck installation.

1. Weld cover plates at changes in direction of roof-deck panels unless otherwise indicated.

F. Flexible Closure Strips: Install flexible closure strips over partitions, walls, and where indicated. Install with adhesive according to manufacturer's written instructions to ensure complete closure.

3.04 FLOOR-DECK INSTALLATION

A. Fasten floor-deck panels to steel supporting members by arc spot (puddle) welds of the surface diameter indicated and as follows:

2. Weld Spacing: Space and locate welds as indicated.
3. Weld Washers: Install weld washers at each weld location.

B. Side-Lap and Perimeter Edge Fastening: Fasten side laps and perimeter edges of panels between supports, at intervals not exceeding the lesser of one-half of the span or 36 inches, and as follows:
 1. Mechanically fasten with self-drilling, No. 10 diameter or larger, carbon-steel screws.
 2. Mechanically clinch or button punch.
 3. Fasten with a minimum of 1-1/2-inch long welds.

C. End Bearing: Install deck ends over supporting frame with a minimum end bearing of 3 inches, with end joints as follows:
 1. End Joints: Lapped

D. Pour Stops and Girder Fillers: Weld steel sheet pour stops and girder fillers to supporting structure according to SDI recommendations unless otherwise indicated.

E. Floor-Deck Closures: Weld steel sheet column closures, cell closures, and Z-closures to deck, according to SDI recommendations, to provide tight-fitting closures at open ends of ribs and sides of deck.

3.05 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Field welds will be subject to inspection.

C. Prepare test and inspection reports.

3.06 PROTECTION

A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on both surfaces of deck with galvanized repair paint according to ASTM A780/A780M and manufacturer's written instructions.

END OF SECTION 053100
PART 1 GENERAL

1.01 SECTION INCLUDES
 A. Shop fabricated steel and aluminum items.
 B. Prefabricated ladders and ship ladders.
 C. Ladder safety systems.
 D. Downspout boots.

1.02 RELATED REQUIREMENTS
 A. Section 05 12 00 - Structural Steel Framing: Structural steel column anchor bolts.
 B. Section 05 21 00 - Steel Joist Framing: Structural joist bearing plates, including anchorage.
 C. Section 05 31 00 - Steel Decking: Bearing plates for metal deck bearing, including anchorage.
 D. Section 05 51 00 - Metal Stairs.
 E. Section 05 52 13 - Pipe and Tube Railings.
 F. Section 07 71 23 - Manufactured Gutters and Downspouts: Downspout boots.

1.03 REFERENCE STANDARDS

U. SSPC-Paint 15 - Steel Joist Shop Primer/Metal Building Primer 1999 (Ed. 2004).

1.04 SUBMITTALS

A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.

B. Shop Drawings: Indicate profiles, sizes, connection attachments, reinforcing, anchorage, size and type of fasteners, and accessories. Include erection drawings, elevations, and details where applicable.

1.05 QUALITY ASSURANCE

A. Design metal fabrication under direct supervision of a Professional Structural Engineer experienced in design of this work and licensed in the State in which the Project is located.

B. Fabricator Qualifications: A qualified steel fabricator that is accredited by IAS AC172.

PART 2 PRODUCTS

2.01 MATERIALS - STEEL

A. Steel Sections: ASTM A36/A36M.

B. Steel Tubing: ASTM A501/A501M hot-formed structural tubing.

C. Plates: ASTM A283/A283M.

F. Bolts, Nuts, and Washers: ASTM F3125/F3125M, Type I, plain.

G. Welding Materials: AWS D1.1/D1.1M; type required for materials being welded.

H. Shop and Touch-Up Primer: SSPC-Paint 15, complying with VOC limitations of authorities having jurisdiction.

I. Touch-Up Primer for Galvanized Surfaces: SSPC-Paint 20, Type I - Inorganic, complying with VOC limitations of authorities having jurisdiction.

2.02 MATERIALS - ALUMINUM

2.03 FABRICATED ITEMS

A. Guard rail assemblies to be minimum 4"x4" tube steel Posts; guard rails to be minimum 11 gauge corrugated steel for 5' span. As detailed; prime paint finish.
B. Bollards: Steel pipe, concrete filled, crowned cap, as detailed; prime paint finish.
C. Loading Dock Control Panel Stanchion: As designed. Prime paint finish
D. Door Frames for Overhead Door Openings and Wall Openings: Channel sections; prime paint finish.

2.04 **DOWNSPOUT BOOTS**

A. Downspout Boots: Smooth interior without boxed corners or choke points; include integral lug slots, integral cleanout, cleanout cover and tamper proof fasteners.

2. Material: Cast iron; ASTM A48/A48M; casting thickness 3/8 inch (9.5 mm), minimum.
3. Finish: Manufacturer's standard factory applied powder coat finish.
4. Color: To be selected by Architect from manufacturer's standard range.
5. Accessories: Manufacturer's standard stainless steel fasteners, stainless steel building wall anchors, integral neoprene gaskets and rubber coupling.

2.05 **FINISHES - STEEL**

A. Prime Painting: One coat.

2.06 **FINISHES - ALUMINUM**

PART 3 EXECUTION

3.01 **EXAMINATION**

A. Verify that field conditions are acceptable and are ready to receive work.

3.02 **PREPARATION**

A. Clean and strip primed steel items to bare metal where site welding is required.

3.03 **INSTALLATION**

A. Install items plumb and level, accurately fitted, free from distortion or defects.
B. Provide for erection loads, and for sufficient temporary bracing to maintain true alignment until completion of erection and installation of permanent attachments.
C. Obtain approval prior to site cutting or making adjustments not scheduled.

3.04 **TOLERANCES**

A. Maximum Variation From Plumb: 1/8 inch per story, non-cumulative.
B. Maximum Offset From True Alignment: 1/8 inch.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES

A. Stairs with concrete treads.
B. Stairs with grating treads.
C. Prefabricated stairs.
D. Structural steel stair framing and supports.
E. Handrails and guards.

1.02 RELATED REQUIREMENTS

A. Section 03 30 00 - Cast-in-Place Concrete: Concrete fill in stair pans; mesh reinforcement for landings.
B. Section 05 50 00 - Metal Fabrications.
C. Section 05 52 13 - Pipe and Tube Railings: Metal handrails for the stairs specified in this section.
D. Section 09 91 23 - Interior Painting: Paint finish.

1.03 REFERENCE STANDARDS

G. ASTM A500/A500M - Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes 2018.
K. AWS A2.4 - Standard Symbols for Welding, Brazing, and Nondestructive Examination 2012.
Q. SSPC-Paint 15 - Steel Joist Shop Primer/Metal Building Primer 1999 (Ed. 2004).

1.04 SUBMITTALS
A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
B. Shop Drawings: Indicate profiles, sizes, connection attachments, reinforcing, anchorage, size and type of fasteners, and accessories.
 1. Indicate welded connections using standard AWS A2.4 welding symbols. Indicate net weld lengths.
C. Designer's Qualification Statement.
D. Fabricator's Qualification Statement: Provide documentation showing steel fabricator is certified under AISC 201.
E. Fabricator's Qualification Statement: Provide documentation showing steel fabricator is accredited under IAS AC172.

1.05 QUALITY ASSURANCE
A. Structural Designer Qualifications: Professional Structural Engineer experienced in design of this work and licensed in the State in which the Project is located, or personnel under direct supervision of such an engineer.
B. Fabricator Qualifications:
 1. A qualified steel fabricator that is certified by the American Institute for Steel Construction (AISC) under AISC 201.

PART 2 PRODUCTS
2.01 METAL STAIRS - GENERAL
A. Metal Stairs: Provide stairs of the design specified, complete with landing platforms, vertical and horizontal supports, railings, and guards, fabricated accurately for anchorage to each other and to building structure.
 1. Regulatory Requirements: Provide stairs and railings complying with the most stringent requirements of local, state, and federal regulations; where requirements of Contract Documents exceed those of regulations, comply with Contract Documents.
 2. Dimensions: As indicated on drawings.
 3. Shop assemble components; disassemble into largest practical sections suitable for transport and access to site.
 4. No sharp or rough areas on exposed travel surfaces and surfaces accessible to touch.
 5. Separate dissimilar metals using paint or permanent tape.
B. Metal Jointing and Finish Quality Levels:
 1. Architectural: All joints as inconspicuous as possible, whether welded or mechanical.
 a. Welded Joints: Continuously welded and ground smooth and flush.
 b. Mechanical Joints: Butted tight, flush, and hairline; concealed fastenings only.
 c. Exposed Edges and Corners: Eased to small uniform radius.
d. Metal Surfaces to be Painted: Sanded or ground smooth, suitable for highest quality gloss finish.

2. Commercial: Exposed joints as inconspicuous as possible, whether welded or mechanical; underside of stair not covered by soffit IS considered exposed to view.
 a. Welded Joints: Intermittently welded on back side, filled with body putty, and sanded smooth and flush.
 b. Welds Exposed to View: Ground smooth and flush.
 c. Mechanical Joints: Butted tight, flush, and hairline.
 d. Bolts Exposed to View: Countersunk flat or oval head bolts; no exposed nuts.
 e. Exposed Edges and Corners: Eased to small uniform radius.
 f. Metal Surfaces to be Painted: Sanded or ground smooth, suitable for highest quality gloss finish.

3. Industrial: All joints made neatly.
 a. Welded Joints: Welded on back side wherever possible.
 b. Welds Exposed to Touch: Ground smooth.
 c. Bolts Exposed to Touch in Travel Area: No nuts or screw threads exposed to touch.
 C. Fasteners: Same material or compatible with materials being fastened; type consistent with design and specified quality level.
 D. Anchors and Related Components: Same material and finish as item to be anchored, except where specifically indicated otherwise; provide all anchors and fasteners required.

2.02 METAL STAIRS WITH CONCRETE TREADS

A. Jointing and Finish Quality Level: Industrial, as defined above.

B. Risers: Closed.

C. Treads: Metal pan with field-installed concrete fill.
 1. Concrete Depth: 1-1/2 inches, minimum.
 2. Tread Pan Material: Steel sheet.
 3. Tread Pan Thickness: As required by design; 14 gage, 0.075 inch minimum.
 4. Concrete Reinforcement: None.
 5. Concrete Finish: For resilient floor covering.

D. Risers: Same material and thickness as tread pans.
 1. Nosing Depth: Not more than 1-1/2 inch overhang.
 2. Nosing Return: Flush with top of concrete fill, not more than 1/2 inch wide.

E. Stringers: Rolled steel channels.
 1. Stringer Depth: 12 inches.
 2. End Closure: Sheet steel of same thickness as risers welded across ends.

F. Railings: Steel pipe railings.

2.03 METAL STAIRS WITH GRATING TREADS

A. Jointing and Finish Quality Level: Industrial, as defined above.

B. Risers: Closed.
C. Treads: Steel bar grating.
 1. Grating Type: Welded.
 2. Bearing Bar Depth: 3/4 inch, minimum.
 3. Top Surface: Standard.
 6. Anchorage to Stringers: End plates welded to grating, bolted to stringers.

D. Stringers: Rolled steel channels.
 1. Stringer Depth: 12 inches.
 2. End Closure: Sheet steel of same thickness as risers welded across ends.

E. Railings: Steel pipe railings.

2.04 PREFABRICATED STAIRS

A. Prefabricated Egress Stairs: Welded steel unit, factory fabricated to greatest degree practical and in the largest components possible.

B. Modular Egress and Access Stairs: Standardized, modular stair components designed with manufacturer's standard stair angle and height charts; to be field assembled with mechanical fasteners only.
 1. Assembly Option: Shipped unassembled.

2.05 HANDRAILS AND GUARDS

A. Wall-Mounted Rails: As specified in Section 05 52 13.

B. Guards:
 1. Top Rails: Round pipe or tube rails unless otherwise indicated.
 a. Outside Diameter: 1-1/4 inch, minimum, to 1-1/2 inches, maximum.
 2. Infill at Picket Railings: Vertical pickets.
 a. Horizontal Spacing: Maximum 4 inches on center.
 b. Material: Solid steel bar.
 c. Shape: Square.
 d. Size: 1/2 inch square.
 e. Top Mounting: Welded to underside of top rail.
 f. Bottom Mounting: Welded to top surface of stringer.
 3. Infill at Pipe Railings: Pipe or tube rails sloped parallel to stair.
 a. Outside Diameter: 1 inch.
 b. Material: Steel pipe or tube, round.
 c. Vertical Spacing: Maximum 4 inches on center.
 d. Jointing: Welded and ground smooth and flush.
 4. End and Intermediate Posts: Same material and size as top rails.
 a. Horizontal Spacing: As indicated on drawings.
 b. Mounting: Welded to top surface of stringer.

2.06 MATERIALS
A. Steel Sections: ASTM A36/A36M.
B. Steel Tubing: ASTM A500/A500M or ASTM A501/A501M structural tubing, round and shapes as indicated.
C. Steel Plates: ASTM A6/A6M or ASTM A283/A283M.
D. Pipe: ASTM A53/A53M Grade B Schedule 40, black finish.
E. Checkered Plate: ASTM A786/A786M, rolled steel floor plate; manufacturer's standard pattern.
F. Gratings: Bar gratings complying with NAAMM MBG 531 or NAAMM MBG 532, whichever applies based on bar sizes.
G. Concrete Fill: Type specified in Section 03 30 00.
H. Concrete Reinforcement: Mesh type as detailed, galvanized.

2.07 ACCESSORIES
A. Steel Bolts, Nuts, and Washers: ASTM F3125/F3125M, Type 1, and galvanized to ASTM A153/A153M where connecting galvanized components.
B. Welding Materials: AWS D1.1/D1.1M; type required for materials being welded.
C. Shop and Touch-Up Primer: SSPC-Paint 15, complying with VOC limitations of authorities having jurisdiction.

2.08 SHOP FINISHING
A. Clean surfaces of rust, scale, grease, and foreign matter prior to finishing.
B. Do not prime surfaces in direct contact with concrete or where field welding is required.
C. Prime Painting: Use specified shop- and touch-up primer.
 1. Preparation of Steel: In accordance with SSPC-SP 2 Hand Tool Cleaning.
 2. Number of Coats: One.
D. Finish painting: Semi-gloss finish, color to be determined by Architect.

PART 3 EXECUTION
3.01 INSTALLATION
A. Install components plumb and level, accurately fitted, free from distortion or defects.
B. Provide anchors, plates, angles, hangers and struts required for connecting stairs to structure.
C. Allow for erection loads, and for sufficient temporary bracing to maintain true alignment until completion of erection and installation of permanent attachments.
D. Provide welded field joints where specifically indicated on drawings. Perform field welding in accordance with AWS D1.1/D1.1M.
E. Other field joints may be either welded or bolted provided the result complies with the limitations specified for jointing quality levels.
F. Obtain approval prior to site cutting or creating adjustments not scheduled.
G. After erection, prime welds, abrasions, and surfaces not shop primed or galvanized, except surfaces to be in contact with concrete.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES
A. Wall mounted handrails.
B. Stair railings and guardrails.
C. Free-standing railings at steps.

1.02 RELATED REQUIREMENTS
A. Section 05 51 00 - Metal Stairs: Handrails other than those specified in this section.
B. Section 09 91 23 - Interior Painting: Paint finish.

1.03 REFERENCE STANDARDS

1.04 SUBMITTALS
A. Shop Drawings: Indicate profiles, sizes, connection attachments, anchorage, size and type of fasteners, and accessories.
B. Designer's Qualification Statement.
C. Fabricator's Qualification Statement.

1.05 QUALITY ASSURANCE
A. Structural Designer Qualifications: Professional Structural Engineer experienced in design of this work and licensed in the State in which the Project is located, or personnel under direct supervision of such an engineer.
B. Fabricator Qualifications:
 1. A qualified steel fabricator that is certified by the American Institute for Steel Construction (AISC) under AISC 201.

PART 2 PRODUCTS

2.01 RAILINGS - GENERAL REQUIREMENTS
A. Design, fabricate, and test railing assemblies in accordance with the most stringent requirements of applicable local code.
B. Distributed Loads: Design railing assembly, wall rails, and attachments to resist distributed force of 75 pounds per linear foot applied to the top of the assembly and in any direction, without damage or permanent set. Test in accordance with ASTM E935
C. Concentrated Loads: Design railing assembly, wall rails, and attachments to resist a concentrated force of 200 pounds applied at any point on the top of the assembly and in any direction, without damage or permanent set. Test in accordance with ASTM E935
D. Allow for expansion and contraction of members and building movement without damage to connections or members.
E. Dimensions: See drawings for configurations and heights.
1. Top Rails and Wall Rails: 1-1/2 inches diameter, round.
4. Balusters: 1/2 inch square solid bar.
5. Baluster attachment channel: 1" x 1/2" Channel w/ 1/2" punched openings for balasters. Back weld balusters inside channel.

F. Provide anchors and other components as required to attach to structure, made of same materials as railing components unless otherwise indicated; where exposed fasteners are unavoidable provide flush countersunk fasteners.

2.02 STEEL RAILING SYSTEM

A. Steel Pipe: ASTM A53/A53M Grade B Schedule 40; painted semi-gloss. Submit colors to architect for approval.
B. Welding Fittings: Factory- or shop-welded from matching pipe or tube; seams continuously welded; joints and seams ground smooth.
C. Exposed Fasteners: No exposed bolts or screws.
D. Straight Splice Connectors: Steel concealed spigots.

2.03 FABRICATION

A. Accurately form components to suit specific project conditions and for proper connection to building structure.
B. Fit and shop assemble components in largest practical sizes for delivery to site.
C. Fabricate components with joints tightly fitted and secured. Provide spigots and sleeves to accommodate site assembly and installation.
D. Welded Joints:
 1. Exterior Components: Continuously seal joined pieces by intermittent welds and plastic filler. Drill condensate drainage holes at bottom of members at locations that will not encourage water intrusion.
 2. Interior Components: Continuously seal joined pieces by intermittent welds and plastic filler.
 3. Grind exposed joints flush and smooth with adjacent finish surface. Make exposed joints butt tight, flush, and hairline. Ease exposed edges to small uniform radius.

PART 3 EXECUTION

3.01 INSTALLATION

A. Install in accordance with manufacturer’s instructions.
B. Install components plumb and level, accurately fitted, free from distortion or defects, with tight joints.
C. Anchor railings securely to structure.
D. Touch up paint where damaged by handling and installation.

END OF SECTION
PART 1 GENERAL

1.01 REFERENCE STANDARDS
 E. ASTM B211M - Standard Specification for Aluminum and Aluminum-Alloy Rolled or Cold-Finished Bar, Rod, and Wire (Metric) 2012.

1.02 SUBMITTALS
 A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
 B. Product Data: Provide span and deflection tables.
 C. Shop Drawings: Indicate details of component supports, openings, perimeter construction details, and tolerances.
 D. Designer's Qualification Statement.

1.03 QUALITY ASSURANCE
 A. Designer Qualifications: Design gratings and plates under direct supervision of a Professional Structural Engineer experienced in design of this type of work and licensed in the State in which the Project is located.

PART 2 PRODUCTS

2.01 PERFORMANCE REQUIREMENTS
 A. Comply with applicable code for loading requirements.
 B. Load Design: NAAMM MBG 531.

2.02 MATERIALS
 A. Steel Floor Plate: ASTM A786/A786M; Pattern as indicated on drawings.
 B. Cross Bars: ASTM B211 ASTM B211M solid bars.
 C. Welding Materials: AWS D1.1/D1.1M; type required for materials being welded.
 D. Touch-Up Primer for Galvanized Surfaces: SSPC-Paint 20 Type I - Inorganic, complying with VOC limitations of authorities having jurisdiction.

2.03 FABRICATION
 A. Grating Type: NAAMM MBG 531, Pressure Locked Type.

2.04 FINISHES
PART 3 EXECUTION

3.01 INSTALLATION

A. Install components in accordance with manufacturer's instructions.

B. Place frames in correct position, plumb and level.

END OF SECTION
PART 1 GENERAL

1.01 REFERENCE STANDARDS

D. PS 1 - Structural Plywood 2009.
G. SPIB (GR) - Grading Rules 2014.
H. WCLIB (GR) - Standard Grading Rules for West Coast Lumber No. 17 2018.

1.02 SUBMITTALS

A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
B. Product Data: Provide technical data on insulated sheathing, wood preservative materials and application instructions.
C. Structural Composite Lumber: Submit manufacturer's published structural data including span tables, marked to indicate which sizes and grades are being used; if structural composite lumber is being substituted for dimension lumber or timbers, submit grading agency structural tables marked for comparison.

PART 2 PRODUCTS

2.01 GENERAL REQUIREMENTS

A. Dimension Lumber: Comply with PS 20 and requirements of specified grading agencies.
 1. If no species is specified, provide any species graded by the agency specified; if no grading agency is specified, provide lumber graded by any grading agency meeting the specified requirements.
 2. Grading Agency: Any grading agency whose rules are approved by the Board of Review, American Lumber Standard Committee (www.alsc.org) and who provides grading service for the species and grade specified; provide lumber stamped with grade mark unless otherwise indicated.

2.02 DIMENSION LUMBER FOR CONCEALED APPLICATIONS

A. Grading Agency: Southern Pine Inspection Bureau, Inc; SPIB (GR).
B. Grading Agency: Redwood Inspection Service; RIS (GR).
C. Grading Agency: West Coast Lumber Inspection Bureau; WCLIB (GR).
D. Grading Agency: Western Wood Products Association; WWPA G-5.
E. Sizes: Nominal sizes as indicated on drawings, S4S.
F. Moisture Content: S-dry or MC19.
G. Miscellaneous Framing, Blocking, Nailers, Grounds, and Furring:
1. Lumber: S4S, No. 2 or Standard Grade.
2. Boards: Standard or No. 3.

2.03 CONSTRUCTION PANELS
A. Communications and Electrical Room Mounting Boards: PS 1 A-D plywood, or medium density fiberboard; 3/4 inch thick; flame spread index of 25 or less, smoke developed index of 450 or less, when tested in accordance with ASTM E84.

2.04 ACCESSORIES
A. Fasteners and Anchors:
 2. Drywall Screws: Bugle head, hardened steel, power driven type, length three times thickness of sheathing at gypsum sheathing only.
 3. Anchors: Toggle bolt type for anchorage to hollow masonry.

2.05 FACTORY WOOD TREATMENT
A. Treated Lumber and Plywood: Comply with requirements of AWPA U1 - Use Category System for wood treatments determined by use categories, expected service conditions, and specific applications.
 1. Fire-Retardant Treated Wood: Mark each piece of wood with producer's stamp indicating compliance with specified requirements.
 2. Preservative-Treated Wood: Provide lumber and plywood marked or stamped by an ALSC-accredited testing agency, certifying level and type of treatment in accordance with AWPA standards.

PART 3 EXECUTION
3.01 INSTALLATION - GENERAL
A. Select material sizes to minimize waste.
B. Reuse scrap to the greatest extent possible; clearly separate scrap for use on site as accessory components, including: shims, bracing, and blocking.
C. Where treated wood is used on interior, provide temporary ventilation during and immediately after installation sufficient to remove indoor air contaminants.

3.02 INSTALLATION OF CONSTRUCTION PANELS
A. Wall Sheathing: Secure with long dimension perpendicular to wall studs, with ends over firm bearing and staggered, using nails, screws or staples.
B. Communications and Electrical Room Mounting Boards: Secure with screws to studs with edges over firm bearing; space fasteners at maximum 24 inches on center on all edges and into studs in field of board.
 1. At fire-rated walls, install board over wall board indicated as part of the fire-rated assembly.
 2. Where boards are indicated as full floor-to-ceiling height, install with long edge of board parallel to studs.
 3. Install adjacent boards without gaps.

END OF SECTION
SECTION 06 61 00
CAST POLYMER FABRICATIONS

PART 1 GENERAL

1.01 REFERENCE STANDARDS

1.02 SUBMITTALS
 A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
 B. Samples: Submit two samples representative of vanity top, 6 inch in size, illustrating color, texture, and finish.

PART 2 PRODUCTS

2.01 MATERIALS
 A. Provide finished products having flame spread index of 35 and smoke developed index of 15, when tested in accordance with ASTM E84 in thickness of 3/4 inch.
 B. Resin: Polyester; integrally-colored, stain-resistant and resistant to domestic chemicals and cleaners.
 C. Resin: Polyester; flame-retardant, for use in the roto-cast method.
 D. Filler Material: ASTM E84 Class A rated.
 E. Polishing Cream: Compatible polishing cream to achieve specified sheen to gel coat.
 F. Core Framing: Softwood lumber, clear and free of knots.

2.02 FABRICATION
 A. Fabricate components by mold to achieve shape and configuration.
 B. Gel coat the finish exposed surfaces smooth and polish to a gloss sheen.
 C. Radius corners and edges.
 D. Cure components prior to shipment, except sheet materials requiring site handling.

2.03 FINISH
 A. Color: Color as indicated on the drawings or to be determined.

PART 3 EXECUTION

3.01 INSTALLATION
 A. Install components in accordance with approved shop drawings and manufacturer's instructions.
 B. Align work plumb and level.
 C. Rigidly anchor to substrate to prevent misalignment.

END OF SECTION
PART 1 GENERAL

1.01 REFERENCE STANDARDS

1.02 SUBMITTALS

A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
B. Product Data: Provide data on product characteristics, performance criteria and product limitations.
C. ABAA Field Quality Control Submittals: Submit third-party reports of testing and inspection required by ABAA QAP.
D. ABAA Manufacturer Qualification: Submit documentation of current evaluation of proposed manufacturer and materials.
E. ABAA Installer Qualification: Submit documentation of current contractor accreditation and current installer certification. Keep copies of contractor accreditation and installer certification on site during and after installation. Present on-site documentation upon request.

PART 2 PRODUCTS

2.01 APPLICATIONS

A. Insulation Under Concrete Slabs: Extruded polystyrene (XPS) board.
B. Insulation at Perimeter of Foundation: Extruded polystyrene (XPS) board.
C. Insulation Inside Prefabricated Wall Panels: Extruded polystyrene (XPS) board.
D. Insulation Over Metal Stud Framed Walls, Continuous: Extruded polystyrene (XPS) carbon black board.
E. Insulation in Metal Framed Walls: Batt insulation with integral vapor retarder.
F. Insulation Above Lay-In Acoustical Ceilings: Batt insulation with no vapor retarder.
G. Insulation Over Roof Deck: Polyisocyanurate board.

2.02 FOAM BOARD INSULATION MATERIALS
A. Termite-Resistant Expanded Polystyrene (EPS) Board Insulation: Complies with ASTM C578.
 1. Termite Resistance: Comply with ICC-ES AC239.
 2. Flame Spread Index (FSI): Class A - 0 to 25, when tested in accordance with ASTM E84.
 3. Smoke Developed Index (SDI): 450 or less, when tested in accordance with ASTM E84.
 5. Board Thickness: 2-1/2 inch.
 6. Thermal Resistance: R-value of 11, for overall thickness indicated.

B. Extruded Polystyrene (XPS) Board Insulation: Complies with ASTM C578 with either natural skin or cut cell surfaces.
 1. Type and Compressive Resistance: Type IV, 25 psi (173 kPa), minimum.
 2. Flame Spread Index (FSI): Class A - 0 to 25, when tested in accordance with ASTM E84.
 3. Smoke Developed Index (SDI): 450 or less, when tested in accordance with ASTM E84.
 4. Type and Thermal Resistance, R-value: Type IV, 5.0 (0.88) per 1 inch thickness at 75 degrees F mean temperature.
 5. Complies with fire resistance requirements indicated on drawings as part of an exterior non-load-bearing exterior wall assembly when tested in accordance with NFPA 285.
 6. Type and Water Absorption: Type IV, 0.3 percent by volume, maximum, by total immersion.

C. Extruded Polystyrene (XPS) Continuous Insulation (CI) Board: Complies with ASTM C578, and manufactured using carbon black technology.
 1. Flame Spread Index (FSI): Class A - 0 to 25, when tested in accordance with ASTM E84.
 2. Smoke Developed Index (SDI): 450 or less, when tested in accordance with ASTM E84.
 3. Type and Thermal Resistance, R-value: Type IV, 5.0 (0.88), minimum, per 1 inch thickness at 75 degrees F mean temperature.
 4. Complies with fire resistance requirements indicated on drawings as part of an exterior non-load-bearing exterior wall assembly when tested in accordance with NFPA 285.
 5. Board Size: 48 inch by 96 inch.
 6. Board Thickness:.
 8. Type and Water Absorption: Type IV, 0.3 percent by volume, maximum, by total immersion.

D. Polyisocyanurate (ISO) Board Insulation: Rigid cellular foam, complying with ASTM C1289.
 1. Classifications:
 a. Type I: Faced with aluminum foil on both major surfaces of the core foam.
1) Class 1 - Non-reinforced core foam.
2) Compressive Strength: 16 psi, minimum.
3) Thermal Resistance, R-value: At 1-1/2 inch thick; 9.0 at 75 degrees F.

2. Flame Spread Index (FSI): Class A - 0 to 25, when tested in accordance with ASTM E84.
3. Smoke Developed Index (SDI): 450 or less, when tested in accordance with ASTM E84.
4. Water Vapor Permeance: 1.2 perm, maximum, at 1 inch thickness, and when tested in accordance with ASTM E96/E96M, desiccant method.
5. Complies with fire resistance requirements indicated on drawings as part of an exterior non-load-bearing exterior wall assembly when tested in accordance with NFPA 285.
7. Board Thickness: 1.5 inch.
8. Tapered Board: Slope as indicated; minimum thickness [___] inch; fabricate of fewest layers possible.

2.03 BATT INSULATION MATERIALS

A. Where batt insulation is indicated, either glass fiber or mineral fiber batt insulation may be used, at Contractor’s option.

B. Glass Fiber Batt Insulation: Flexible preformed batt or blanket, complying with ASTM C665; friction fit.
 1. Flame Spread Index: 75 or less, when tested in accordance with ASTM E84.
 2. Smoke Developed Index: 450 or less, when tested in accordance with ASTM E84.
 3. Combustibility: Non-combustible, when tested in accordance with ASTM E136, except for facing, if any.

C. Mineral Fiber Batt Insulation: Flexible or semi-rigid preformed batt or blanket, complying with ASTM C665; friction fit; unfaced flame spread index of 0 (zero) when tested in accordance with ASTM E84.
 1. Flame Spread Index: 25 or less, when tested in accordance with ASTM E84.
 2. Smoke Developed Index: 0 (zero), when tested in accordance with ASTM E84.

2.04 ACCESSORIES

A. Sheet Vapor Retarder: Black polyethylene film for above grade application, 10 mil, 0.010 inch thick.

B. Interior Vapor Retarder: Modified polyethylene/polyacrylate (PE/PA) film reinforced with polyethylene terephthalate (PET) fibers, 12 mils, 0.012 inch thick.

C. Tape: Reinforced polyethylene film with acrylic pressure sensitive adhesive.
 1. Application: Sealing of interior circular penetrations, such as pipes or cables.
 2. Width: Are required for application.

D. Flashing Tape: Special polyolefin film with high performance adhesive.
 1. Application: Interior window and door sill flashing tape.
2. Width: Are required for application.

E. Insulation Fasteners: Lengths of unfinished, 13 gage, 0.072 inch high carbon spring steel with chisel or mitered tips, held in place by tension, length to suit insulation thickness and substrate, capable of securely supporting insulation in place.

F. Continuous Insulation (CI) Support Systems: Composite framing support (CFS) system consisting of insulated fiberglass reinforced plastic (FRP) girts that support CI and provide cladding attachment support integrated with metal wall panels exterior wall cladding.

 1. Substrate: Attach CFS system components to open metal stud framing without sheathing, exterior sheathing over metal stud framing, concrete masonry units (CMU) or poured concrete.
 2. Depth of Girts: As required for thickness of insulation.
 3. Length: 6 inch for clips, and 96 inch for girts.
 4. Spacing of Girts: 16 inch on center, vertically.

G. Adhesive: Type recommended by insulation manufacturer for application.

PART 3 EXECUTION

3.01 BOARD INSTALLATION AT FOUNDATION PERIMETER

 A. Adhere a 6 inch wide strip of polyethylene sheet over construction, control and expansion joints with double beads of adhesive each side of joint.
 B. Install boards horizontally on foundation perimeter.
 C. Cut and fit insulation tightly to protrusions or interruptions to the insulation plane.
 D. Install concrete protection board over insulation where backfilling is required and where extending above grade.

3.02 BOARD INSTALLATION AT EXTERIOR WALLS

 A. Install boards horizontally on walls.
 B. Cut and fit insulation tightly to protrusions or interruptions to the insulation plane.

3.03 BOARD INSTALLATION AT CAVITY WALLS

 A. Install boards to fit snugly between wall ties.
 B. Install boards horizontally on walls.
 C. Cut and fit insulation tightly to protrusions or interruptions to the insulation plane.

3.04 BOARD INSTALLATION USING COMPOSITE FRAMING SUPPORT (CFS) SYSTEM

 A. Install CFS system in accordance with manufacturer's installation instructions.
 B. Install CFS system in compliance with system orientation, sizes, and locations as indicated on drawings.
 C. Install CFS system to fill-in exterior wall spaces without gaps or voids, and do not compress insulation boards.
 D. Trim insulation neatly to fit spaces, and insulate miscellaneous gaps and voids with approved expandable foam sealant.

3.05 BOARD INSTALLATION UNDER CONCRETE SLABS

 A. Place insulation under slabs on grade after base for slab has been compacted.
 B. Cut and fit insulation tightly to protrusions or interruptions to the insulation plane.
C. Prevent insulation from being displaced or damaged while placing vapor retarder and placing slab.

3.06 BATT INSTALLATION

A. Install insulation and vapor retarder in accordance with manufacturer's instructions.
B. Install in exterior wall and roof spaces without gaps or voids. Do not compress insulation.
C. Trim insulation neatly to fit spaces. Insulate miscellaneous gaps and voids.
D. Fit insulation tightly in cavities and tightly to exterior side of mechanical and electrical services within the plane of the insulation.

END OF SECTION
SECTION 07 21 19
FOAMED-IN-PLACE INSULATION

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Foamed-in-place insulation.
 1. In exterior framed walls.
 2. In exterior wall crevices.
 3. At junctions of dissimilar wall and roof materials.
B. Protective intumescent coating.

1.02 REFERENCE STANDARDS

1.03 SUBMITTALS
A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
B. Product Data: Provide product description, insulation properties, overcoat properties, and preparation requirements.
C. Certificates: Certify that products of this section meet or exceed specified requirements.
D. ABAA Field Quality Control Submittals: Submit third-party reports of testing and inspection required by ABAA QAP.
E. Manufacturer's Installation Instructions: Indicate special procedures, and perimeter conditions requiring special attention.
F. ABAA Manufacturer Qualification: Submit documentation of current evaluation of proposed manufacturer and materials.
G. ABAA Installer Qualification: Submit documentation of current contractor accreditation and current installer certification. Keep copies of all contractor accreditation and installer certification on site during and after installation. Present on-site documentation upon request.

1.04 QUALITY ASSURANCE
A. Manufacturer Qualifications: Company specializing in manufacturing products of the type specified in this section, with not less than three years of documented experience.
B. Air Barrier Association of America (ABAA) Quality Assurance Program (QAP); www.airbarrier.org/#sle:
1. Installer Qualification: Use accredited contractor, certified installers, evaluated materials, and third-party field quality control audit.

2. Manufacturer Qualification: Use evaluated materials from a single manufacturer regularly engaged in air barrier material manufacture. Use secondary materials approved in writing by primary material manufacturer.

1.05 FIELD CONDITIONS

A. Do not apply foam when temperature is below that specified by the manufacturer for ambient air and substrate.

B. Do not apply foam when temperature is within 5 degrees F of dew point.

PART 2 PRODUCTS

2.01 MATERIALS

A. Foamed-In-Place Insulation: Low-density, flexible, open celled, water vapor permeable polyurethane foam; foamed on-site, using blowing agent of water or non-ozone-depleting gas.

1. Thermal Resistance: R-value of 3.0, minimum, per 1 inch thickness at 75 degrees F mean temperature when tested in accordance with ASTM C518.

2. Air Permeance: 0.04 cfm/sq ft, maximum, when tested at intended thickness in accordance with ASTM E2178 or ASTM E283 at 1.57 psf.

3. Surface Burning Characteristics: Flame spread/Smoke developed index of 25/450, maximum, when tested in accordance with ASTM E84.

B. Foamed-In-Place Insulation: Medium-density, rigid or semi-rigid, open or closed cell polyurethane foam; foamed on-site, using blowing agent of water or non-ozone-depleting gas.

1. Thermal Resistance: R-value of 5.0, minimum, per 1 inch thickness at 75 degrees F mean temperature when tested in accordance with ASTM C518.

2. Water Absorption: Less than 2 percent by volume, maximum, when tested in accordance with ASTM D2842.

3. Air Permeance: 0.04 cfm/sq ft, maximum, when tested at intended thickness in accordance with ASTM E2178 or ASTM E283 at 1.57 psf.

4. Closed Cell Content: At least 90 percent.

5. Surface Burning Characteristics: Flame spread/Smoke developed index of 25/450, maximum, when tested in accordance with ASTM E84.

C. Foamed-In-Place Hybrid Insulation System with Intumescent Surface Layer: Hybrid system; foamed on-site using blowing agent of non-ozone-depleting gas.

1. Regulatory Requirements: Comply with applicable code for flame and smoke, concealment and overcoat limitations.

2. Base Layer: Medium-density, semi-rigid, closed-cell, spray polyurethane foam.

 a. Density: 2.0 lbs/cu ft, nominal, in accordance with ASTM D1622/D1622M.

 b. Surface Burning Characteristics: Flame spread/Smoke developed index of 25/450, maximum, at 4 inch thick when tested in accordance with ASTM E84.

2.02 ACCESSORIES

A. Primer: As required by insulation manufacturer.
B. Protective Coating: Intumescent coating of type recommended by insulation manufacturer and as required to comply with applicable codes.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify work within construction spaces or crevices is complete prior to insulation application.

B. Verify that surfaces are clean, dry, and free of matter that may inhibit insulation or overcoat adhesion.

3.02 PREPARATION

A. Mask and protect adjacent surfaces from over spray or dusting.

B. Apply primer in accordance with manufacturer’s instructions.

3.03 APPLICATION

A. Apply insulation in accordance with manufacturer’s instructions.

B. Where applied to voids and gaps assure space for expansion to avoid pressure on adjacent materials that may bind operable parts.

C. Trim excess away for applied trim or remove as required for continuous sealant bead.

3.04 PROTECTION

A. Do not permit subsequent construction work to disturb applied insulation.

END OF SECTION
SECTION 07 25 00
WEATHER BARRIERS

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Water-Resistive Barrier: Under exterior wall cladding, over sheathing or other substrate; not air tight or vapor retardant.

B. Vapor Retarders: Materials to make exterior walls, joints between exterior walls and roof, joints around frames of openings in exterior walls and [____] water vapor resistant and air tight.

C. Air Barriers: Materials that form a system to stop passage of air through exterior walls, joints between exterior walls and roof, joints around frames of openings in exterior walls and [____].

1.02 RELATED REQUIREMENTS

A. Section 07 21 00 - Thermal Insulation: Vapor retarder installed in conjunction with batt insulation.

B. Section 07 54 00 - Thermoplastic Membrane Roofing: Vapor retarder installed as part of roofing system.

1.03 DEFINITIONS

A. Weather Barrier: Assemblies that form either water-resistive barriers, air barriers, or vapor retarders.

B. Air Barrier: Air tight barrier made of material that is relatively air impermeable but water vapor permeable, both to the degree specified, with sealed seams and with sealed joints to adjacent surfaces. Note: For the purposes of this specification, vapor impermeable air barriers are classified as vapor retarders.

C. Vapor Retarder: Air tight barrier made of material that is relatively water vapor impermeable, to the degree specified, with sealed seams and with sealed joints to adjacent surfaces.

1. Water Vapor Permeance: For purposes of conversion, 57.2 ng/(Pa s sq m) = 1 perm.

D. Water-Resistive Barrier: Water-shedding barrier made of material that is moisture resistant, to the degree specified, intended to be installed to shed water without sealed seams.

1.04 REFERENCE STANDARDS

1.05 SUBMITTALS
A. Product Data: Provide data on material characteristics.
B. Shop Drawings: Provide drawings of special joint conditions.
C. ABAA Field Quality Control Submittals: Submit third-party reports of testing and inspection required by ABAA QAP.
D. Manufacturer's Installation Instructions: Indicate preparation.
E. ABAA Manufacturer Qualification: Submit documentation of current evaluation of proposed manufacturer and materials.
F. ABAA Installer Qualification: Submit documentation of current contractor accreditation and current installer certification; keep copies of each contractor accreditation and installer certification on site during and after installation, and present on-site documentation upon request.
G. Testing Agency Qualification Statement.

1.06 QUALITY ASSURANCE
A. Air Barrier Association of America (ABAA) Quality Assurance Program (QAP); www.airbarrier.org/#sle:
 1. Installer Qualification: Use accredited contractor, certified installers, evaluated materials, and third-party field quality control audit.
 2. Manufacturer Qualification: Use evaluated materials from a single manufacturer regularly engaged in air barrier material manufacture, and use secondary materials approved in writing by primary material manufacturer.

1.07 FIELD CONDITIONS
A. Maintain temperature and humidity recommended by the materials manufacturers before, during and after installation.

PART 2 PRODUCTS
2.01 WEATHER BARRIER ASSEMBLIES
A. Water-Resistive Barrier: Provide on exterior walls under exterior cladding.
B. Interior Vapor Retarder:
 1. Integral to exterior metal panel cladding
 2. At overlapping intersection of metal and precast wall panels

2.02 AIR BARRIER MATERIALS (WATER VAPOR PERMEABLE AND WATER-RESISTIVE)
A. Air Barrier Sheet, Mechanically Fastened:
 1. Air Permeance: 0.004 cubic feet per minute per square foot, maximum, when tested in accordance with ASTM E2178.
 2. Water Vapor Permeance: 5 perms, minimum, when tested in accordance with ASTM E96/E96M Procedure A (desiccant procedure).
 3. Ultraviolet (UV) and Weathering Resistance: Approved in writing by manufacturer for up to 180 days of weather exposure.
4. Surface Burning Characteristics: Flame spread index of 25 or less, and smoke developed index of 50 or less, when tested in accordance with ASTM E84.

5. Seam and Perimeter Tape: Polyethylene self adhering type, mesh reinforced, 2 inches wide, compatible with sheet material; unless otherwise specified.

B. Air Barrier Sheet, Self-Adhered:
 1. Air Permeance: 0.004 cubic feet per minute per square foot, maximum, when tested in accordance with ASTM E2178.
 2. Water Vapor Permeance: 10 perms, minimum, when tested in accordance with ASTM E96/E96M Procedure A (desiccant procedure).
 3. Ultraviolet (UV) and Weathering Resistance: Approved in writing by manufacturer for up to 90 days of weather exposure.
 4. Surface Burning Characteristics: Flame spread index of 25 or less, smoke developed index of 450 or less (Class A), when tested in accordance with ASTM E84.
 5. Seam and Perimeter Tape: As recommended by sheet manufacturer.

C. Air Barrier, Fluid Applied: Vapor permeable, elastomeric waterproofing.
 1. Air Barrier Coating:
 a. Air Permeance: 0.001 cubic feet per minute per square foot, maximum, when tested in accordance with ASTM E2178.
 b. Water Vapor Permeance: 18 perms, minimum, when tested in accordance with ASTM E96/E96M, Procedure B.

2.03 VAPOR RETARDER MATERIALS (AIR BARRIER AND WATER-RESISTIVE)

 A. Vapor Retarder Sheet Type [___]: Butyl, black color.
 1. Thickness: 45 mil, 0.045 inch.
 2. Water Vapor Permeance: 0.1 perm, maximum, when tested in accordance with ASTM E96/E96M.
 3. Seam Lap and Perimeter Adhesive: Elastomeric, same composition as sheet or other compatible material.

2.04 ACCESSORIES

 A. Sealants, Tapes, and Accessories for Sealing Weather Barrier and Sealing Weather Barrier to Adjacent Substrates: As specified or as recommended by weather barrier manufacturer.

PART 3 EXECUTION

3.01 EXAMINATION

 A. Verify that surfaces and conditions are ready to accept the work of this section.

3.02 PREPARATION

 A. Remove projections, protruding fasteners, and loose or foreign matter that might interfere with proper installation.
 B. Clean and prime substrate surfaces to receive adhesives in accordance with manufacturer's instructions.

3.03 INSTALLATION

 A. Install materials in accordance with manufacturer's instructions.
B. Air Barriers: Install continuous air tight barrier over surfaces indicated, with sealed seams and with sealed joints to adjacent surfaces.

C. Vapor Retarders: Install continuous air tight barrier over surfaces indicated, with sealed seams and with sealed joints to adjacent surfaces.

D. Apply sealants and adhesives within recommended application temperature ranges. Consult manufacturer if temperature is out of this range.

E. Mechanically Fastened Sheets - On Exterior:
 1. Install sheets shingle-fashion to shed water, with seams generally horizontal.
 2. Overlap seams as recommended by manufacturer but at least 6 inches.
 3. Overlap at outside and inside corners as recommended by manufacturer but at least 12 inches.
 4. For applications specified to be air tight, seal seams, laps, penetrations, tears, and cuts with self-adhesive tape; use only large-headed, gasketed fasteners recommended by the manufacturer.
 5. Install air barrier and vapor retarder UNDER jamb flashings.
 6. Install head flashings under weather barrier.
 7. At openings to be filled with frames having nailing flanges, wrap excess sheet into opening; at head, seal sheet over flange and flashing.

F. Coatings:
 1. Prepare substrate in manner recommended by coating manufacturer; treat joints in substrate and between dissimilar materials as recommended by manufacturer.
 2. Use flashing to seal to adjacent construction and to bridge joints.

G. Openings and Penetrations in Exterior Weather Barriers:
 1. Install flashing over sills, covering entire sill frame member, extending at least 5 inches onto weather barrier and at least 6 inches up jambs; mechanically fasten stretched edges.
 2. At openings to be filled with frames having nailing flanges, seal head and jamb flanges using a continuous bead of sealant compressed by flange and cover flanges with sealing tape at least 4 inches wide; do not seal sill flange.
 3. At openings to be filled with non-flanged frames, seal weather barrier to each side of opening framing, using flashing at least 9 inches wide, covering entire depth of framing.
 4. At head of openings, install flashing under weather barrier extending at least 2 inches beyond face of jambs; seal weather barrier to flashing.
 5. At interior face of openings, seal gap between window/door frame and rough framing, using joint sealant over backer rod.
 6. Service and Other Penetrations: Form flashing around penetrating item and seal to weather barrier surface.

END OF SECTION
SECTION 07 42 13
INSULATED METAL WALL PANELS

PART 1 - GENERAL

1.01 SECTION INCLUDES
A. Foamed-insulation-core concealed fastener metal wall panels, with related metal trim and accessories.

1.02 RELATED REQUIREMENTS
A. Division 01 Section "Sustainable Design Requirements" for related LEED general requirements.
B. Division 05 Section "Structural Steel Framing" for steel framing supporting metal panels.
C. Division 07 Section "Sheet Metal Flashing and Trim" for sheet metal flashing items in addition to items specified in this Section.
D. Division 07 Section "Metal Wall and Roof Panels" for factory-formed metal wall, roof, and soffit panels.

1.03 REFERENCES
A. American Architectural Manufacturer's Association (AAMA): www.aamanet.org:
 1. AAMA 501.2 - Quality Assurance and Diagnostic Water Leakage Field Check of Installed Storefronts, Curtain Walls, and Sloped Glazing Systems.
 2. AAMA 621 - Voluntary Specifications for High Performance Organic Coatings on Coil Coated Architectural Hot Dipped Galvanized (HDG) & Zinc-Aluminum Coated Steel Substrates.

B. American Society of Civil Engineers (ASCE): www.asce.org/codes-standards:

C. ASTM International (ASTM): www.astm.org:
 1. ASTM A 653 - Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process.
 4. ASTM A 240 – Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications
 7. ASTM D 1621 - Compressive Properties of Rigid Cellular Plastics.
 11. ASTM D 6226 - Standard Test Method for Open Cell Content of Rigid Cellular Plastics

D. National Fire Protection Association (NFPA)

1.04 QUALITY ASSURANCE

A. Manufacturer/Source: Provide metal panel assemblies and accessories from a single manufacturer approved under an accredited third-party quality control program

B. Manufacturer Qualifications: Approved manufacturer listed in this Section with minimum ten years’ experience in the manufacturing of similar products and successful use in similar applications.

1. Approval of Comparable Products: Submit the following in accordance with project substitution requirements, within time allowed for substitution review:
 a. Product data, including certified independent test data indicating compliance with requirements.
 b. Samples of each component.
 c. Sample submittal from similar project.
 d. Project references: Minimum of five installations not less than five years old, with Owner and Architect contact information.
 e. Sample warranty.
 f. Certificate from an accredited third-party Quality Control Program.

2. Substitutions following award of contract are not allowed except as stipulated in Division 01 General Requirements

3. Approved manufacturers must meet separate requirements of Submittals Article.

C. Installer Qualifications: Experienced Installer [certified by metal panel manufacturer] with minimum of five years experience with successfully completed projects of a similar nature and scope.

1. Installer's Field Supervisor: Experienced mechanic [certified by metal panel manufacturer] supervising work on site whenever work is underway.

D. Buy American Compliance: Materials provided under work of this Section shall comply with the following requirements:

1.05 ADMINISTRATIVE REQUIREMENTS

A. Preinstallation Meeting: Prior to erection of framing, conduct preinstallation meeting at site attended by Owner, Architect, metal panel installer, metal panel manufacturer's technical representative, inspection agency and related trade contractors.

1. Coordinate building framing in relation to metal panel system.
2. Coordinate openings and penetrations of metal panel system.
1.06 ACTION SUBMITTALS

A. Product Data: Manufacturer’s data sheets for specified products.

B. Shop Drawings: Show layouts of metal panels. Include details of each condition of installation, panel profiles, and attachment to building. Provide details at a minimum scale 1-1/2-inch per foot of edge conditions, joints, fastener and sealant placement, flashings, openings, penetrations, and special details. Make distinctions between factory and field assembled work.
 1. Include data indicating compliance with performance requirements.
 2. Indicate points of supporting structure that must coordinate with metal panel system installation.
 3. Include structural data indicating compliance with performance requirements and requirements of local authorities having jurisdiction.

C. Samples for Initial Selection: For each exposed product specified including sealants. Provide representative color charts of manufacturer's full range of colors.

D. Samples for Verification:
 1. Provide 12-inch long section of each metal panel profile.
 2. Provide color chip verifying color selection.

1.07 INFORMATIONAL SUBMITTALS

A. Product Test Results: Indicating compliance of products with requirements.

B. Qualification Information: For Installer

C. Accreditation Certificate: Indicating that manufacturer is accredited under an accredited third-party Quality Control Program, including IAS AC472 and based upon chapter 17 of the International Building Code (IBC).

D. Buy American Certification: Manufacturers' letters of compliance acceptable to authorities having jurisdiction, indicating products comply with requirements.

F. Warranty:
 1. Submit manufacturer’s written two (2) year limited warranty providing panels to be free from defects in materials and workmanship, beginning from the date of substantial completion excluding coil coatings (paint finishes) that are covered under a separate warranty.
 2. The installation contractor shall issue a separate warranty against defects in installed materials and workmanship, beginning from the date of substantial completion of the installation.

1.08 CLOSEOUT SUBMITTALS

A. Maintenance data.

B. Manufacturer's Warranty: Executed copy of manufacturer's warranty.

1.09 DELIVERY, STORAGE, AND HANDLING

A. Protect products of metal panel system during shipping, handling, and storage to prevent staining, denting, deterioration of components or other damage. Protect panels and trim bundles during shipping. Protect painted surfaces with a protective covering before shipping.
1. Deliver, unload, store, and erect metal panels and accessory items without deforming panels or exposing panels to surface damage from weather or construction operations.
2. Store in accordance with Manufacturer’s written instructions.
3. Shield foam insulated metal panels from direct sunlight until all components are installed.

1.10 WARRANTY

A. Special Manufacturer’s Warranty: Submit Manufacturer’s two (2) year limited warranty providing panels to be free from defects in materials and workmanship, beginning from the date of substantial completion excluding coil coatings (paint finishes) that are covered under a separate warranty.

B. The installation contractor shall issue a separate warranty against defects in installed materials and workmanship, beginning from the date of substantial completion of the installation.

C. Special Panel Finish Warranty: Submit Manufacturer’s limited warranty on the exterior paint finish for adhesion to the metal substrate and limited warranty on the exterior paint finish for

1. Fluoropolymer Two-Coat System:
 c. Failure of adhesion, peeling, checking, or cracking.

2. Modified Silicone-Polyester Two-Coat System:
 c. Failure of adhesion, peeling, checking, or cracking.

3. Other finish options available; additional information can be found at metlspan.com or contact Metl-Span at 972.221.6656.

PART 2 - PRODUCTS

2.01 MANUFACTURER

A. Basis of Design Manufacturer:

Metl-Span, a Division of NCI Group, Inc.; Lewisville, Texas Tel: 972.221.6656; Email: info@metlspan.com; Web: metlspan.com.

B. Provide basis of design product [, or comparable product approved by Architect prior to bid].

C. 1. Metlspan; CF Mesa
 2. Metlspan; CF Architectural Horizontal Wall Panel
 3. Metlspan; 7.2 Insul-Rib Wall Panel

2.02 PERFORMANCE REQUIREMENTS

A. General: Provide metal panel system meeting performance requirements as determined by application of specified tests by a qualified testing facility on manufacturer’s standard assemblies.
B. Structural Performance: Provide metal panel assemblies capable of withstanding the effects of indicated loads and stresses within limits and under conditions indicated, as determined by ASTM E 72 or ASTM E 1592 applied in accordance with ICC AC 04, Section 4, Panel

1. Wind Loads: Determine loads based on applicable building code, wind speed, importance factor, exposure category, and internal pressure coefficient indicated on drawings.
 a. Wind Negative Pressure: Certify capacity of metal panels by testing of proposed assembly.

2. Deflection Limits: Withstand inward and outward wind-load design pressures in accordance with applicable building code with maximum deflection of $\frac{1}{120}$ $\frac{1}{180}$ $\frac{1}{240}$ of the span with no evidence of failure.

C. Fire Performance Characteristics: Provide metal panel systems with the following fire-test characteristics determined by indicated test standard as applied by testing and inspection agency acceptable to authorities having jurisdiction.

1. Surface-Burning Characteristics: The insulating core shall have been tested per ASTM E 84. The core shall have:
 a. Flame spread index: 25 or less.
 b. Smoke developed index: 450 or less.

2. Room Test Performance: FM Global 4880: The panel assembly shall not support a self-propagating fire which reaches any limits of the 50’ high corner test structure as evidenced by flaming or material damage of the ceiling of the assembly.

3. Fire Propagation: The fire assembly shall meet the requirements of the standard for NFPA 285

4. Fire Propagation: The fire assembly shall meet the requirements of the standard for NFPA 286

5. Potential Heat: Determined in accordance with NFPA 259

6. IBC Chapter 26: Panel Performance under the above test methods, shall meet the requirements of IBC, Chapter on foam plastics.

D. Air Infiltration, ASTM E 283:

1. Maximum 0.0002 cfm/sq. ft. at static air pressure difference of 1.57 lb/f sq. ft.

E. Water Penetration Static Pressure:

1. ASTM E 331: No uncontrolled water penetration at a static pressure of 20 lb/sq. ft.

F. Thermal Movements: Allow for thermal movements from variations in both ambient and internal temperatures. Accommodate movement of support structure caused by thermal expansion and contraction. Allow for deflection and design for thermal stresses caused by temperature differences from one side of the panel to the other.

G. Thermal Performance: When tested in accordance with ASTM C 518, Measurement of Steady State thermal Transmission, the panels shall provide a k factor of 0.14 btu/sf/hr/deg F at a 75° F mean temperature, as required by code, or 0.126 btu/sf/hr/deg F at a 40° F mean temperature.

2.03 INSULATED METAL WALL PANELS

A. Concealed Fastener, Insulated Metal Wall Panels with foam core: Structural metal panels consisting of exterior metal sheet with five major tapered inverted ribs 1 by 1/4 inches with a mesa profile between the inverted ribs, and interior metal sheet with a Mesa or Light Mesa profile, with factory foamed-in-place polyurethane core in thermally-separated profile, with tongue-and-groove panel edges, attached to supports using concealed fasteners.
1. Basis of Design: Metl-Span, CF Mesa; Metl-Span, CF Architectural Horizontal Wall Panel, 7.2 Insul-Rib Wall Panel.

2. G-90 galvanized coated steel conforming to ASTM A 653 and/or AZ50 aluminum-zinc alloy coated steel, conforming to ASTM A 792/A 792M, minimum grade 33, pre painted by the coil-coating process per ASTM A 755/A 755M.
 a. Exterior Face Sheet: 22gauge thickness; Mesa and 7.2 Insul-Rib panels with embossed face; Horizontal Wall Panels with unembossed face.
 1) Color: As indicated on the Drawings.
 b. Interior Face Sheet: 24gauge thickness, with stucco embossed surface and Mesa or Light Mesa profile.

3. Panel Width: As indicated on the Drawings
4. Panel Thickness: As indicated on the Drawings
5. Insulating Core: Polyurethane with zero ozone depletion potential blowing agent
 a. Closed Cell Content: 90% or more as determined by ASTM D 6226
 b. Compressive Strength: As required to meet structural performance requirements and with a minimum of 22 psi as determined by ASTM D 1621
 c. Shear Strength: As required to meet structural performance requirements and with a minimum of 36 psi as determined by ASTM C 273
 d. Tensile Strength: As required to meet structural performance requirements and with a minimum of 41 psi ASTM D 1623
 e. Minimum Density: 2.0 pcf as determined by ASTM D 1622
 f. Thermal Resistance R-Value: [insert corresponding value] deg. F * hr * sq. ft./Btu per ASTM C 518 at 75 degrees Fahrenheit mean temperature.

6. Heat Transfer Coefficient: As indicated on the Drawings. Tested specimen must include at least two engaged side joints.

2.04 METAL WALL PANEL ACCESSORIES

 A. General: Provide complete metal panel assemblies incorporating trim, copings, fasciae, gutters and downspouts, and miscellaneous flashings. Provide required fasteners, closure strips, and sealants as indicated in manufacturer's written instructions.

 B. Flashing and Trim: Match material, thickness, and finish of metal panels.

 C. Panel Clips: ASTM A 653/A 653M, G90 (Z180) hot-dip galvanized zinc coating, one-piece, configured for concealment in panel joints, and identical to clips utilized in tests demonstrating compliance with performance requirements.

 D. Panel Fasteners: Self-drilling or Self-tapping screws and other acceptable fasteners recommended by metal panel manufacturer. Where exposed fasteners cannot be avoided, supply corrosion-resistant fasteners with heads matching color of metal panels by means of factory-applied coating, with weather tight resilient washers.

 E. Joint Sealers:
 1. Sealants: Provide Tape Mastic Sealants, Non-skinning sealants, and Urethane Sealants in accordance with manufacturers standards. Sealants to have UV degradation characteristics appropriate for a permanently exposed application.
2.05 FABRICATION

A. General: Provide factory fabricated and finished metal panels, trim, and accessories meeting performance requirements, indicated profiles, and structural requirements.

B. Fabricate metal panel joints configured to accept sealant providing weathertight seal.

C. Sheet Metal Flashing and Trim: Fabricate flashing and trim to comply with manufacturer’s written instructions, approved shop drawings, and project drawings.

2.06 FINISHES

A. Finishes, General: Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturer’s written instructions.

B. Exterior Face Sheet Coil-Coated Finish System

1. Fluoropolymer Two-Coat System: 0.2 – 0.3 mil primer with 0.7 - 0.8 mil 70 percent PVDF fluoropolymer color coat, AAMA 621, [meeting solar reflectance index requirements].

C. Interior Face Sheet Coil-Coated Finish System

1. Polyester Two-Coat System: 0.20 – 0.25 mil primer with 0.7 – 0.8 mil color coat

 a. Basis of Design: Metl-Span, Igloo White

 b. Basis of Design: Metl-Span, Silicone Polyester

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine metal panel system substrate with Installer present. Inspect for erection tolerances and other conditions that would adversely affect installation of metal panels.

 1. Inspect framing that will support insulated metal panels to determine if support components are installed as indicated on approved shop drawings and are within tolerances acceptable to metal panel manufacturer and installer. Confirm presence of acceptable framing members at recommended spacing to match installation requirements of metal panels.

 2. Panel Support Tolerances: As required by the manufacturer.

B. Correct out-of-tolerance work and other deficient conditions prior to proceeding with insulated metal panel installation.

3.02 METAL PANEL INSTALLATION

A. Concealed-Fastener Insulated Metal Panels with foam core: Install metal panel system in accordance with manufacturer’s written instructions, approved shop drawings, and project drawings. Install metal panels in orientation, sizes, and locations indicated. Anchor panels and other components securely in place. Provide for thermal and structural movement.

B. Attach panels to metal framing using screws, fasteners, sealants, and adhesives recommended for application by metal panel manufacturer.

 1. Fasten metal panels to supports with fasteners at each location indicated on approved shop drawings, at spacing and with fasteners recommended by manufacturer.

 2. Cut panels in field where required using manufacturer's recommended methods.

 3. Provide weatherproof jacks for pipe and conduit penetrating metal panels.
4. Dissimilar Materials: Where elements of metal panel system will come into contact with dissimilar materials, treat faces and edges in contact with dissimilar materials as recommended by metal panel manufacturer.

C. Attach panel flashing trim pieces to supports using recommended fasteners and joint sealers.

D. Joint Sealers: Install sealants where indicated and where required for weatherproof performance of metal panel assemblies.
 1. Seal panel base assembly, openings, panel head joints, and perimeter joints using sealants indicated in manufacturer’s instructions.
 2. Seal wall panel joints; apply continuously without gaps in accordance with manufacturer’s written instructions, approved shop drawings, and project drawings.
 3. Prepare joints and apply sealants per requirements of Division 07 Section.

3.03 ACCESSORY INSTALLATION
A. General: Install metal panel accessories with positive anchorage to building and weather tight mounting; provide for thermal expansion. Coordinate installation with flashings and other components.
 1. Install components required for a complete metal panel assembly, including trim, copings, flashings, sealants, closure strips, and similar items.
 2. Comply with details of assemblies utilized to establish compliance with performance requirements and manufacturer’s written installation instructions.
 3. Set units true to line and level as indicated. Install work with laps, joints, and seams that will be permanently weather resistant.

3.04 FIELD QUALITY CONTROL
A. Testing Agency: Owner will engage an independent testing and inspecting agency acceptable to Architect to perform field tests and inspections and to prepare test reports.
B. Water-Spray Test: After completing portion of metal panel assembly including accessories and trim, test 2-bay area selected by Architect for water penetration, according to AAMA 501.2.

3.05 CLEANING AND PROTECTION
A. Remove temporary protective films immediately in accordance with metal panel manufacturer’s instructions. Clean finished surfaces as recommended by metal panel manufacturer.
B. Replace damaged panels and accessories that cannot be repaired to the satisfaction of the Architect.

END OF SECTION
SECTION 07 54 23
THERMOPLASTIC POLYOLEFIN (TPO) MEMBRANE ROOFING

PART 1 GENERAL

1.01 SECTION INCLUDES
A. Adhered system with thermoplastic polyolefin (TPO) roofing membrane.
B. Insulation, flat and tapered.
C. Vapor retarder.
D. Deck sheathing.
E. Flashings.
F. Roofing cant strips, stack boots, roofing expansion joints and walkway pads.

1.02 RELATED REQUIREMENTS
A. Section 07 62 00 - Sheet Metal Flashing and Trim: Counterflashings, reglets and ________.
B. Section 07 71 00 - Roof Specialties: Prefabricated roofing expansion joint flashing.
C. Section 07 72 00 - Roof Accessories: Roof-mounted units; prefabricated curbs.

1.03 REFERENCE STANDARDS
G. FM DS 1-29 - Roof Deck Securement and Above-Deck Roof Components; Factory Mutual System 2016.

1.04 ADMINISTRATIVE REQUIREMENTS
A. Preinstallation Meeting: Convene one week before starting work of this section.
 1. Review preparation and installation procedures and coordinating and scheduling required with related work.

1.05 SUBMITTALS
A. Product Data: Provide manufacturer's written information listed below.
1. Product data indicating membrane materials, flashing materials, insulation, vapor retarder, surfacing and fasteners.
2. Preparation instructions and recommendations.
3. Storage and handling requirements.

B. Shop Drawings: Indicate joint or termination detail conditions, conditions of interface with other materials and paver layout.

C. Samples for Selection: Submit two samples by 12 inches in size illustrating insulation and colored coating.

D. Manufacturer's Certificate: Certify that products meet or exceed specified requirements.

E. Manufacturer's Field Reports: Indicate procedures followed, ambient temperatures, humidity, wind velocity during application and supplementary instructions given.

F. Manufacturer's Installation Instructions: Indicate membrane seaming precautions and perimeter conditions requiring special attention.

G. Warranty:
 1. Submit manufacturer warranty and ensure that forms have been completed in Owner's name and registered with manufacturer.
 2. Submit installer's certification that installation complies with all warranty conditions for the waterproof membrane.

H. Manufacturer's Qualification Statement.

I. Installer's Qualification Statement.

1.06 QUALITY ASSURANCE

A. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum twenty (20) years of documented experience.

B. Installer Qualifications: Company specializing in performing the work of this section:
 1. With minimum five (5) years documented experience.
 2. Approved by membrane manufacturer.

1.07 DELIVERY, STORAGE, AND HANDLING

A. Deliver products in manufacturer's original containers, dry, undamaged, with seals and labels intact.

B. Protect products in weather protected environment, clear of ground and moisture.

C. Protect foam insulation from direct exposure to sunlight.

D. Provide Safety Data Sheets (SDS) at the project site at all times during transportation, storage, and installation of materials.

E. Comply with requirements from Owner to prevent overloading or disturbance of the structure when loading materials onto the roof.

1.08 FIELD CONDITIONS

A. Do not apply roofing membrane during unsuitable weather. Refer to manufacturer's written instructions.

B. Do not apply roofing membrane when ambient temperature is below 40 degrees F or above [_____] degrees F.
C. Do not apply roofing membrane to damp or frozen deck surface or when precipitation is expected or occurring.

D. Do not expose materials vulnerable to water or sun damage in quantities greater than can be weatherproofed the same day.

E. Proceed with work so new roofing materials are not subject to construction traffic as work progresses.

F. Do not allow grease, oil, fats, or other contaminants to come into direct contact with membrane.

1.09 WARRANTY

A. See Section 01 77 00- Closeout Procedures for additional warranty requirements.

B. Material Warranty: Provide membrane manufacturer's warranty agreeing to replace material that shows manufacturing defects within 10 years after installation.

C. System Warranty: Provide manufacturer's system warranty agreeing to repair or replace roofing that leaks or is damaged due to wind or other natural causes.
 1. Warranty Term: 20 years.
 2. For repair and replacement include costs of both material and labor in warranty.
 3. Include accidental punctures according to the manufacturer's standard warranty terms.
 4. Include hail damage according to the manufacturer's standard warranty terms.

PART 2 PRODUCTS

2.01 ROOFING APPLICATIONS

A. TPO Membrane Roofing: One ply membrane, asphalt adhered, over insulation.

B. Roofing Assembly Performance Requirements and Design Criteria:
 1. Solar Reflectance Index (SRI): Minimum of 64 based on three-year aged value; if three-year aged data is not available, minimum of 82 initial value.
 b. Field applied coating may not be used to achieve specified SRI.
 2. Roof-Ceiling Fire Resistance Rating: Conform to UL Assembly Design No. [____].
 3. Roof Covering External Fire Resistance Classification: Class A when tested per UL 790.
 4. Wind Uplift:
 a. Designed to withstand wind uplift forces calculated with ASCE 7.
 5. Insulation Thermal Resistance (R-Value): Provide R-Value over entire roof deck in accordance with local building code requirements.
 6. Drainage: No standing water within 48 hours after precipitation.

2.02 ROOFING MEMBRANE AND ASSOCIATED MATERIALS

A. Single Source Responsibility: Provide and install products from single source.

B. Base Sheet: Manufacturer's standard, non-asphaltic, resin-bound, fiberglass-reinforced mat with mineral-filled fire-resistant coating.

C. Membrane:
 1. Material: Thermoplastic Polyolefin (TPO) complying with ASTM D6878/D6878M.
3. Thickness: 45 mils (0.045 inch), minimum.
4. Sheet Width: Factory fabricated into largest sheets possible.
6. Product:
 D. Seaming Materials: As recommended by membrane manufacturer.
 E. Flexible Flashing Material: Same material as membrane.
 F. Base Flashing: Provide waterproof, fully adhered base flashing system at all penetrations, plane transitions, and terminations.

2.03 DECK SHEATHING AND COVER BOARDS
A. Coverboard: Cement roof board, complying with ASTM C1325.

2.04 INSULATION
A. Polyisocyanurate (ISO) Board Insulation: ASTM C1289, Type II, Class 1 - Faced with glass fiber reinforced cellulosic felt facers on both major surfaces of the core foam.
 1. Grade and Compressive Strength: Grade 2, 20 psi, minimum.
 2. Product:
B. Composite Polyisocyanurate (ISO) Board Insulation: ASTM C1289, Type II, Class 2 - Faced with coated polymer-bonded glass fiber mat facers on both major surfaces of the core foam, and laminated to GP Dens-Deck or GP Dens-Deck Prime gypsum board.
 1. Grade and Compressive Strength: Grade 2, 20 psi, minimum.
 2. Product: Carlisle HP-DD.

2.05 ACCESSORIES
A. Prefabricated Flashing Accessories:
 1. Corners and Seams: Same material as membrane, in manufacturer's standard thicknesses.
 2. Penetrations: Same material as membrane, with manufacturer's standard cut-outs, rigid inserts, clamping rings, and flanges.
 3. Sealant Pockets: Same material as membrane, with manufacturer's standard accessories, in manufacturer's standard configuration.
 4. Pressure Sensitive Cover Strips: 6 inch wide, 45 mils (0.045 inch) thick, non-reinforced TPO membrane laminated to 35 mils (0.035 inch) thick cured synthetic rubber with pressure sensitive adhesive.
 5. TPO Pressure Sensitive RUSS:
 6. Walkway Rolls: Sure-Flex Heat Weldable Walkway Rolls; 80 mils (0.080 inch) thick; gray membrane.
 7. Miscellaneous Flashing: Non-reinforced TPO membrane; 80 mils (0.080 inch) thick, in manufacturer's standard lengths and widths.
B. Insulation Fasteners: Appropriate for purpose intended and approved by roofing manufacturer.
C. Membrane Adhesive: As recommended by membrane manufacturer.
D. Surface Conditioner for Adhesives: Compatible with membrane and adhesives.
E. Sealants: As recommended by membrane manufacturer.
F. Cleaner: Manufacturer's standard, clear, solvent-based cleaner.
G. Edgings and Terminations: Manufacturer's standard edge and termination accessories.
 1. Snap-On Edge System:
 2. Anchor Bar Fascia System:
 3. Drip Edge: Carlisle Sure-Seal Drip Edge.
 4. Coping:
 5. TPO Coated Sheet Metal.
 6. Termination Bar.

PART 3 EXECUTION

3.01 EXAMINATION
A. Verify that surfaces and site conditions are ready to receive work.
B. Verify deck is supported and secure.
C. Verify deck is clean and smooth, flat, free of depressions, waves, or projections, properly sloped and suitable for installation of roof system.
D. Verify deck surfaces are dry and free of snow or ice.
E. Verify that roof openings, curbs, and penetrations through roof are solidly set, and cant strips are in place.

3.02 INSTALLATION - GENERAL
A. Perform work in accordance with manufacturer's instructions and NRCA (RM) applicable requirements.
B. Do not apply roofing membrane during unsuitable weather.
C. Do not apply roofing membrane when ambient temperature is outside the temperature range recommended by manufacturer.
D. Do not apply roofing membrane to damp or frozen deck surface or when precipitation is expected or occurring.
E. Do not expose materials vulnerable to water or sun damage in quantities greater than can be weatherproofed the same day.
F. Coordinate the work with installation of associated counterflashings installed by other sections as the work of this section proceeds.
G. When substrate preparation is responsibility of another installer, notify Architect of unsatisfactory conditions before proceeding.

3.03 INSULATION APPLICATION
A. Attachment of Insulation:
 1. Mechanically fasten insulation to deck in accordance with roofing manufacturer's instructions and Factory Mutual requirements.
B. Lay subsequent layers of insulation with joints staggered minimum 6 inch from joints of preceding layer.
C. Lay boards with edges in moderate contact without forcing, and gap between boards no greater than 1/4 inch. Cut insulation to fit neatly to perimeter blocking and around penetrations through roof.
3.04 MEMBRANE APPLICATION

A. Roll out membrane, free from wrinkles or tears. Place sheet into place without stretching.

B. Shingle joints on sloped substrate in direction of drainage.

C. Asphalt Adhered Application: Apply asphalt at manufacturer's recommended rate. Fully embed membrane in adhesive except in areas directly over or within 3 inches of expansion joints. Fully adhere one roll before proceeding to adjacent rolls.

D. Seam Welding:
 1. Seam Welding: Overlap edges and ends and seal seams by heat welding, minimum 2 inches.
 2. Cover seams with manufacturer's recommended joint covers.
 3. Probe seams once welds have thoroughly cooled. (Approximately 30 minutes.)
 4. Repair deficient seams within the same day.
 5. Seal cut edges of reinforced membrane after seam probe is complete.

E. At intersections with vertical surfaces:
 1. Extend membrane over cant strips and up a minimum of 4 inches onto vertical surfaces.
 2. Fully adhere flexible flashing over membrane and up to nailing strips.

F. Coordinate installation of roof drains and sumps and related flashings. Locate all field splices away from low areas and roof drains. Lap upslope sheet over downslope sheet.

G. Daily Seal: Install daily seal per manufacturers instructions at the end of each work day. Prevent infiltration of water at incomplete flashings, terminations, and at unfinished membrane edges.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES
A. Fabricated sheet metal items
B. Sealants for joints within sheet metal fabrications.
C. Precast concrete splash pads.
D. Gutters and Downspouts

1.02 REFERENCE STANDARDS

1.03 SUBMITTALS
A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
B. Samples: Color sample literature from manufacturers full range.

1.04 QUALITY ASSURANCE
A. Perform work in accordance with SMACNA (ASMM) and CDA A4050 requirements and standard details, except as otherwise indicated.

PART 2 PRODUCTS

2.01 SHEET MATERIALS
A. Aluminum: ASTM B209 (ASTM B209M); 20 gage, (0.032 inch) thick; anodized finish of color as selected.
B. Pre-Finished Aluminum: ASTM B209 (ASTM B209M); 20 gage, (0.032 inch) thick; plain finish shop pre-coated with modified silicone coating.
2. Fluoropolymer Coating: High Performance Organic Finish, AAMA 2604; multiple coat, thermally cured fluoropolymer finish system.

3. Color: As selected by Architect from manufacturer's standard colors.

2.02 FABRICATION

A. Form sections true to shape, accurate in size, square, and free from distortion or defects.
B. Form pieces in longest possible lengths.
C. Hem exposed edges on underside 1/2 inch; miter and seam corners.
D. Form material with flat lock seams, except where otherwise indicated; at moving joints, use sealed lapped, bayonet-type or interlocking hooked seams.
E. Fabricate corners from one piece with minimum 18 inch long legs; seam for rigidity, seal with sealant.

2.03 GUTTER AND DOWNSPOUT FABRICATION

A. Gutters: SMACNA (ASMM) Rectangular profile.
B. Downspouts: Rectangular profile.
C. Gutters and Downspouts: Size for rainfall intensity determined by a storm occurrence of 1 in 10 years in accordance with SMACNA (ASMM).
D. Accessories: Profiled to suit gutters and downspouts.
 1. Anchorage Devices: In accordance with SMACNA (ASMM) requirements.
 2. Gutter Supports: Brackets.
 3. Downspout Supports: Brackets.
E. Splash Pads: Precast concrete type, of size and profiles indicated; minimum 3000 psi at 28 days, with minimum 5 percent air entrainment.
F. Downspout Boots: Steel.
G. Downspout Extenders: Same material and finish as downspouts.
H. Seal metal joints.

2.04 ACCESSORIES

A. Fasteners: Galvanized steel, with soft neoprene washers.
B. Primer: Zinc chromate type.
C. Concealed Sealants: Non-curing butyl sealant.
D. Exposed Sealants: ASTM C920; elastomeric sealant, with minimum movement capability as recommended by manufacturer for substrates to be sealed; color to match adjacent material.
E. Plastic Cement: ASTM D4586/D4586M, Type I.
F. Solder: ASTM B32; Sn50 (50/50) type.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify roof openings, curbs, pipes, sleeves, ducts, and vents through roof are solidly set, reglets in place, and nailing strips located.
B. Verify roofing termination and base flashings are in place, sealed, and secure.

3.02 PREPARATION
A. Install starter and edge strips, and cleats before starting installation.
B. Back paint concealed metal surfaces with protective backing paint to a minimum dry film thickness of 15 mil.

3.03 INSTALLATION
A. Secure flashings in place using concealed fasteners, and use exposed fasteners only where permitted.
B. Apply plastic cement compound between metal flashings and felt flashings.
C. Fit flashings tight in place; make corners square, surfaces true and straight in planes, and lines accurate to profiles.
D. Seal metal joints watertight.
E. Secure gutters and downspouts in place with concealed fasteners.
F. Slope gutters 1/4 inch per 10 feet, minimum.
G. Connect downspouts to downspout boots, and grout connection watertight.
H. Set splash pads under downspouts.

END OF SECTION
SECTION 07 71 00
ROOF SPECIALTIES

PART 1 GENERAL

1.01 RELATED REQUIREMENTS
A. Section 07 72 00 - Roof Accessories: Manufactured curbs, roof hatches, and snow guards.

1.02 REFERENCE STANDARDS

1.03 SUBMITTALS
A. Product Data: Provide data on shape of components, materials and finishes, anchor types and locations.
B. Shop Drawings: Indicate configuration and dimension of components, adjacent construction, required clearances and tolerances, and other affected work.
C. Manufacturer's Installation Instructions: Indicate special procedures, fasteners, supporting members, and perimeter conditions requiring special attention.

PART 2 PRODUCTS

2.01 COMPONENTS
A. Roof Edge Flashings: Factory fabricated to sizes required; mitered, welded corners; concealed fasteners.
 2. Pull-Off Resistance: Tested in accordance with ANSI/SPRI/FM 4435/ES-1 using test methods RE-1 and RE-2 to positive and negative design wind pressure as defined by applicable local building code.
 3. Material: Formed aluminum sheet, 0.050 inch thick, minimum.
 5. Color: To be selected by Architect from manufacturer's standard range.
B. Copings: Factory fabricated to sizes required; mitered, welded corners; concealed fasteners.
 1. Configuration: Concealed continuous hold down cleat at both legs; internal splice piece at joints of same material, thickness and finish as cap; concealed stainless steel fasteners.
 2. Pull-Off Resistance: Tested in accordance with ANSI/SPRI/FM 4435/ES-1 using test method RE-3 to positive and negative design wind pressure as defined by applicable local building code.
 3. Material: Formed aluminum sheet, 0.050 inch thick, minimum.
5. Color: To be selected by Architect from manufacturer's standard range.

C. Control and Expansion Joint Covers: Composite construction of flexible TPO flashing of white color with closed cell urethane foam backing, each edge seamed to aluminum sheet metal flanges, designed for nominal joint width of 1 inch. Include special formed corners, tees, intersections, and wall flashings, each sealed watertight.

D. Pipe and Penetration Flashing: Base of thermoplastic, compatible with Roof Membrane roof systems, and capable of accommodating pipes sized between 3/8 inch and 12 inch.

E. Engineered Roof Perimeter Blocking: Prefabricated 20 gage, 0.036 inch galvanized steel retainer for lightweight concrete; with cleat to accept copings; attach to roof deck in lieu of wood blocking at roof edge; for low slope roof installations.

F. Pipe Penetration Wall Seal: Seal for HVAC piping wall penetrations with wall mounted rigid plastic outlet cover and elastomeric wall seal gasket.
1. Outlet Cover Color: match adjacent siding.
2. Wall Outlet Water Penetration: Complies with ASTM E331 performance tests.
3. Wall Outlet Air Permeance: Complies with ASTM E2178 performance tests.
4. Manufacturers:

G. Pipe Penetration Wall Seal and Insulated Piping Protection System: Seal for HVAC piping wall penetrations with wall mounted rigid plastic outlet cover and elastomeric wall seal gasket and having mechanical line insulation with PVC protective cover.
1. PVC Insulation Cover Color: Black with full-length velcro fastener.

2.02 FINISHES

A. Fluoropolymer Coating: High Performance Organic Finish, AAMA 2604; multiple coat, thermally cured fluoropolymer finish system; color as indicated.

2.03 ACCESSORIES

A. Sealant for Joints in Linear Components: As recommended by component manufacturer.

B. Adhesive for Anchoring to Roof Membrane: Compatible with roof membrane and approved by roof membrane manufacturer.

C. Insulation Board Adhesive: Two-component, low-rise polyurethane foam adhesive used for adhering insulation to low slope roof deck materials.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that deck, curbs, roof membrane, base flashing, and other items affecting work of this Section are in place and positioned correctly.

3.02 INSTALLATION

A. Install components in accordance with manufacturer's instructions and NRCA (RM) applicable requirements.

B. Seal joints within components when required by component manufacturer.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES
 A. Curbs.
 B. Roof walkways and platforms.
 C. Non-penetrating pedestals.

1.02 RELATED REQUIREMENTS
 A. Section 07 71 00 - Roof Specialties: Other manufactured roof items.

1.03 REFERENCE STANDARDS

1.04 SUBMITTALS
 A. Product Data: Manufacturer's data sheets on each product to be used.
 1. Preparation instructions and recommendations.
 2. Storage and handling requirements and recommendations.
 3. Installation methods.
 4. Maintenance requirements.
 B. Warranty Documentation:
 1. Submit manufacturer warranty.
 2. Ensure that forms have been completed in Owner's name and registered with manufacturer.

1.05 WARRANTY
 A. See Section 01 78 00 - Closeout Submittals, for additional warranty requirements.
 B. Correct defective Work within a five year period after Date of Substantial Completion.

PART 2 PRODUCTS

2.01 ROOF CURBS
 A. Roof Curbs Mounting Assemblies: Factory fabricated hollow sheet metal construction, to match roof slope, internally reinforced, and capable of supporting superimposed live and dead loads and designated equipment load with fully mitered and sealed corner joints welded or mechanically fastened, and integral counterflashing with top and edges formed to shed water.
 1. Applications: Roof curbs used for roof penetrations/openings as indicated on drawings.
2. Roof Curb Mounting Substrate: Curb substrate consists of corrugated metal roof deck with insulation.

3. Sheet Metal Material:
 a. Aluminum: 0.080 inch minimum thickness, with 3003 alloy, and H14 temper.
 b. Galvanized Steel: Hot-dip zinc coated steel sheet complying with ASTM A653/A653M, SS Grade 33; G60 coating designation; 18 gage, 0.048 inch thick.

4. Fabricate each curb bottom and mounting flanges for installation directly on metal roof panel system to match slope and configuration of system.
 a. Extend side flange to next adjacent roof panel seam and comply with seam configurations and seal connection.

5. Provide layouts and configurations indicated on drawings.

2.02 ROOF HATCHES AND VENTS

A. Roof Hatches and Smoke Vents: Factory-assembled aluminum frame and cover, complete with operating and release hardware.
 1. Style: Provide flat metal covers unless otherwise indicated.
 2. Mounting Substrate: Provide frames and curbs suitable for mounting on corrugated metal roof deck with insulation.
 3. Thermally Broken Hatches: Added insulation to frame and cover; available in each manufacturer's standard, single leaf sizes; special sizes available upon request
 4. Size: As indicated on drawings; single-leaf style unless indicated as double-leaf.

B. Frames and Curbs: One-piece curb and frame with integral cap flashing to receive roof flashings; extended bottom flange to suit mounting.
 1. Material: Mill finished aluminum, 11 gage, 0.0907 inch thick.
 2. Insulation: Manufacturer's standard; 1 inch rigid glass fiber, located on outside face of curb.
 3. Curb Height: 12 inches from surface of roof deck, minimum.

C. Metal Covers: Flush, insulated, hollow metal construction.
 1. Capable of supporting 40 psf live load.
 2. Material: Mill finished aluminum; outer cover 11 gage, 0.0907 inch thick, liner 0.04 inch thick.
 3. Insulation: Manufacturer's standard 1 inch rigid glass fiber.

D. Hardware: Steel, zinc coated and chromate sealed, unless otherwise indicated or required by manufacturer.
 1. Lifting Mechanisms: Compression or torsion spring operator with shock absorbers that automatically opens upon release of latch; capable of lifting covers despite 10 psf load.
 2. Hinges: Heavy duty pintle type.
 3. Hold open arm with vinyl-coated handle for manual release.
2.03 **NON-PENETRATING ROOFTOP SUPPORTS/ASSEMBLIES**

A. Non-Penetrating Rooftop Support/Assemblies: Manufacturer-engineered and factory-fabricated, with pedestal bases that rest on top of roofing membrane, and not requiring any attachment to roof structure and not penetrating roofing assembly.

1. Design Loadings and Configurations: As required by applicable codes.
2. Height: Provide minimum clearance of 6 inches under supported items to top of roofing.
3. Support Spacing and Base Sizes: As required to distribute load sufficiently to prevent indentation of roofing assembly.
4. Steel Components: Stainless steel, or carbon steel hot-dip galvanized after fabrication in accordance with ASTM A123/A123M.
5. Hardware, Bolts, Nuts, and Washers: Stainless steel, or carbon steel hot-dip galvanized after fabrication in accordance with ASTM A153/A153M.

B. Roof Walkways and Platforms: Non-penetrating, mechanically attached walkway system installed over TPO membrane.

1. Dimensions: As indicated on drawings.
2. Grating Length: Manufacturer's standard length.
3. Walking Surfaces: 18 gage, 0.0478 inch hot dip galvanized steel grating at G90 in accordance with ASTM A653/A653M, either formed plank grating or welded bar grating, with anti-skid surface and handrails at locations indicated on drawings.
4. Provide support plate assemblies and attachment hardware in compliance with manufacturer's written instructions in accordance with installation requirements.

C. Pipe Supports: Provide attachment fixtures complying with MSS SP-58 and as indicated.

D. Non-Penetrating Pedestals: Steel pedestals with square, round, or rectangular bases.

2. Base Sizes: As required to distribute load sufficiently to prevent indentation of roofing assembly.
3. Steel Components: Stainless steel, or carbon steel hot-dip galvanized after fabrication in accordance with ASTM A123/A123M.

PART 3 EXECUTION

3.01 **INSTALLATION**

A. Install in accordance with manufacturer's instructions, in manner that maintains roofing system weather-tight integrity.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES

A. Fireproofing of interior structural steel not exposed to damage or moisture.
B. Fireproofing of structural steel exposed to damage or moisture.
C. Preparation of fireproofing for application of exposed finish specified elsewhere.

1.02 REFERENCE STANDARDS

1.03 SUBMITTALS

A. Product Data: Provide data indicating product characteristics.
B. Manufacturer's Certificate: Certify that applied fireproofing products meet or exceed requirements of Contract Documents.
C. Test Reports: Reports from reputable independent testing agencies for proposed products, indicating compliance with specified criteria, conducted under conditions similar to those on project, as follows:
 1. Bond strength.
 2. Bond impact.
 3. Compressive strength.
 4. Fire tests using substrate materials similar those on project.
D. Field Quality Control Submittals: Submit field test report.
E. Manufacturer's Qualification Statement.
F. Installer's Qualification Statement.

1.04 FIELD CONDITIONS

A. Do not apply fireproofing when temperature of substrate material and surrounding air is below 40 degrees F or when temperature is predicted to be below said temperature for 24 hours after application.
B. Provide ventilation in areas to receive fireproofing during application and 24 hours afterward, to dry applied material.
C. Provide temporary enclosure to prevent spray from contaminating air.

1.05 WARRANTY
A. See Section 01 78 00 - Closeout Submittals, for additional warranty requirements.

B. Correct defective Work within a two year period after Date of Substantial Completion.
 1. Include coverage for fireproofing to remain free from cracking, checking, dusting, flaking, spalling, separation, and blistering.
 2. Reinstall or repair failures that occur within warranty period.

PART 2 PRODUCTS

2.01 FIREPROOFING ASSEMBLIES
A. Provide assemblies as indicated on drawings.
B. Provide fire resistance ratings for following building elements as required by local building code:
 1. Primary structural frame, including columns, girders, and trusses, hours.
 2. Floor construction, including supporting beams and joists, hours.

2.02 MATERIALS
A. Applied Fireproofing Material Exposed to Damage or Moisture: Manufacturer's standard factory mixed material, which when combined with water is capable of providing indicated fire resistance, and complying with following requirements:
 1. Recommended by manufacturer for permanent exterior exposure.
 3. Bond Strength: 1,000 psf, minimum, when tested in accordance with ASTM E736 when set and dry.
 4. Dry Density: As required by fire resistance design.
 5. Compressive Strength: 100 psi, minimum.
 6. Effect of Impact on Bonding: No cracking, spalling or delamination, when tested in accordance with ASTM E760.
 7. Corrosivity: No evidence of corrosion, when tested in accordance with ASTM E937.
 8. Air Erosion Resistance: Weight loss of 0.025 g/sq ft, maximum, when tested in accordance with ASTM E859 after 24 hours.
 9. Surface Burning Characteristics: Maximum flame spread index of 0 (zero) and maximum smoke developed index of 0 (zero), when tested in accordance with ASTM E84.

2.03 ACCESSORIES
A. Primer Adhesive: Of type recommended by applied fireproofing manufacturer.
B. Overcoat: As recommended by manufacturer of applied fireproofing material.
C. Metal Lath: Expanded metal lath; minimum weight of 1.7 psf, galvanized finish.
D. Water: Clean, potable.

PART 3 EXECUTION

3.01 EXAMINATION
A. Verify that surfaces are ready to receive fireproofing.
B. Verify that clips, hangers, supports, sleeves, and other items required to penetrate fireproofing are in place.
C. Verify that ducts, piping, equipment, or other items that would interfere with application of fireproofing have not been installed.

D. Verify that voids and cracks in substrate have been filled.

E. Verify that projections have been removed where fireproofing will be exposed to view as a finish material.

3.02 APPLICATION

A. Install metal lath over structural members as indicated or as required by UL Assembly Design Numbers.

B. Apply primer adhesive in accordance with manufacturer's instructions.

C. Apply fireproofing in uniform thickness and density as necessary to achieve required ratings.

END OF SECTION
SECTION 07 84 00
FIRESTOPPING

PART 1 GENERAL

1.01 REFERENCE STANDARDS

1.02 SUBMITTALS
A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
B. Product Data: Provide data on product characteristics, performance ratings and limitations.

1.03 QUALITY ASSURANCE
A. Fire Testing: Provide firestopping assemblies of designs that provide the scheduled fire ratings when tested in accordance with methods indicated.

1.04 FIELD CONDITIONS
A. Comply with firestopping manufacturer’s recommendations for temperature and conditions during and after installation; maintain minimum temperature before, during, and for three days after installation of materials.

PART 2 PRODUCTS

2.01 MATERIALS
A. Primers, Sleeves, Forms, Insulation, Packing, Stuffing, and Accessories: Provide type of materials as required for tested firestopping assembly.

2.02 FIRESTOPPING SYSTEMS
A. Firestopping: Any material meeting requirements.
 1. Fire Ratings: Use system that is listed by FM (AG), ITS (DIR) or UL (FRD) and tested in accordance with ASTM E814, ASTM E119 or UL 1479 with F Rating equal to fire rating of penetrated assembly and minimum T Rating Equal to F Rating and in compliance with other specified requirements.
 2. Fire Ratings: See drawings for required systems and ratings.
B. Firestopping at Uninsulated Metallic Pipe and Conduit Penetrations, of diameter 4 inches or less: Caulk or putty.
C. Firestopping at Combustible Pipe and Conduit Penetrations, of diameter 4 inches or less: Any material meeting requirements.
D. Firestopping at Cable Tray Penetrations: Any material meeting requirements.
E. Firestopping at Cable Penetrations, not in Conduit or Cable Tray: Caulk or putty.
F. Firestopping at Control Joints (without Penetrations): Any material meeting requirements.

PART 3 EXECUTION
3.01 INSTALLATION

 A. Install materials in manner described in fire test report and in accordance with manufacturer's instructions, completely closing openings.

 B. Do not cover installed firestopping until inspected by authorities having jurisdiction.

 C. Install labeling required by code.

END OF SECTION
SECTION 07 91 00
PREFORMED JOINT SEALS

PART 1 GENERAL
1.01 SUBMITTALS
A. Product Data: Manufacturer's technical data sheets for each product, including chemical composition, movement capability, color availability, limitations on application, and installation instructions.
B. Color Cards: For color selection.
C. Manufacturer's Qualification Statement.
D. Installer's Qualification Statement.

PART 2 PRODUCTS
2.01 PRECOMPRESSED FOAM SEALS
A. Precompressed Foam Seal: Urethane foam impregnated with water-repellent, with self-adhesive faces protected prior to installation by release paper.
 1. Color: as selected by architect from manufacturers standard range.
 2. Size as required to provide weathertight seal when installed.
 3. Calculate size according to manufacturer's recommendations.
 4. Provide product recommended by manufacturer for traffic-bearing use.

2.02 COMPRESSION GASKETS

2.03 PREFORMED STRIP SEALS
A. Preformed Strip Seal: Factory formed profile for adhered application to face of joint substrate.
 1. Measure size of existing joints before selecting seal width.

2.04 ACCESSORIES
A. Adhesive: As recommended by seal manufacturer.
B. Masking Tape: Self-adhesive, nonabsorbent, non-staining, removable without adhesive residue, and compatible with surfaces adjacent to joints and strip seal.
C. Substrate Cleaner: Non-corrosive, non-staining type recommended by seal manufacturer; compatible with joint forming materials.
D. Primer: Type recommended by seal manufacturer to suit application; non-staining.
E. Backing Tape: Self-adhesive polyethylene tape with surface that seal will not adhere to.

PART 3 EXECUTION
3.01 INSTALLATION
A. Install in accordance with manufacturer's written instructions.
B. Precompressed Foam Seals:
 1. Install only when ambient temperature is within recommended application temperature range of adhesive. Consult manufacturer when installing outside this temperature range.
 2. Prepare joints and install seals in accordance with manufacturer's written recommendations.
 3. Remove loose materials and foreign matter that could impair adhesion of sealant.
4. Do not stretch precompressed seal; avoid joints except at corners, ends, and intersections; install with face 1/8 to 1/4 inch below adjoining surface.

C. Compression Gaskets:
 1. Install only when ambient temperature is within recommended application temperature range of adhesive. Consult manufacturer when installing outside this temperature range.
 2. Prepare joints and install seals in accordance with manufacturer's written recommendations.
 3. Remove loose materials and foreign matter that could impair adhesion of sealant.
 4. Avoid joints except at ends, corners, and intersections; seal joints with adhesive; install with face 1/8 to 1/4 inch below adjoining surface.

D. Preformed Strip Seals:
 1. Install when ambient temperature is within recommended application temperature range of adhesive, and consult with manufacturer before installing outside this temperature range.
 2. Prepare joints and install seals in accordance with manufacturer's written recommendations.
 3. Remove loose materials and foreign matter that could impair adhesion.
 4. When installing over existing non-functioning sealant, remove portions of existing installation that protrude beyond surface; install backing tape on surface of existing sealant installation to prevent adhesion of strip seal.

END OF SECTION
SECTION 07 95 13
EXPANSION JOINT COVER ASSEMBLIES

PART 1 GENERAL

1.01 REFERENCE STANDARDS

1.02 SUBMITTALS
 A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
 B. Product Data: Provide joint assembly profiles, profile dimensions, anchorage devices, available colors and finish and (_____).
 C. Samples: Submit two samples (____) inch long, illustrating profile, dimension, color, and finish selected.
 D. Manufacturer's Installation Instructions: Indicate rough-in sizes and required tolerances for item placement.

PART 2 PRODUCTS

2.01 EXPANSION JOINT COVER ASSEMBLIES
 A. Expansion Joint Cover Assemblies - General: Factory-fabricated and assembled; designed to completely fill joint openings, sealed to prevent passage of air, dust, water, smoke; suitable for traffic expected.
 1. Joint Dimensions and Configurations: As indicated on drawings.
 2. Joint Cover Sizes: Selected to suit joint width and configuration, based on manufacturer's published recommendations and limitations.
 3. Lengths: Provide covers in full lengths required; avoid splicing wherever possible.

2.02 MATERIALS
 A. Extruded Aluminum: ASTM B221 (ASTM B221M), 6063 alloy, T6 temper; or ASTM B308/B308M, 6061 alloy, T6 temper.
 1. Exposed Finish at Floors: Mill finish or natural anodized.
 2. Exposed Finish at Walls and Ceilings: Natural anodized.
 B. Resilient Seals:
 1. For Ceilings: Any resilient material, flush, pleated, or hollow gasket.
 C. Backing Paint for Aluminum Components in Contact with Cementitious Materials: Asphaltic type.

PART 3 EXECUTION

3.01 INSTALLATION
 A. Install components and accessories in accordance with manufacturer's instructions.
 B. Align work plumb and level, flush with adjacent surfaces.
C. Rigidly anchor to substrate to prevent misalignment.

END OF SECTION
SECTIO N 08 11 13
HOLLOW METAL DOORS AND FRAMES

PART 1 GENERAL

1.01 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SECTION INCLUDES:
 A. Interior standard steel doors and frames.
 B. Exterior standard steel doors and frames.
 1. Section 087100 "Door Hardware" for door hardware for hollow-metal doors.

1.03 DEFINITIONS
 A. Minimum Thickness: Minimum thickness of base metal without coatings according to
 NAAMM-HMMA 803 or SDI A250.8.

1.04 COORDINATION
 A. Coordinate anchorage installation for hollow-metal frames. Furnish setting drawings,
 templates, and directions for installing anchorages, including sleeves, concrete inserts,
 anchor bolts, and items with integral anchors. Deliver such items to Project site in time for
 installation.
 B. Coordinate requirements for installation of door hardware, electrified door hardware, and
 access control and security systems.

1.05 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 1. Include construction details, material descriptions, core descriptions, fire-resistance
 ratings, and finishes.
 B. Shop Drawings: Include the following:
 1. Elevations of each door type.
 2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
 3. Frame details for each frame type, including dimensioned profiles and metal
 thicknesses.
 4. Locations of reinforcement and preparations for hardware.
 5. Details of each different wall opening condition.
 6. Details of electrical raceway and preparation for electrified hardware, access control
 systems, and security systems.
 7. Details of anchorages, joints, field splices, and connections.
 8. Details of accessories.
 9. Details of moldings, removable stops, and glazing.
 C. Product Schedule: For hollow-metal doors and frames, prepared by or under the
 supervision of supplier, using same reference numbers for details and openings as those on
 Drawings. Coordinate with final door hardware schedule.

1.06 DELIVERY, STORAGE, AND HANDLING
 A. Deliver hollow-metal doors and frames palletized, packaged, or crated to provide protection
 during transit and Project-site storage. Do not use nonvented plastic.
1.07 PROVIDE ADDITIONAL PROTECTION TO PREVENT DAMAGE TO FACTORY-FINISHED UNITS.

A. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.

B. Store hollow-metal doors and frames vertically under cover at Project site with head up. Place on minimum 4-inch- high wood blocking. Provide minimum 1/4-inch space between each stacked door to permit air circulation.

PART 2 PRODUCTS

2.01 PERFORMANCE REQUIREMENTS

A. Fire-Rated Door Assemblies: Assemblies complying with NFPA 80 that are listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for fire-protection ratings and temperature-rise limits indicated on Drawings, based on testing at positive pressure according to NFPA 252 or UL 10C.

1. Smoke- and Draft-Control Door Assemblies: Listed and labeled for smoke and draft control by a qualified testing agency acceptable to authorities having jurisdiction, based on testing according to UL 1784 and installed in compliance with NFPA 105.

2. Oversize Fire-Rated Door Assemblies: For units exceeding sizes of tested assemblies, provide certification by a qualified testing agency that doors comply with standard construction requirements for tested and labeled fire-rated door assemblies except for size.

3. Temperature-Rise Limit: At vertical exit enclosures and exit passageways, provide doors that have a maximum transmitted temperature end point of not more than 450 deg F above ambient after 30 minutes of standard fire-test exposure.

2.02 LARGE-MISSILE TEST: FOR GLAZED OPENINGS LOCATED WITHIN 30 FEET OF GRADE.

A. Thermally Rated Door Assemblies: Provide door assemblies with U-factor of not more than

1. 0.38 deg Btu/F x h x sq. ft. when tested according to ASTM C 518.

2.03 INTERIOR STANDARD STEEL DOORS AND FRAMES

A. Construct hollow-metal doors and frames to comply with standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.

B. Standard-Duty Doors and Frames: SDI A250.8, Level 1; SDI A250.4, Level C. at interior locations.

2.04 DOORS:

A. Type: As indicated in the Door and Frame Schedule.

C. Face: Uncoated steel sheet, minimum thickness of 0.032 inch.

D. Edge Construction: Model 1, Full Flush.

E. Edge Bevel: Provide manufacturer's standard beveled or square edges.

F. Fire-Rated Core: Manufacturer’s standard vertical steel stiffener core for fire-rated and temperature-rise-rated doors.

2.05 FRAMES:
A. Materials: Uncoated steel sheet, minimum thickness of 0.042 inch.
B. and Transom Frames: Fabricated from same thickness material as adjacent door frame.
C. Construction: Knocked down.

2.06 EXPOSED FINISH: PRIME.
A. Heavy-Duty Doors and Frames: SDI A250.8, Level 2; SDI A250.4, Level B. at exterior locations.

2.07 FRAMES:
A. Materials: Uncoated steel sheet, minimum thickness of 0.053 inch.
B. and Transom Frames: Fabricated from same thickness material as adjacent door frame.
C. Construction: Knocked down.

2.08 EXTERIOR STANDARD STEEL DOORS AND FRAMES
A. Construct hollow-metal doors and frames to comply with standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.
B. Heavy-Duty Doors and Frames: SDI A250.8, Level 2; SDI A250.4, Level B. at exterior locations.

2.09 DOORS:
A. Type: As indicated in the Door and Frame Schedule.
C. Face: Metallic-coated steel sheet, minimum thickness of 0.042 inch, with minimum A60 coating.
D. Edge Construction: Model 1, Full Flush.
E. Edge Bevel: Provide manufacturer's standard beveled or square edges.
F. Top Edge Closures: Close top edges of doors with flush closures of same material as face sheets. Seal joints against water penetration.
G. Bottom Edges: Close bottom edges of doors with end closures or channels of same material as face sheets. Provide weep-hole openings in bottoms of exterior doors to permit moisture to escape.
H. Core: Polyurethane.

2.10 FRAMES:
A. Materials: Metallic-coated steel sheet, minimum thickness of 0.053 inch, with minimum A60 coating.
B. Construction: Welded

2.11 EXPOSED FINISH: PRIME.

2.12 FRAME ANCHORS
A. Jamb Anchors:
1. Type: Anchors of minimum size and type required by applicable door and frame standard, and suitable for performance level indicated.
2. Quantity: Minimum of three anchors per jamb, with one additional anchor for frames with no floor anchor. Provide one additional anchor for each 24 inches of frame height above 7 feet.

B. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor.

C. Material: ASTM A 879/A 879M, Commercial Steel (CS), 04Z coating designation; mill phosphatized.
 1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M; hot-dip galvanized according to ASTM A 153/A 153M, Class B.

2.13 MATERIALS

A. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B; suitable for exposed applications.

B. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.

C. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollow-metal frames of type indicated.

D. Mineral-Fiber Insulation: ASTM C 665, Type I (blankets without membrane facing); consisting of fibers manufactured from slag or rock wool; with maximum flame-spread and smokedevolved indexes of 25 and 50, respectively; passing ASTM E 136 for combustion characteristics.

E. Glazing: Comply with requirements in Section 088000 "Glazing."

2.14 FABRICATION

A. Door Astragals: Provide overlapping astragal on one leaf of pairs of doors where required by NFPA 80 for fire-performance rating or where indicated. Extend minimum 3/4 inch beyond edge of door on which astragal is mounted or as required to comply with published listing of qualified testing agency.

B. Hollow-Metal Frames: Fabricate in one piece except where handling and shipping limitations require multiple sections. Where frames are fabricated in sections, provide alignment plates or angles at each joint, fabricated of metal of same or greater thickness as frames.
 1. Sidelite and Transom Bar Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by welding, or by rigid mechanical anchors.
 2. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
 3. Door Silencers: Except on weather-stripped frames, drill stops to receive door silencers as follows. Keep holes clear during construction.
 a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
 b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.
 4. Terminated Stops: Terminate stops 6 inches above finish floor with a 90-degree angle cut, and close open end of stop with steel sheet closure. Cover opening in extension of frame with welded-steel filler plate, with welds ground smooth and flush with frame.

C. Hardware Preparation: Factory prepare hollow-metal doors and frames to receive templated mortised hardware, and electrical wiring; include cutouts, reinforcement, mortising, drilling, and tapping according to SDI A250.6, the Door Hardware Schedule, and templates.
1. Reinforce doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.

2. Comply with BHMA A156.115 for preparing hollow-metal doors and frames for hardware.

D. Glazed Lites: Provide stops and moldings around glazed lites where indicated. Form corners of stops and moldings with mitered hairline joints.

 1. Provide stops and moldings flush with face of door, and with square stops unless otherwise indicated.
 2. Multiple Glazed Lites: Provide fixed and removable stops and moldings so that each glazed lite is capable of being removed independently.
 3. Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames. Provide loose stops and moldings on inside of hollow-metal doors and frames.
 4. Coordinate rabbet width between fixed and removable stops with glazing and installation types indicated.
 5. Provide stops for installation with countersunk flat- or oval-head machine screws spaced uniformly not more than 9 inches o.c. and not more than 2 inches o.c. from each corner.

2.15 PRIME FINISH: CLEAN, PRETREAT, AND APPLY MANUFACTURER'S STANDARD PRIMER.

 A. 1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with SDI A250.10; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.

2.16 LOUVERS

 A. Provide louvers for interior doors, where indicated, which comply with SDI 111, with blades or baffles formed of 0.020-inch- thick, cold-rolled steel sheet set into 0.032-inch- thick steel frame.

 1. Sightproof Louver: Stationary louvers constructed with inverted-V or inverted-Y blades.
 2. Lightproof Louver: Stationary louvers constructed with baffles to prevent light from passing from one side to the other.
 3. Fire-Rated Automatic Louvers: Louvers constructed with movable blades closed by actuating fusible link, and listed and labeled for use in fire-rated door assemblies of type and fire-resistance rating indicated by same qualified testing and inspecting agency that established fire-resistance rating of door assembly.

 B. Form corners of moldings with hairline joints. Provide fixed frame moldings on outside of exterior and on secure side of interior doors and frames.

PART 3 EXECUTION

3.01 PREPARATION

 A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces. Touch up factory-applied finishes where spreaders are removed.

 B. Drill and tap doors and frames to receive nontemplated, mortised, and surface-mounted door hardware.

3.02 INSTALLATION
A. General: Install hollow-metal doors and frames plumb, rigid, properly aligned, and securely fastened in place. Comply with approved Shop Drawings and with manufacturer's written instructions.

B. Hollow-Metal Frames: Comply with SDI A250.11 NAAMM-HMMA 840.
 1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces without damage to completed Work.
 a. Where frames are fabricated in sections, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces. Touch-up finishes.
 b. Install frames with removable stops located on secure side of opening.
 2. Fire-Rated Openings: Install frames according to NFPA 80.
 3. Floor Anchors: Secure with postinstalled expansion anchors.
 a. Floor anchors may be set with power-actuated fasteners instead of postinstalled expansion anchors if so indicated and approved on Shop Drawings.
 4. Solidly pack mineral-fiber insulation inside frames.
 5. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout or mortar.
 6. Secure frames in place with postinstalled expansion anchors. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.
 7. Installation Tolerances: Adjust hollow-metal frames to the following tolerances:
 a. Squarness: Plus or minus 1/16 inch, measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 b. Alignment: Plus or minus 1/16 inch, measured at jambs on a horizontal line parallel to plane of wall.
 c. Twist: Plus or minus 1/16 inch, measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 d. Plumbness: Plus or minus 1/16 inch, measured at jambs at floor.

C. Hollow-Metal Doors: Fit and adjust hollow-metal doors accurately in frames, within clearances specified below.
 1. Non-Fire-Rated Steel Doors: Comply with NAAMM-HMMA 841 and NAAMM-HMMA guide specification indicated.
 2. Fire-Rated Doors: Install doors with clearances according to NFPA 80.
 3. Smoke-Control Doors: Install doors according to NFPA 105.

D. Glazing: Comply with installation requirements in Section 088000 "Glazing" and with hollowmetal manufacturer's written instructions.

3.03 CLEANING AND TOUCHUP

A. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.

B. Metallic-Coated Surface Touchup: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.

C. Factory-Finish Touchup: Clean abraded areas and repair with same material used for factory finish according to manufacturer's written instructions.
D. Touchup Painting: Cleaning and touchup painting of abraded areas of paint are specified in painting Sections.

END OF SECTION
SECTION 08 14 16
FLUSH WOOD DOORS

PART 1 GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
 1. Solid-core flush wood doors with plastic-laminate-faces.
 2. Factory fitting flush wood doors to frames and factory machining for hardware.
B. Related Requirements:
 1. Section 064023 "Interior Architectural Woodwork" for wood door frames.
 2. Section 088000 "Glazing" for glass view panels in flush wood doors.
 3. Section 099123 "Interior Painting" [and] for field finishing doors.
 4. Section 134900 "Radiation Protection" for lead-lined flush wood doors.

1.03 ACTION SUBMITTALS
A. Product Data: For each type of product, including the following:
 1. Door core materials and construction.
 2. Door edge construction
 3. Door face type and characteristics.
 4. Door louvers.
 5. Door trim for openings.
 6. Door frame construction.
 7. Factory-machining criteria.
B. Shop Drawings: Indicate location, size, and hand of each door; elevation of each type of door; construction details not covered in Product Data; and the following:
 1. Door schedule indicating door and frame location, type, size, fire protection rating, and swing.
 2. Door elevations, dimension and locations of hardware, lite and louver cutouts, and glazing thicknesses.
 3. Details of frame for each frame type, including dimensions and profile.
 4. Details of electrical raceway and preparation for electrified hardware, access control systems, and security systems.
 5. Dimensions and locations of blocking for hardware attachment.
 6. Dimensions and locations of mortises and holes for hardware.
 7. Clearances and undercuts.
 8. Requirements for veneer matching.
 9. Apply AWI Quality Certification Program label to Shop Drawings.
C. Samples for Initial Selection: For factory-finished doors and factory-finished door frames.

1.04 CLOSEOUT SUBMITTALS
A. Quality Standard Compliance Certificates: Program certificates.

1.05 QUALITY ASSURANCE
A. Manufacturer's Certification: Licensed participant in AWI's Quality Certification Program.

1.06 DELIVERY, STORAGE, AND HANDLING
A. Comply with requirements of referenced standard and manufacturer's written instructions.
B. Package doors individually in cardboard cartons, and wrap bundles of doors in plastic sheeting.
C. Mark each door on top and bottom rail with opening number used on Shop Drawings.

1.07 FIELD CONDITIONS
A. Environmental Limitations: Do not deliver or install doors until spaces are enclosed and weathertight, wet-work in spaces is complete and dry, and HVAC system is operating and maintaining temperature and relative humidity at levels designed for building occupants for the remainder of construction period.

PART 2 PRODUCTS
2.01 MANUFACTURERS
A. Source Limitations: Obtain flush wood doors and wood paneling from single manufacturer.

2.02 FLUSH WOOD DOORS AND FRAMES, GENERAL
A. Quality Standard: In addition to requirements specified, comply with AWI/AWMAC/WI's "Architectural Woodwork Standards."
 1. Provide labels and certificates from AWI certification program indicating that doors and frames comply with requirements of grades specified.
 2. The Contract Documents contain requirements that are more stringent than the referenced quality standard. Comply with the Contract Documents in addition to those of the referenced quality standard.

2.03 SOLID-CORE FLUSH WOOD DOORS WITH PLASTIC-LAMINATE FACES
A. Interior Doors A800:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. ABS-American Building Supply, Inc.
 b. Haley Brothers. Inc.
 c. Marshfield DoorSvstems. Inc.
 d. Mohawk Flush Doors, Inc.
 2. Performance Grade: WDMA I.S. 1A Standard Duty.
 3. Performance Grade:
 a. WDMA I.S. 1A Heavy Duty unless otherwise indicated on Drawings.
 b. WDMA I.S. 1A Extra Heavy Duty: public toilets.
 c. WDMA I.S. IA Standard Duty: Closets (not including janitor's closets) and private toilets.
5. Plastic-Laminate Faces: High-pressure decorative laminates complying with NEMA LD 3, Grade HGS.

6. Colors, Patterns, and Finishes: As indicated.

7. Exposed Vertical and Top Edges: Hardwood edges for staining to match faces [or].
 a. Fire-Rated Single Doors: Provide edge construction with intumescent seals concealed by outer stile. Comply with specified requirements for exposed vertical edges.
 b. Fire-Rated Pairs of Doors: Provide fire-retardant stiles that are listed and labeled for applications indicated without formed-steel edges and astragals. Provide stiles with concealed intumescent seals. Comply with specified requirements for exposed edges.
 1) Finish steel edges and astragals with baked enamel same color as doors.
 2) Finish steel edges and astragals to match door hardware (locksets or exit devices).
 3) Mineral-Core Doors: At hinge stiles, provide laminated-edge construction with improved screw-holding capability and split resistance. Comply with specified requirements for exposed edges.
 4) Screw-Holding Capability: 400 lbf in accordance with WDMA T.M. 10.

8. Core for Non-Fire-Rated Doors: ANSI A208.1, Grade LD-1 particleboard.
 a. Blocking: Provide wood blocking in particleboard-core doors as needed to eliminate through-bolting hardware.
 1) 5-inch top-rail blocking, in doors indicated to have closers.
 2) 5-inch bottom-rail blocking, in exterior doors and doors indicated to have kick, mop, or armor plates.
 3) 5-inch midrail blocking, in doors indicated to have exit devices.
 b. Provide doors with glued-wood-stave or WDMA I.S. 10 structural-composite-lumber cores instead of particleboard cores for doors scheduled to receive exit devices in Section 087100 "Door Hardware."

9. Construction: Three plies, hot-pressed or cold-pressed bonded (vertical and horizontal edging is bonded to core), with entire unit abrasive planed before faces are applied.

10. Construction: Five plies, hot-pressed or cold-pressed bonded (vertical and horizontal edging is bonded to core), with entire unit abrasive planed before faces and crossbands are applied.

2.04 FABRICATION

A. Factory fit doors to suit frame-opening sizes indicated.
 1. Comply with clearance requirements of referenced quality standard for fitting unless otherwise indicated.
 2. Comply with NFPA 80 requirements for fire-rated doors.

B. Factory machine doors for hardware that is not surface applied.
 1. Locate hardware to comply with DHI-WDHS-3.
2. Comply with final hardware schedules, door frame Shop Drawings, BHMA-156.115-W, and hardware templates.

3. Coordinate with hardware mortises in metal frames, to verify dimensions and alignment before factory machining.

4. For doors scheduled to receive electrified locksets, provide factory-installed raceway and wiring to accommodate specified hardware.

5. Metal Astragals: Factory machine astragals and formed-steel edges for hardware for pairs of fire-rated doors.

C. Transom and Side Panels:
 1. Fabricate matching panels with same construction, exposed surfaces, and finish as specified for associated doors.
 2. Finish bottom edges of transoms and top edges of rabbeted doors same as door stiles.
 3. Fabricate door and transom panels with full-width, solid-lumber, rabbeted, meeting rails.
 4. Provide factory-installed spring bolts for concealed attachment into jambs of metal door frames.

D. Openings: Factory cut and trim openings through doors.
 1. Light Openings: Trim openings with moldings of material and profile indicated.
 2. Glazing: Factory install glazing in doors indicated to be factory finished. Comply with applicable requirements in Section 088000 "Glazing."

E. Exterior Doors: Factory treat exterior doors with water repellent after fabrication has been completed but before factory finishing.
 1. Flash top of outswinging doors with manufacturer’s standard metal flashing.

2.05 FACTORY FINISHING

A. Comply with referenced quality standard for factory finishing.
 1. Complete fabrication, including fitting doors for openings and machining for hardware that is not surface applied, before finishing.
 2. Finish faces, all four edges, edges of cutouts, and mortises.
 3. Stains and fillers may be omitted on bottom edges, edges of cutouts, and mortises.

B. Factory finish doors.

C. Factory finish doors that are indicated on Drawings to receive transparent finish.

D. Factory finish doors where indicated in schedules or on Drawings as factory finished.

E. Transparent Finish:
6. Finish: WDMA I.S. 1A TR-4 Conversion Varnish.
8. Finish: WDMA I.S. 1A TR-8 UV Cured Acrylated Polyester/Urethane
9. Staining: As selected by Architect from manufacturer's full range.
10. Effect: Semifilled finish, produced by applying an additional finish coat to partially fill the wood pores.

F. Opaque Finish:
 1. Color: As selected by Architect from manufacturer's full range.
 2. Sheen: Semigloss.

PART 3 EXECUTION

3.01 EXAMINATION
 A. Examine doors and installed door frames, with Installer present, before hanging doors.
 B. Verify that installed frames comply with indicated requirements for type, size, location, and swing characteristics and have been installed with level heads and plumb jambs.
 C. Reject doors with defects.
 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION
 A. Hardware: For installation, see Section 087100 "Door Hardware."
 B. Install doors and frames to comply with manufacturer's written instructions and referenced quality standard, and as indicated.
 C. Install frames level, plumb, true, and straight.
 1. Shim as required with concealed shims. Install level and plumb to a tolerance of 1/8 inch in 96 inches
 2. Anchor frames to anchors or blocking built in or directly attached to substrates.
 a. Secure with countersunk, concealed fasteners and blind nailing.
 b. Use fine finishing nails or finishing screws for exposed fastening, countersunk and filled flush with woodwork.
 1) For factory-finished items, use filler matching finish of items being installed.
 3. Install fire-rated doors and frames in accordance with NFPA 80.
 4. Install smoke- and draft-control doors in accordance with NFPA 105.
 D. Job-Fitted Doors:
 1. Align and fit doors in frames with uniform clearances and bevels as indicated below.
 a. Do not trim stiles and rails in excess of limits set by manufacturer or permitted for fire-rated doors.
 3. Seal edges of doors, edges of cutouts, and mortises after fitting and machining.
 4. Clearances:
 a. Provide 1/8 inch at heads, jambs, and between pairs of doors.
b. Provide 1/8 inch from bottom of door to top of decorative floor finish or covering unless otherwise indicated on Drawings.

c. Where threshold is shown or scheduled, provide 1/4 inch from bottom of door to top of threshold unless otherwise indicated.

d. Comply with NFPA 80 for fire-rated doors.

5. Bevel non-fire-rated doors 1/8 inch in 2 inches at lock and hinge edges.

6. Bevel fire-rated doors 1/8 inch in 2 inches at lock edge; trim stiles and rails only to extent permitted by labeling agency.

E. Factory-Fitted Doors: Align in frames for uniform clearance at each edge.

F. Factory-Finished Doors: Restore finish before installation if fitting or machining is required at Project site.

3.03 ADJUSTING

A. Operation: Rehang or replace doors that do not swing or operate freely.

B. Finished Doors: Replace doors that are damaged or that do not comply with requirements. Doors may be repaired or refinished if Work complies with requirements and shows no evidence of repair or refinishing.

END OF SECTION
SECTION 08 33 23
OVERHEAD COILING DOORS

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Overhead coiling doors, operating hardware, fire-rated, non-fire-rated and exterior; manually or electrically operated.

B. Wiring from electric circuit disconnect to operator to control station.

1.02 RELATED REQUIREMENTS

A. Section 08 71 00 - Door Hardware: Cylinder cores and keys.

B. Section 26 05 33.13 - Conduit for Electrical Systems: Conduit from electric circuit to operator and from operator to control station.

C. Section 26 05 33.13 - Conduit for Electrical Systems: Conduit from fire alarm system.

D. Section 26 05 83 - Wiring Connections: Power to disconnect.

E. Section 28 46 00 - Fire Detection and Alarm: Fire alarm interconnection.

1.03 REFERENCE STANDARDS

I. NEMA MG 1 - Motors and Generators 2018.

J. NFPA 70 - National Electrical Code Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.04 SUBMITTALS

A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.

B. Product Data: Provide general construction, electrical equipment, component connections and details and [______].

C. Shop Drawings: Indicate pertinent dimensioning, anchorage methods, hardware locations, and installation details.
D. Manufacturer's Qualification Statement.
E. Maintenance Data: Indicate lubrication requirements and frequency and periodic adjustments required.

1.05 QUALITY ASSURANCE
A. Products Requiring Electrical Connection: Listed and classified by ITS (DIR), UL (DIR) or testing firm acceptable to authorities having jurisdiction as suitable for purpose specified.

PART 2 PRODUCTS
2.01 MANUFACTURERS
A. Overhead Coiling Doors:
B. Overhead Coiling Fire Doors:

2.02 COILING DOORS
A. Exterior Coiling Doors: Steel slat curtain.
 1. Capable of withstanding positive and negative wind loads of 40 psf, without undue deflection or damage to components.
 2. Single thickness slats.
 5. Finish: Factory painted, [________] color.
 7. Guides, Formed Sheet Metal: Galvanized steel.
 8. Hood Enclosure: Manufacturer's standard; primed steel.
 10. Electric operation.
B. Fire-Rated Coiling Doors: Steel slat curtain; comply with NFPA 80.
 1. 3/4 hour fire rating.
 2. Provide products listed and labeled by ITS (DIR) or UL (DIR) as suitable for the purpose specified and indicated.
 3. Oversized Openings: Provide certificate of compliance from authorities having jurisdiction indicating approval of fire rated units and operating hardware assembly.

2.03 MATERIALS AND COMPONENTS
A. Curtain Construction: Interlocking slats.
 1. Slat Ends: Alternate slats fitted with end locks to act as wearing surface in guides and to prevent lateral movement.
 2. Curtain Bottom: Fitted with angles to provide reinforcement and positive contact in closed position.
3. Weatherstripping: Moisture and rot proof, resilient type, located at jamb edges, bottom of curtain and where curtain enters hood enclosure of exterior doors.

B. Steel Slats: Minimum thickness, [_____] gage, [_____] inch; ASTM A653/A653M galvanized steel sheet.

C. Guide Construction: Continuous, of profile to retain door in place with snap-on trim, mounting brackets of same metal.

D. Guides - Angle: ASTM A36/A36M metal angles, size as indicated.
 1. Hot-dip galvanized in compliance with ASTM A123/A123M.

E. Guides - Sheet Metal: Formed from sheet metal, [_____] gage, [_____] inch thick; [_____] inch wide.
 1. Hot-Dip Galvanizing: Minimum G90 coating, in compliance with ASTM A653/A653M.

F. Hood Enclosure and Trim: Internally reinforced to maintain rigidity and shape.

G. Lock Hardware:
 1. Latchset Lock Cylinders: Standard mortise cylinder.
 2. For motor operated units, additional lock or latching mechanisms are not required.

H. Roller Shaft Counterbalance: Steel pipe and helical steel spring system, capable of producing torque sufficient to ensure smooth operation of curtain from any position and capable of holding position at mid-travel; with adjustable spring tension; requiring 25 lb nominal force to operate.

2.04 ELECTRIC OPERATION

A. Operator, Controls, Actuators, and Safeties: Comply with UL 325; provide products listed by ITS (DIR), UL (DIR) or testing agency acceptable to authorities having jurisdiction.
 1. Provide interlock switches on motor operated units.
 2. Provide tamperproof operation cycle counter.

B. Electric Operators:
 1. Mounting: Side mounted.
 2. Motor Enclosure:
 4. Motor Voltage: 120 volts, single phase, 60 Hz.
 7. Opening Speed: 12 inches per second.
 10. Refer to Section 26 05 83 for electrical connections.

C. Control Station: Provide standard three button (Open-Close-Stop) momentary-contact control device for each operator complying with UL 325.
 1. 24 volt circuit.
2. Surface mounted, at interior door jamb.
3. Entrapment Protection Devices: Provide sensing devices and safety mechanisms complying with UL 325.
 a. Primary Device: Provide electric sensing edge, wireless sensing, NEMA 1 photo eye sensors or NEMA 4X photo eye sensors as required with momentary-contact control device.

D. Safety Edge: Located at bottom of coiling door, full width, electro-mechanical sensitized type, wired to stop and reverse door direction upon striking object, hollow neoprene covered.

PART 3 EXECUTION

3.01 INSTALLATION
 A. Install units in accordance with manufacturer's instructions.
 B. Install fire-rated doors in accordance with NFPA 80.
 C. Use anchorage devices to securely fasten assembly to wall construction and building framing without distortion or stress.
 D. Securely and rigidly brace components suspended from structure. Secure guides to structural members only.
 E. Fit and align assembly including hardware; level and plumb, to provide smooth operation.
 F. Coordinate installation of electrical service with Section 26 05 83.
 G. Complete wiring from disconnect to unit components.
 H. Install enclosure and perimeter trim.

3.02 ADJUSTING
 A. Adjust operating assemblies for smooth and noiseless operation.

3.03 CLEANING
 A. Clean installed components.
 B. Remove labels and visible markings.

END OF SECTION
PART 1 -GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section includes electrically operated sectional doors.
B. Related Requirements:
 1. Section 055000 “Metal Fabrications” for miscellaneous steel supports.
 2. Section 11 13 16 “Loading Dock Seals and Shelters”

1.03 ACTION SUBMITTALS
A. Product Data: For each type and size of sectional door and accessory.
 1. Include construction details, material descriptions, dimensions of individual components, profile door sections, and finishes.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished
 a. accessories.
B. Samples for Initial Selection: For units with factory-applied finishes.
 1. Include Samples of accessories involving color selection.

1.04 INFORMATIONAL SUBMITTALS
A. Sample Warranties: For special warranties.

1.05 CLOSEOUT SUBMITTALS
A. Maintenance Data: For sectional doors to include in maintenance manuals.

1.06 QUALITY ASSURANCE
A. Regulatory Requirements: Comply with applicable provisions in ICC A117.1.

1.07 WARRANTY
A. Special Warranty: Manufacturer agrees to repair or replace components of sectional doors that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures including, but not limited to, excessive deflection.
 b. Failure of components or operators before reaching required number of operation cycles.
 c. Faulty operation of hardware.
 d. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use; rust through.
 e. Delamination of exterior or interior facing materials.
 f. Warranty Period: Five years from date of Substantial Completion.
B. Special Finish Warranty: Manufacturer agrees to repair or replace components that show evidence of deterioration of factory-applied finishes within specified warranty period.
1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 PRODUCTS

2.01 MANUFACTURERS, GENERAL

A. Source Limitations: Obtain sectional doors from single source from single manufacturer.
 1. Obtain operators and controls from sectional door manufacturer.

2.02 PERFORMANCE REQUIREMENTS

A. General Performance: Sectional doors shall comply with performance requirements specified without failure due to defective manufacture, fabrication, installation, or other defects in construction and without requiring temporary installation of reinforcing components.

B. Structural Performance, Exterior Doors: Capable of withstanding the design wind loads.
 1. Design Wind Load: As indicated on Drawings.
 2. Testing: According to ASTM E 330 or DASMA 108 for garage doors and complying with the acceptance criteria of DASMA 108.
 3. Deflection Limits: Design sectional doors to withstand design wind loads without evidencing permanent deformation or disengagement of door components.
 a. Deflection of door sections in horizontal position (open) shall not exceed 1/120 of the door width.
 b. Deflection of horizontal track assembly shall not exceed 1/240 of the door height.
 4. Operability under Wind Load: Design overhead coiling doors to remain operable under design wind load, acting inward and outward.

2.03 DOOR ASSEMBLY

A. Aluminum Sectional Door: Sectional door formed with hinged sections and fabricated according to DASMA 102 unless otherwise indicated.

B. Operation Cycles: Door components and operators capable of operating for not less than 100,000. One operation cycle is complete when a door is opened from the closed position to the fully open position and returned to the closed position.

C. Air Infiltration: Maximum rate of at 15 and 25 mph when tested according to ASTM E 283.

D. Aluminum Sections: aluminum panels with limited vision pane.

E. Track Configuration: Standard-lift track.

F. Weatherseals: Fitted to bottom and top and around entire perimeter of door. Provide combination bottom weatherseal and sensor edge.

G. Locking Devices: Equip door with locking device assembly.
 1. Locking Device Assembly: locking bars, operable from inside and outside, with cylinders.

H. Counterbalance Type: Torsion spring.

I. Electric Door Operator:
 1. Usage Classification: Heavy duty, 25 or more cycles per hour and more than 90 cycles per day.
 2. Operator Type: Jackshaft, side mounted.
 3. Safety: Listed according to UL 325 by a qualified testing agency for commercial or industrial use; moving parts of operator enclosed or guarded if exposed and mounted
at 8 feet or lower.

 a. Sensor Edge Bulb Color: As selected by Architect from manufacturer's full range.

7. Control Station: Interior-side mounted.

8. Other Equipment: Audible and visual signals Portable, radio-control system.

J. Door Insulation
 1. Polystyrene or closed cell foam insulation to achieve an R-7.35 insulation value or greater.

K. Door Finish:
 1. Baked-Enamel or Powder-Coat Finish: Color and gloss as selected by Architect from manufacturer's full range.
 2. Factory Prime Finish: Manufacturer's standard color.

2.04 MATERIALS, GENERAL

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.05 ALUMINUM DOOR SECTIONS

A. Sections: Extruded-aluminum stile and rail members with dimensions and profiles as indicated on Drawings; members joined by welding or with concealed, 1/4-inch- minimum diameter, aluminum or nonmagnetic stainless-steel through bolts, full height of door section; and with meeting rails shaped to provide a weather-resistant seal.
 1. Aluminum: ASTM B 221 extrusions, alloy and temper standard with manufacturer for type of use and finish indicated; minimum thickness 0.065 inch for door section 1-3/4 inches deep, and as required to comply with requirements.
 2. Reinforce sections with continuous horizontal and diagonal reinforcement, as required to stiffen door and for wind loading. Ensure that reinforcement does not obstruct vision lites.
 3. Provide reinforcement for hardware attachment.

B. Manufacturer's standard, glazed with 6-mm-thick, clear acrylic glazing set in vinyl, rubber, or neoprene glazing channel and with removable extruded-vinyl or aluminum stops.

2.06 TRACKS, SUPPORTS, AND ACCESSORIES

A. Tracks: Manufacturer's standard, galvanized-steel track system of configuration indicated, sized for door size and weight, designed for lift type indicated and clearances indicated on Drawings. Provide complete system including brackets, bracing, and reinforcement to ensure rigid support of ball-bearing roller guides for required door type, size, weight, and loading.
 2. Slope tracks at an angle from vertical or design tracks to ensure tight closure at jambs when door unit is closed.
 3. Track Reinforcement and Supports: Galvanized-steel members to support track without sag, sway, and vibration during opening and closing of doors. Slot vertical sections of track spaced 2 inches apart for door-drop safety device.
a. For Vertical Track: Intermittent, jamb brackets attached to track and attached to wall.
b. For Horizontal Track: Continuous reinforcing angle from curve in track to end of track, attached to track and supported at points by laterally braced attachments to overhead structural members.

B. Weatherseals: Replaceable, adjustable, continuous, compressible weather-stripping gaskets of flexible vinyl, rubber, or neoprene fitted to bottom and top of sectional door unless otherwise indicated.

C. Windows: Manufacturer's standard window units of type, size, and in arrangement indicated. Set glazing in vinyl, rubber, or neoprene glazing channel for metal-framed doors and elastic glazing compound for wood doors, as required. Provide removable stops of same material as door-section frames.

2.07 HARDWARE
A. General: Heavy-duty, corrosion-resistant hardware, with hot-dip galvanized, stainless-steel, or other corrosion-resistant fasteners, to suit door type.

B. Hinges: Heavy-duty, galvanized-steel hinges of not less than 0.079-inch- nominal coated thickness at each end stile and at each intermediate stile, according to manufacturer’s written recommendations for door size. Attach hinges to door sections through stiles and rails with bolts and lock nuts or lock washers and nuts. Use rivets or self-tapping fasteners where access to nuts is impossible. Provide double-end hinges where required, for doors more than 16 feet wide unless otherwise recommended by door manufacturer.

C. Rollers: Heavy-duty rollers with steel ball-bearings in case-hardened steel races, mounted with varying projections to suit slope of track. Extend roller shaft through both hinges where double hinges are required. Provide 3-inch- diameter roller tires for 3-inch- wide track and 2-inch- diameter roller tires for 2-inch- wide track.

D. Push/Pull Handles: Equip each push-up operated or emergency-operated door with galvanized- steel lifting handles on each side of door, finished to match door.

2.08 LOCKING DEVICES
A. Slide Bolt: Fabricate with side-locking bolts to engage through slots in tracks for locking by padlock, located on single-jamb side, operable from inside only.

B. Locking Device Assembly: Fabricate with operating handle, cam plate, and adjustable locking bars to engage through slots in tracks.

C. Chain Lock Keeper: Suitable for padlock.

D. Safety Interlock Switch: Equip power-operated doors with safety interlock switch to disengage power supply when door is locked.

2.09 COUNTERBALANCE MECHANISM
A. Torsion Spring: Counterbalance mechanism consisting of adjustable-tension torsion springs fabricated from steel-spring wire complying with ASTM A 229/A 229M, mounted on torsion shaft made of steel tube or solid steel. Provide springs designed for number of operation cycles indicated.

B. Bracket: Provide anchor support bracket as required to connect stationary end of spring to the wall and to level the shaft and prevent sag.

C. Bumper: Provide spring bumper at each horizontal track to cushion door at end of opening operation.

2.10 ELECTRIC DOOR OPERATORS
A. General: Electric door operator assembly of size and capacity recommended and provided by door manufacturer for door and "operation cycles" requirement specified, with electric motor and factory-prewired motor controls, starter, gear-reduction unit, solenoid-operated brake, clutch, control stations, control devices, integral gearing for locking door, and accessories required for proper operation.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Chamberlain Group, Inc. (The).
 b. Comply with NFPA 70.
 c. Control equipment complying with NEMA ICS 1, NEMA ICS 2, and NEMA ICS 6; with NFPA 70, Class 2 control circuit, maximum 24-V ac or dc.

B. Usage Classification: Electric operator and components capable of operating for not less than number of cycles per hour indicated for each door.

C. Door-Operator Type: Unit consisting of electric motor, gears, pulleys, belts, sprockets, chains, and controls needed to operate door and meet required usage classification.

1. Jackshaft, Side Mounted: Jackshaft operator mounted on the inside front wall on right or left side of door and connected to torsion shaft with an adjustable coupling or drive chain.

D. Motors: Reversible-type motor with controller (disconnect switch) for motor exposure indicated.

1. Electrical Characteristics:
 a. Phase: Polyphase.
 b. Volts: 208 V.
 c. Hertz: 60.

2. Motor Size: Minimum size as indicated. If not indicated, large enough to start, accelerate, and operate door in either direction from any position, at a speed not less than 8 in./sec. and not more than 12 in./sec., without exceeding nameplate ratings or service factor.

3. Operating Controls, Controllers (Disconnect Switches), Wiring Devices, and Wiring: Manufacturer's standard unless otherwise indicated.

4. Coordinate wiring requirements and electrical characteristics of motors and other electrical devices with building electrical system and each location where installed.

5. Use adjustable motor-mounting bases for belt-driven operators.

E. Limit Switches: Equip motorized door with adjustable switches interlocked with motor controls and set to automatically stop door at fully opened and fully closed positions.

F. Obstruction Detection Device: External entrapment protection consisting of indicated automatic safety sensor capable of protecting full width of door opening. Activation of device immediately stops and reverses downward door travel.

1. Photoelectric Sensor: Manufacturer's standard system designed to detect an obstruction in door opening without contact between door and obstruction.
 a. Self-Monitoring Type: Designed to interface with door operator control circuit to detect damage to or disconnection of sensing device. When self-monitoring feature is activated, door closes only with sustained pressure on close button.
2. Electric Sensor Edge: Automatic safety sensor edge, located within astragal or weather stripping mounted to bottom section. Contact with sensor activates device. Connect to control circuit using manufacturer's standard take-up reel or self-coiling cable.
 a. Self-Monitoring Type: Four-wire configured device designed to interface with door-operator control circuit to detect damage to or disconnection of sensor edge.
3. Pneumatic Sensor Edge: Automatic safety sensor edge, located within astragal or weather stripping mounted to bottom bar. Contact with sensor activates device.

G. Control Station: Three-button control station in fixed location with momentary-contact push-button controls labeled "Open" and "Stop" and sustained- or constant-pressure, push-button control labeled "Close."
 1. Interior-Mounted Units: Full-guarded, surface-mounted, heavy-duty type, with general-purpose NEMA ICS 6, Type 1 enclosure.
 2. Exterior-Mounted Units: Full-guarded, standard-duty, surface-mounted, weatherproof type, NEMA ICS 6, Type 4 enclosure, key operated.

I. Emergency Operation Disconnect Device: Equip operator with hand-operated disconnect mechanism for automatically engaging manual operator and releasing brake for emergency manual operation while disconnecting motor without affecting timing of limit switch. Mount mechanism so it is accessible from floor level. Include interlock device to automatically prevent motor from operating when emergency operator is engaged.

J. Motor Removal: Design operator so motor may be removed without disturbing limit-switch adjustment and without affecting emergency manual operation.

K. Audible and Visual Signals: Audible alarm and visual indicator lights in compliance with regulatory requirements for accessibility.

2.11 GENERAL FINISH REQUIREMENTS
 A. Comply with NAAMM/NOMMA's "Metal Finishes Manual for Architectural and Metal Products (AMP 500-06)" for recommendations for applying and designating finishes.
 B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.12 ALUMINUM FINISHES
 A. Baked-Enamel or Powder-Coat Finish: AAMA 2603. Comply with coating manufacturer's written instructions for cleaning, conversion coating, application, and baking.

PART 3 EXECUTION

3.01 EXAMINATION
 A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for substrate construction and other conditions affecting performance of the Work.
 B. Examine locations of electrical connections.
 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION
A. Install sectional doors and operating equipment complete with necessary hardware, anchors, inserts, hangers, and equipment supports; according to manufacturer's written instructions and as specified.

B. Tracks:
 1. Fasten vertical track assembly to opening jambs and framing, spaced not more than 24 inches apart.

C. Accessibility: Install sectional doors, switches, and controls along accessible routes in compliance with regulatory requirements for accessibility.

D. Power-Operated Doors: Install automatic garage doors openers according to UL 325.

3.03 ADJUSTING
A. Adjust hardware and moving parts to function smoothly so that doors operate easily, free of warp, twist, or distortion.

B. Lubricate bearings and sliding parts as recommended by manufacturer.

C. Adjust doors and seals to provide weather-resistant fit around entire perimeter.

D. Touch-up Painting: Immediately after welding galvanized materials, clean welds and abraded galvanized surfaces and repair galvanizing to comply with ASTM A 780/A 780M.

3.04 DEMONSTRATION
A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain sectional doors.

END OF SECTION
SECTION 08 41 13
ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

PART 1 GENERAL

1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
 1. Storefront framing.

1.03 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
B. Shop Drawings: For aluminum-framed entrances and storefronts. Include plans, elevations, sections, full-size details, and attachments to other work.
 1. Include details of provisions for assembly expansion and contraction and for draining moisture occurring within the assembly to the exterior.
 2. Include full-size isometric details of each type of vertical-to-horizontal intersection of aluminum-framed entrances and storefronts, showing the following:
 a. Joinery, including concealed Welds.
 b. Anchorage.
 c. Expansion provisions.
 d. Glazing.
 e. Flashing and drainage.
 3. Show connection to and continuity with adjacent thermal, weather, air, and vapor barriers.
 4. Include point-to-point wiring diagrams showing the following:
 a. Power requirements for each electrically operated door hardware.
 b. Location and types of switches, signal device, conduit sizes, and number and size of wires.
C. Delegated-Design Submittal: For aluminum-framed entrances and storefronts indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.04 INFORMATIONAL SUBMITTALS
A. Energy Performance Certificates: For aluminum-framed entrances and storefronts, accessories, and components, from manufacturer.
 1. Basis for Certification: NFRC-certified energy performance values for each aluminum-framed entrance and storefront.
B. Sample Warranties: For special warranties.

1.05 QUALITY ASSURANCE
ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS
A. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.

1. Do not change intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If changes are proposed, submit comprehensive explanatory data to Architect for review.

1.06 WARRANTY

A. Special Warranty: Installer agrees to repair or replace components of aluminum-framed entrances and storefronts that do not comply with requirements or that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures, including, but not limited to, excessive deflection.
 b. Noise or vibration created by wind and thermal and structural movements.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 d. Water penetration through fixed glazing and framing areas.
 e. Failure of operating components.

2. Warranty Period: 10 years from date of Substantial Completion.

B. Special Finish Warranty: Standard form in which manufacturer agrees to repair finishes or replace aluminum that shows evidence of deterioration of factory-applied finishes within specified warranty period.

1. Deterioration includes, but is not limited to, the following:
 a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.

2. Warranty Period: 10 years from date of Substantial Completion.

PART 2 PRODUCTS

2.01 MANUFACTURERS

A. Source Limitations: Obtain all components of aluminum-framed entrance and storefront system, including framing spandrel panels and accessories, from single manufacturer.

2.02 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design aluminum-framed entrances and storefronts.

B. General Performance: Comply with performance requirements specified, as determined by testing of aluminum-framed entrances and storefronts representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.

1. Aluminum-framed entrances and storefronts shall withstand movements of supporting structure, including, but not limited to, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads.

2. Failure also includes the following:
a. Thermal stresses transferring to building structure.
b. Glass breakage.
c. Noise or vibration created by wind and thermal and structural movements.
d. Loosening or weakening of fasteners, attachments, and other components.
e. Failure of operating units.

C. Structural Loads:
 1. Wind Loads: As indicated on Drawings.
 2. Other Design Loads: As indicated on Drawings.

D. Deflection of Framing Members: At design wind pressure, as follows:
 1. Deflection Normal to Wall Plane: Limited to edge of glass in a direction perpendicular to glass plane not exceeding 1/175 of the glass edge length for each individual glazing lite or an amount that restricts edge deflection of individual glazing lites to 3/4 inch, whichever is less.
 2. Deflection Parallel to Glazing Plane: Limited to amount not exceeding that which reduces glazing bite to less than 75 percent of design dimension and that which reduces edge clearance between framing members and glazing or other fixed components to less than 1/8 inch.
 a. Operable Units: Provide a minimum 1/16-inch clearance between framing members and operable units.
 3. Cantilever Deflection: Where framing members overhang an anchor point, as follows:
 a. Perpendicular to Plane of Wall: No greater than 1/240 of clear span plus 1/4 inch for spans greater than 11 feet 8-1/4 inches or 1/175 times span, for spans of less than 11 feet 8-1/4 inches.

E. Structural: Test according to ASTM E 330/E 330M as follows:
 1. When tested at positive and negative wind-load design pressures, storefront assemblies, including entrance doors, do not evidence deflection exceeding specified limits.
 2. When tested at 150 percent of positive and negative wind-load design pressures, storefront assemblies, including entrance doors and anchorage, do not evidence material failures, structural distress, or permanent deformation of main framing members exceeding 0.2 percent of span.
 3. Test Durations: As required by design wind velocity, but not less than 10 seconds.

F. Air Infiltration: Test according to ASTM E 283 for infiltration as follows:
 1. Fixed Framing and Glass Area:
 a. Maximum air leakage of 0.06 cfm/sq. ft. at a static-air-pressure differential of 1.57 lbf/sq. ft.
 2. Entrance Doors:
 a. Single Doors: Maximum air leakage of 0.5 cfm/sq. ft. at a static-air-pressure differential of 1.57 lbf/sq. ft.

G. Water Penetration under Dynamic Pressure: Test according to AAMA 501.1 as follows:
 1. No evidence of water penetration through fixed glazing and framing areas when tested at dynamic pressure equal to 20 percent of positive wind-load design pressure, but not
2. Maximum Water Leakage: No uncontrolled water penetrating assemblies or water appearing on assemblies’ normally exposed interior surfaces from sources other than condensation. Water leakage does not include water controlled by flashing and gutters, or water that is drained to exterior.

H. Energy Performance: Certify and label energy performance according to NFRC as follows:

1. Thermal Transmittance (U-factor): Fixed glazing and framing areas as a system shall have U-factor of not more than 0.41 Btu/sq. ft. x h x deg F as determined according to NFRC 100.

2. Solar Heat Gain Coefficient (SHGC): Fixed glazing and framing areas as a system shall have SHGC of no greater than 0.35 as determined according to NFRC 200.

3. Condensation Resistance: Fixed glazing and framing areas as a system shall have an NFRC-certified condensation resistance rating of no less than 45 as determined according to NFRC 500.

1. Large-Missile Test: For glazing located within 30 feet of grade.

2. Small-Missile Test: For glazing located between 30 feet and 60 feet above grade.

J. Structural-Sealant Joints:

1. Designed to carry gravity loads of glazing.

K. Structural Sealant: ASTM C 1184. Capable of withstanding tensile and shear stresses imposed by structural-sealant-glazed, aluminum-framed entrances and storefronts without failing adhesively or cohesively. When tested for preconstruction adhesion and compatibility, cohesive failure of sealant shall occur before adhesive failure.

1. Adhesive failure occurs when sealant pulls away from substrate cleanly, leaving no sealant material behind.

2. Cohesive failure occurs when sealant breaks or tears within itself but does not separate from each substrate, because sealant-to-substrate bond strength exceeds sealant's internal strength.

2.03 STOREFRONT SYSTEMS

A. Framing Members: Manufacturer's extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads.

2. Interior Vestibule Framing Construction: Nonthermal.

5. Finish: As noted on drawings.

6. Fabrication Method: Field-fabricated stick system.

7. Aluminum: Alloy and temper recommended by manufacturer for type of use and finish indicated.

8. Steel Reinforcement: As required by manufacturer.
B. Backer Plates: Manufacturer's standard, continuous backer plates for framing members, if not integral, where framing abuts adjacent construction.

C. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.

2.04 ENTRANCE DOOR SYSTEMS

A. Entrance Doors: Manufacturer's standard glazed entrance doors for manual-swing or automatic operation.

1. Door Construction: 1-3/4-inch overall thickness, with minimum 0.125-inch- thick, extruded-aluminum tubular rail and stile members. Mechanically fasten corners with reinforcing brackets that are deeply penetrated and fillet welded or that incorporate concealed tie rods.
 a. Thermal Construction: High-performance plastic connectors separate aluminum members exposed to the exterior from members exposed to the interior.

2. Door Design: Medium stile; 3-1/2-inch nominal width.

3. 5 inch style required at keypad hardware locations

2.05 ENTRANCE DOOR HARDWARE

A. Entrance Door Hardware: Hardware not specified in this Section is specified in Section 087100 "Door Hardware."

B. Cylinders: As specified in Section 087100 "Door Hardware."

2.06 GLAZING

A. Glazing: Comply with Section 088000 "Glazing."

B. Glazing Gaskets: Manufacturer's standard sealed-corner pressure-glazing system of black, resilient elastomeric glazing gaskets, setting blocks, and shims or spacers.

C. Glazing Sealants: As recommended by manufacturer.

D. Weatherseal Sealants: ASTM C 920 for Type S; Grade NS; Class 25; Uses NT, G, A, and O; chemically curing silicone formulation that is compatible with structural sealant and other system components with which it comes in contact; recommended by structural-sealant, weatherseal-sealant, and structural-sealant-glazed storefront manufacturers for this use.

2.07 MATERIALS

A. Sheet and Plate: ASTM B 209

B. Extruded Bars, Rods, Profiles, and Tubes: ASTM B 221

C. Extruded Structural Pipe and Tubes: ASTM B 429/B 429M.

D. Structural Profiles: ASTM B 308/B 308M.

E. Steel Reinforcement:

1. Structural Shapes, Plates, and Bars: ASTM A 36/A 36M.

2. Cold-Rolled Sheet and Strip: ASTM A 1008/A 1008M.

3. Hot-Rolled Sheet and Strip: ASTM A 1011/A 10 lIM.

4. Primer: Manufacturer's standard zinc-rich, corrosion-resistant primer complying with SSPC-PS Guide No. 12.00; applied immediately after surface preparation and pretreatment. Select surface preparation methods according to recommendations in
SSPC-SP COM, and prepare surfaces according to applicable SSPC standard.

2.08 ACCESSORIES

A. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials.
 1. Use self-locking devices where fasteners are subject to loosening or turning out from thermal and structural movements, wind loads, or vibration.
 2. Reinforce members as required to receive fastener threads.
 3. Use exposed fasteners with countersunk Phillips screw heads, fabricated from 300 series stainless steel.

B. Anchors: Three-way adjustable anchors with minimum adjustment of 1 inch that accommodate fabrication and installation tolerances in material and finish compatible with adjoining materials and recommended by manufacturer.
 1. Concrete and Masonry Inserts: Hot-dip galvanized cast-iron, malleable-iron, or steel inserts complying with ASTM A 123/A 123M or ASTM A 153/A 153M requirements.

C. Concealed Flashing: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding flashing compatible with adjacent materials.

D. Bituminous Paint: Cold-applied asphalt-mastic paint containing no asbestos, formulated for 30- mil thickness per coat.

E. Rigid PVC Filler.

2.09 FABRICATION

A. Form or extrude aluminum shapes before finishing.

B. Weld in concealed locations to greatest extent possible to minimize distortion or discoloration of finish. Remove weld spatter and welding oxides from exposed surfaces by descaling or grinding.

C. Fabricate components that, when assembled, have the following characteristics:
 1. Profiles that are sharp, straight, and free of defects or deformations.
 2. Accurately fitted joints with ends coped or mitered.
 3. Physical and thermal isolation of glazing from framing members.
 4. Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.
 5. Provisions for field replacement of glazing from exterior.
 6. Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.

D. Mechanically Glazed Framing Members: Fabricate for flush glazing without projecting stops.

E. Structural-Sealant-Glazed Framing Members: Include accommodations for using temporary support device to retain glazing in place while structural sealant cures.

F. Entrance Door Frames: Reinforce as required to support loads imposed by door operation and for installing entrance door hardware.
 1. At interior and exterior doors, provide compression weather stripping at fixed stops.

G. Entrance Doors: Reinforce doors as required for installing entrance door hardware.
1. At pairs of exterior doors, provide sliding-type weather stripping retained in adjustable strip and mortised into door edge.
2. At exterior doors, provide weather sweeps applied to door bottoms.
H. Entrance Door Hardware Installation: Factory install entrance door hardware to the greatest extent possible. Cut, drill, and tap for factory-installed entrance door hardware before applying finishes.
I. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.

2.10 ALUMINUM FINISHES
A. Clear Anodic Finish: AAMA 611, AA-M12C22A41, Class I, 0.018 mm or thicker.
B. High-Performance Organic Finish: coat fluoropolymer finish complying with AAMA 2605 and containing not less than 70 percent PVDF or FEVE resin by weight in both color coat and clear topcoat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 1. Color and Gloss: As selected by Architect from manufacturer's full range.

PART 3 EXECUTION
3.01 EXAMINATION
A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION
A. Prepare surfaces that are in contact with structural sealant according to sealant manufacturer's written instructions, to ensure compatibility and adhesion. Preparation includes, but is not limited to, cleaning and priming surfaces.

3.03 INSTALLATION
A. General:
 1. Comply with manufacturer's written instructions.
 2. Do not install damaged components.
 3. Fit joints to produce hairline joints free of burrs and distortion.
 4. Rigidly secure nonmovement joints.
 5. Install anchors with separators and isolators to prevent metal corrosion and electrolytic deterioration and to prevent impeding movement of moving joints.
 6. Seal perimeter and other joints watertight unless otherwise indicated.
B. Metal Protection:
 1. Where aluminum is in contact with dissimilar metals, protect against galvanic action by painting contact surfaces with materials recommended by manufacturer for this purpose or by installing nonconductive spacers.
 2. Where aluminum is in contact with concrete or masonry, protect against corrosion by painting contact surfaces with bituminous paint.
C. Set continuous sill members and flashing in full sealant bed, as specified in Section 079200 "Joint Sealants," to produce weathertight installation.
D. Install components plumb and true in alignment with established lines and grades.

E. Install operable units level and plumb, securely anchored, and without distortion. Adjust weather-stripping contact and hardware movement to produce proper operation.

F. Install glazing as specified in Section 088000 "Glazing."

G. Install weatherseal sealant according to Section 079200 "Joint Sealants" and according to sealant manufacturer's written instructions to produce weatherproof joints. Install joint filler behind sealant as recommended by sealant manufacturer.

H. Entrance Doors: Install doors to produce smooth operation and tight fit at contact points.

1. Exterior Doors: Install to produce weathertight enclosure and tight fit at weather stripping.

2. Field-Installed Entrance Door Hardware: Install surface-mounted entrance door hardware according to entrance door hardware manufacturers' written instructions using concealed fasteners to greatest extent possible.

3.04 ERECTION TOLERANCES

A. Erection Tolerances: Install aluminum-framed entrances and storefronts to comply with the following maximum tolerances:

1. Plumb: 1/8 inch in 10 feet ; 1/4 inch in 40 feet .

2. Level: 1/8 inch in 20 feet ; 1/4 inch in 40 feet .

3. Alignment:
 a. Where surfaces abut in line or are separated by reveal or protruding element up to 1/2 inch wide, limit offset from true alignment to 1/16 inch .

 b. Where surfaces are separated by reveal or protruding element from 1/2 to 1 inch wide, limit offset from true alignment to 1/8 inch .

 c. Where surfaces are separated by reveal or protruding element of 1 inch wide or more, limit offset from true alignment to 1/4 inch .

4. Location: Limit variation from plane to 1/8 inch in 12 feet ; 1/2 inch over total length.

END OF SECTION
PART 2 PRODUCTS

1.01 ASSEMBLY COMPONENTS

A. Windows: Factory-fabricated, finished, and glazed, with extruded aluminum frame and glazing stops; complete with hardware and anchors.

1. Provide window units that are re-glazable from the secure side without dismantling the non-secure side of framing.

2. Rigidly fit and secure joints and corners with internal reinforcement. Make joints and connections flush, hairline, and weatherproof. Fully weld corners.

3. Apply factory finish to exposed surfaces.

4. Wind Design: Design and size components to withstand dead loads and live loads caused by pressure and negative wind loads acting normal to plane of window as calculated in accordance with applicable code.

END OF SECTION
SECTION 087100 – DOOR HARDWARE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes commercial door hardware for the following:
 1. Swinging doors.
 2. Other doors to the extent indicated.

B. Door hardware includes, but is not necessarily limited to, the following:
 1. Mechanical door hardware.
 2. Electromechanical door hardware.
 3. Cylinders specified for doors in other sections.

C. Related Sections:
 1. Division 08 Section “Hollow Metal Doors and Frames”.
 2. Division 08 Section “Flush Wood Doors”.
 3. Division 28 Section “Access Control”.

D. Codes and References: Comply with the version year adopted by the Authority Having Jurisdiction.
 6. NFPA 105 - Installation of Smoke Door Assemblies.
 7. State Building Codes, Local Amendments.

E. Standards: All hardware specified herein shall comply with the following industry standards:
 1. ANSI/BHMA Certified Product Standards - A156 Series
 2. UL10C – Positive Pressure Fire Tests of Door Assemblies
1.3 SUBMITTALS

A. Product Data: Manufacturer's product data sheets including installation details, material descriptions, dimensions of individual components and profiles, operational descriptions and finishes.

B. Door Hardware Schedule: Prepared by or under the supervision of supplier, detailing fabrication and assembly of door hardware, as well as procedures and diagrams. Coordinate the final Door Hardware Schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.

1. Format: Comply with scheduling sequence and vertical format in DHI's "Sequence and Format for the Hardware Schedule."

2. Organization: Organize the Door Hardware Schedule into door hardware sets indicating complete designations of every item required for each door or opening. Organize door hardware sets in same order as in the Door Hardware Sets at the end of Part 3. Submittals that do not follow the same format and order as the Door Hardware Sets will be rejected and subject to resubmission.

3. Content: Include the following information:
 a. Type, style, function, size, label, hand, and finish of each door hardware item.
 b. Manufacturer of each item.
 c. Fastenings and other pertinent information.
 d. Location of door hardware set, cross-referenced to Drawings, both on floor plans and in door and frame schedule.
 e. Explanation of abbreviations, symbols, and codes contained in schedule.
 f. Mounting locations for door hardware.
 g. Door and frame sizes and materials.
 h. Warranty information for each product.

4. Submittal Sequence: Submit the final Door Hardware Schedule at earliest possible date, particularly where approval of the Door Hardware Schedule must precede fabrication of other work that is critical in the Project construction schedule. Include Product Data, Samples, Shop Drawings of other work affected by door hardware, and other information essential to the coordinated review of the Door Hardware Schedule.

C. Shop Drawings: Details of electrified access control hardware indicating the following:

1. Wiring Diagrams: Upon receipt of approved schedules, submit detailed system wiring diagrams for power, signaling, monitoring, communication, and control of the access control system electrified hardware. Differentiate between manufacturer-installed and field-installed wiring. Include the following:
 a. Elevation diagram of each unique access controlled opening showing location and interconnection of major system components with respect to their placement in the respective door openings.
 b. Complete (risers, point-to-point) access control system block wiring diagrams.
 c. Wiring instructions for each electronic component scheduled herein.
2. Electrical Coordination: Coordinate with related sections the voltages and wiring details required at electrically controlled and operated hardware openings.

D. Proof of Certification: Provide copy of manufacturer(s) official certification or accreditation document indicating proof of status as a qualified and authorized provider of the primary Integrated Wiegand Access Control Products.

E. Keying Schedule: After a keying meeting with the owner has taken place prepare a separate keying schedule detailing final instructions. Submit the keying schedule in electronic format. Include keying system explanation, door numbers, key set symbols, hardware set numbers and special instructions. Owner must approve submitted keying schedule prior to the ordering of permanent cylinders/cores.

F. Informational Submittals:
 1. Product Test Reports: Indicating compliance with cycle testing requirements, based on evaluation of comprehensive tests performed by manufacturer and witnessed by a qualified independent testing agency.

G. Operating and Maintenance Manuals: Provide manufacturers operating and maintenance manuals for each item comprising the complete door hardware installation in quantity as required in Division 01, Closeout Submittals.

1.4 QUALITY ASSURANCE

A. Manufacturers Qualifications: Engage qualified manufacturers with a minimum 5 years of documented experience in producing hardware and equipment similar to that indicated for this Project and that have a proven record of successful in-service performance.

B. Installer Qualifications: A minimum 3 years documented experience installing both standard and electrified door hardware similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance.

C. Door Hardware Supplier Qualifications: Experienced commercial door hardware distributors with a minimum 5 years documented experience supplying both mechanical and electromechanical hardware installations comparable in material, design, and extent to that indicated for this Project. Supplier recognized as a factory direct distributor by the manufacturers of the primary materials with a warehousing facility in Project's vicinity. Supplier to have on staff a certified Architectural Hardware Consultant (AHC) available during the course of the Work to consult with Contractor, Architect, and Owner concerning both standard and electromechanical door hardware and keying.

D. Integrated Wiegand, Wireless, and IP-Enabled Access Control Products Supplier Qualifications: Integrated access control products and accessories are required to be supplied and installed through current members of the ASSA ABLOY "Authorized Channel Partner" (ACP) and "Certified Integrator" (CI) programs. Suppliers are to be factory trained, certified prior to project bid, and a direct purchaser of the specified product. Installers are to be factory trained, certified prior to project bid, and are responsible for commissioning, servicing, and warranting the installed equipment specified for the project.

E. Source Limitations: Obtain each type and variety of door hardware specified in this section from a single source unless otherwise indicated.
1. Electrified modifications or enhancements made to a source manufacturer's product line by a secondary or third party source will not be accepted.

2. Provide electromechanical door hardware from the same manufacturer as mechanical door hardware, unless otherwise indicated.

F. Each unit to bear third party permanent label demonstrating compliance with the referenced standards.

G. Keying Conference: Conduct conference to comply with requirements in Division 01 Section "Project Meetings." Keying conference to incorporate the following criteria into the final keying schedule document:

1. Function of building, purpose of each area and degree of security required.
2. Plans for existing and future key system expansion.
3. Requirements for key control storage and software.
4. Installation of permanent keys, cylinder cores and software.
5. Address and requirements for delivery of keys.

H. Pre-Submittal Conference: Conduct coordination conference in compliance with requirements in Division 01 Section "Project Meetings" with attendance by representatives of Supplier(s), Installer(s), and Contractor(s) to review proper methods and the procedures for receiving, handling, and installing door hardware.

1. Prior to installation of door hardware, conduct a project specific training meeting to instruct the installing contractors' personnel on the proper installation and adjustment of their respective products. Product training to be attended by installers of door hardware (including electromechanical hardware) for aluminum, hollow metal and wood doors. Training will include the use of installation manuals, hardware schedules, templates and physical product samples as required.
2. Inspect and discuss electrical roughing-in, power supply connections, and other preparatory work performed by other trades.
3. Review sequence of operation narratives for each unique access controlled opening.
4. Review and finalize construction schedule and verify availability of materials.
5. Review the required inspecting, testing, commissioning, and demonstration procedures.

I. At completion of installation, provide written documentation that components were applied to manufacturer's instructions and recommendations and according to approved schedule.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Inventory door hardware on receipt and provide secure lock-up and shelving for door hardware delivered to Project site. Do not store electronic access control hardware, software or accessories at Project site without prior authorization.

B. Tag each item or package separately with identification related to the final Door Hardware Schedule, and include basic installation instructions with each item or package.

C. Deliver, as applicable, permanent keys, cylinders, cores, access control credentials, software and related accessories directly to Owner via registered mail or overnight package service. Instructions for delivery to the Owner shall be established at the "Keying Conference".

Door Hardware 4 of 26 08 71 00
1.6 COORDINATION

A. Templates: Obtain and distribute to the parties involved templates for doors, frames, and other work specified to be factory prepared for installing standard and electrified hardware. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing hardware to comply with indicated requirements.

B. Door Hardware and Electrical Connections: Coordinate the layout and installation of scheduled electrified door hardware and related access control equipment with required connections to source power junction boxes, low voltage power supplies, detection and monitoring hardware, and fire and detection alarm systems.

C. Door and Frame Preparation: Doors and corresponding frames are to be prepared, reinforced and pre-wired (if applicable) to receive the installation of the specified electrified, monitoring, signaling and access control system hardware without additional in-field modifications.

1.7 WARRANTY

A. General Warranty: Reference Division 01, General Requirements. Special warranties specified in this Article shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.

B. Warranty Period: Written warranty, executed by manufacturer(s), agreeing to repair or replace components of standard and electrified door hardware that fails in materials or workmanship within specified warranty period after final acceptance by the Owner. Failures include, but are not limited to, the following:

1. Structural failures including excessive deflection, cracking, or breakage.
2. Faulty operation of the hardware.
3. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
4. Electrical component defects and failures within the systems operation.

C. Standard Warranty Period: One year from date of Substantial Completion, unless otherwise indicated.

D. Special Warranty Periods:

1. Ten years for mortise locks and latches.
2. Five years for exit hardware.
3. Twenty five years for manual surface door closer bodies.
4. Two years for electromechanical door hardware.

1.8 MAINTENANCE SERVICE

A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions as needed for Owner's continued adjustment, maintenance, and removal and replacement of door hardware.
PART 2 - PRODUCTS

2.1 SCHEDULED DOOR HARDWARE

A. General: Provide door hardware for each door to comply with requirements in Door Hardware Sets and each referenced section that products are to be supplied under.

B. Designations: Requirements for quantity, item, size, finish or color, grade, function, and other distinctive qualities of each type of door hardware are indicated in the Door Hardware Sets at the end of Part 3. Products are identified by using door hardware designations, as follows:

1. Named Manufacturer's Products: Product designation and manufacturer are listed for each door hardware type required for the purpose of establishing requirements. Manufacturers' names are abbreviated in the Door Hardware Schedule.

C. Substitutions: Requests for substitution and product approval for inclusive mechanical and electromechanical door hardware in compliance with the specifications must be submitted in writing and in accordance with the procedures and time frames outlined in Division 01, Substitution Procedures. Approval of requests is at the discretion of the architect, owner, and their designated consultants.

2.2 HANGING DEVICES

A. Hinges: ANSI/BHMA A156.1 certified butt hinges with number of hinge knuckles and other options as specified in the Door Hardware Sets.

1. Quantity: Provide the following hinge quantity:
 a. Two Hinges: For doors with heights up to 60 inches.
 b. Three Hinges: For doors with heights 61 to 90 inches.
 c. Four Hinges: For doors with heights 91 to 120 inches.
 d. For doors with heights more than 120 inches, provide 4 hinges, plus 1 hinge for every 30 inches of door height greater than 120 inches.

2. Hinge Size: Provide the following, unless otherwise indicated, with hinge widths sized for door thickness and clearances required:
 a. Widths up to 3'0": 4-1/2" standard or heavy weight as specified.
 b. Sizes from 3'1" to 4'0": 5" standard or heavy weight as specified.

3. Hinge Weight and Base Material: Unless otherwise indicated, provide the following:
 a. Exterior Doors: Heavy weight, non-ferrous, ball bearing or oil impregnated bearing hinges unless Hardware Sets indicate standard weight.
 b. Interior Doors: Standard weight, steel, ball bearing or oil impregnated bearing hinges unless Hardware Sets indicate heavy weight.

4. Hinge Options: Comply with the following:
a. Non-removable Pins: Provide set screw in hinge barrel that, when tightened into a groove in hinge pin, prevents removal of pin while door is closed; for the all out-swinging lockable doors.

5. Manufacturers:
 a. Hager Companies (HA) - CB Series.
 b. McKinney Products; ASSA ABLOY Architectural Door Accessories (MK) - TA Series.
 c. Stanley Hardware (ST) - CB Series.

B. Continuous Geared Hinges: ANSI/BHMA A156.26 Grade 1-600 certified continuous geared hinge. with minimum 0.120-inch thick extruded 6060 T6 aluminum alloy hinge leaves and a minimum overall width of 4 inches. Hinges are non-handed, reversible and fabricated to template screw locations. Factory trim hinges to suit door height and prepare for electrical cut-outs.

 1. Manufacturers:
 a. Bommer Industries (BO).
 b. Hager Companies (HA).
 c. Pemko Products; ASSA ABLOY Architectural Door Accessories (PE).

2.3 POWER TRANSFER DEVICES

A. Concealed Quick Connect Electric Power Transfers: Provide concealed wiring pathway housing mortised into the door and frame for low voltage electrified door hardware. Furnish with Molex™ standardized plug connectors and sufficient number of concealed wires (up to 12) to accommodate the electrified functions specified in the Door Hardware Sets. Connectors plug directly to through-door wiring harnesses for connection to electric locking devices and power supplies. Wire nut connections are not acceptable.

 1. Manufacturers:
 a. Pemko Products; ASSA ABLOY Architectural Door Accessories (PE) – EL-CEPT Series.
 b. Securitron (SU) - EL-CEPT Series.
 c. Von Duprin (VD) - EPT-10 Series.

B. Electric Door Wire Harnesses: Provide electric/data transfer wiring harnesses with standardized plug connectors to accommodate up to twelve (12) wires. Connectors plug directly to through-door wiring harnesses for connection to electric locking devices and power supplies. Provide sufficient number and type of concealed wires to accommodate electric function of specified hardware. Provide a connector for through-door electronic locking devices and from hinge to junction box above the opening. Wire nut connections are not acceptable. Determine the length required for each electrified hardware component for the door type, size and construction, minimum of two per electrified opening.

 1. Provide one each of the following tools as part of the base bid contract:
b. McKinney Products; ASSA ABLOY Architectural Door Accessories (MK) - Connector Hand Tool: QC-R003.

2. Manufacturers:

2.4 DOOR OPERATING TRIM

A. Flush Bolts and Surface Bolts: ANSI/BHMA A156.3 and A156.16, Grade 1, certified.
 1. Flush bolts to be furnished with top rod of sufficient length to allow bolt retraction device location approximately six feet from the floor.
 2. Furnish dust proof strikes for bottom bolts.
 3. Surface bolts to be minimum 8" in length and U.L. listed for labeled fire doors and U.L. listed for windstorm components where applicable.
 4. Provide related accessories (mounting brackets, strikes, coordinators, etc.) as required for appropriate installation and operation.
 5. Manufacturers:
 a. Door Controls International (DC).
 b. Rockwood Products; ASSA ABLOY Architectural Door Accessories (RO).
 c. Trimco (TC).

B. Coordinators: ANSI/BHMA A156.3 certified door coordinators consisting of active-leaf, hold-open lever and inactive-leaf release trigger. Model as indicated in hardware sets.
 1. Manufacturers:
 a. Door Controls International (DC).
 b. Rockwood Products; ASSA ABLOY Architectural Door Accessories (RO).
 c. Trimco (TC).

C. Door Push Plates and Pulls: ANSI/BHMA A156.6 certified door pushes and pulls of type and design specified in the Hardware Sets. Coordinate and provide proper width and height as required where conflicting hardware dictates.
 1. Push/Pull Plates: Minimum .050 inch thick, size as indicated in hardware sets, with beveled edges, secured with exposed screws unless otherwise indicated.
 2. Door Pull and Push Bar Design: Size, shape, and material as indicated in the hardware sets. Minimum clearance of 2 1/2-inches from face of door unless otherwise indicated.
 3. Offset Pull Design: Size, shape, and material as indicated in the hardware sets. Minimum clearance of 2 1/2-inches from face of door and offset of 90 degrees unless otherwise indicated.
 4. Fasteners: Provide manufacturer's designated fastener type as indicated in Hardware Sets.
 5. Manufacturers:
 a. Hiawatha, Inc. (HI).
b. Rockwood Products; ASSA ABLOY Architectural Door Accessories (RO).

c. Trimco (TC).

2.5 CYLINDERS AND KEYING

A. General: Cylinder manufacturer to have minimum (10) years experience designing secured master key systems and have on record a published security keying system policy.

B. Source Limitations: Obtain each type of keyed cylinder and keys from the same source manufacturer as locksets and exit devices, unless otherwise indicated.

C. Cylinders: Original manufacturer cylinders complying with the following:

1. Mortise Type: Threaded cylinders with rings and cams to suit hardware application.
2. Rim Type: Cylinders with back plate, flat-type vertical or horizontal tailpiece, and raised trim ring.
3. Bored-Lock Type: Cylinders with tailpieces to suit locks.
4. Mortise and rim cylinder collars to be solid and recessed to allow the cylinder face to be flush and be free spinning with matching finishes.
5. Keyway: Manufacturer’s Standard.

D. Patented Cylinders: ANSI/BHMA A156.5, Grade 1, certified cylinders employing a utility patented and restricted keyway requiring the use of patented controlled keys. Provide bump resistant, fixed core cylinders as standard with solid recessed cylinder collars. Cylinders are to be factory keyed where permanent keying records will be established and maintained.

1. Provide a 6 pin multi-level master key system comprised of patented controlled keys and security and high security cylinders operated by one (1) key of the highest level. Geographical exclusivity to be provided for all security and high security cylinders and UL437 certification where specified.
 a. Level 1 Cylinders: Provide utility patented controlled keyway cylinders that are furnished with patented keys available only from authorized distribution.
 b. Level 2 Cylinders: Provide utility patented controlled keyway and side bar locking incorporating unique angled bottom pins for geographical exclusivity. Cylinders constructed to provide protection against bumping and picking.
 c. Level 3 Cylinders: Provide utility patented controlled keyway and side bar locking incorporating unique angled bottom pins for geographical exclusivity. Cylinders to be UL437 certified and constructed to provide protection against bumping, picking, and drilling.
 d. Refer to hardware sets for specified levels.

2. Manufacturers:
 a. Sargent Manufacturing (SA) - Degree Series.
 b. Corbin Russwin (RU) – Access 3 Series.

E. Keying System: Each type of lock and cylinders to be factory keyed.

1. Conduct specified “Keying Conference” to define and document keying system instructions and requirements.
2. Furnish factory cut, nickel-silver large bow permanently inscribed with a visual key control number as directed by Owner.
3. New System: Key locks to a new key system as directed by the Owner.

F. Key Quantity: Provide the following minimum number of keys:
 1. Change Keys per Cylinder: Two (2)
 2. Master Keys (per Master Key Level/Group): Five (5).

G. Construction Keying: Provide construction master keyed cylinders.

H. Key Registration List (Bitting List):
 1. Provide keying transcript list to Owner’s representative in the proper format for importing into key control software.
 2. Provide transcript list in writing or electronic file as directed by the Owner.

I. Key Control Cabinet: Provide a key control system including envelopes, labels, and tags with self-locking key clips, receipt forms, 3-way visible card index, temporary markers, permanent markers, and standard metal cabinet. Key control cabinet shall have expansion capacity of 150% of the number of locks required for the project.
 1. Manufacturers:
 a. Lund Equipment (LU).
 b. MMF Industries (MM).
 c. Telkee (TK).

J. Key Control Software: Provide one network version of “Key Wizard” branded key management software package that includes one year of technical support and upgrades to software at no charge. Provide factory key system formatted for importing into “Key Wizard” software.

2.6 MECHANICAL LOCKS AND LATCHING DEVICES

A. Mortise Locksets, Grade 1 (Heavy Duty): ANSI/BHMA A156.13, Series 1000, Operational Grade 1 certified. Locksets are to be manufactured with a corrosion resistant steel case and be field-reversible for handing without disassembly of the lock body.
 1. Mortise locks to be certified Security Grade 1.
 2. Extended cycle test: Locks to have been cycle tested in ordinance with ANSI/BHMA 156.13 requirements to 10 million cycles.
 3. Manufacturers:
 b. Sargent Manufacturing (SA) – 8200 Series.
2.7 INTEGRATED WIEGAND OUTPUT LOCKING DEVICES – MULTI-CLASS READER

A. Integrated Wiegand Output Multi-Class Mortise Locks: Wiegand output ANSI A156.13, Grade 1, mortise lockset with integrated card reader, request-to-exit signaling, door position status switch, and latchbolt monitoring in one complete unit. Hard wired, solenoid driven locking/unlocking control of the lever handle trim, 3/4" deadlocking anti-friction latch, and 1" case-hardened steel deadbolt. Lock is U.L listed and labeled for use on up to 3 hour fire rated openings. Available with or without keyed high security cylinder override.

1. Open architecture, hard wired platform supports centralized control of locking units with new or existing Wiegand compatible access control systems. Latchbolt monitoring and door position switch act in conjunction to report door-in-frame (DPS) and door latched (door closed and latched) conditions.

2. Integrated reader supports the following credentials:
 a. 125kHz proximity credentials: HID, AWID, Indala, and EM4102.
 b. 13.56 MHz proximity credentials: HID iClass, HID iClass SE, SE for MIFARE Classic, DESFire EV1.

3. 12VDC external power supply required for reader and lock, with optional 24VDC lock solenoid. Fail safe or fail secure options.

4. Energy Efficient Design: Provide lock bodies which have a holding current draw of 15mA maximum, and can operate on either 12 or 24 volts. Locks are to be field configurable for fail safe or fail secure operation.

5. Support end-of-line resistors contained within the lock case.

6. Installation requires only one cable run from the lock to the access control panel without requirements for additional proprietary lock panel interface boards or modules.

7. Installation to include manufacturer's access control panel interface board or module where required for Wiegand output protocol.

8. Manufacturers:
 b. Sargent Manufacturing (SA) – M1 8200 Series.

2.8 AUXILIARY LOCKS

A. Mortise Deadlocks, Large Case: ANSI/BHMA A156.13, Series 1000, Grade 1, certified large case mortise type deadlocks constructed of heavy gauge wrought corrosion resistant steel. One piece stainless steel bolts with a 1” throw. Deadlocks to be products of the same source manufacturer and keyway as other locksets.

1. Manufacturers:
 a. Corbin Russwin Hardware (RU) - ML2000 Series.
 b. Sargent Manufacturing (SA) - 8200 Series.
 c. Yale Locks and Hardware (YA) - 8800 Series.

B. Narrow Case Deadlocks and Deadlatches: ANSI/BHMA 156.13 Series 1000 Grade 1 certified narrow case deadlocks and deadlatches for swinging or sliding door applications. All functions shall be manufactured in a single sized case formed from 12 gauge minimum, corrosion resistant steel (option for fully stainless steel case and components). Provide minimum 2 7/8" throw laminated stainless steel bolt. Bottom rail deadlocks to have 3/8" diameter bolts.

1. Manufacturers:
a. Adams Rite Manufacturing (AD) - MS1850S / MS1950 Series.

2.9 LOCK AND LATCH STRIKES

A. Strikes: Provide manufacturer's standard strike with strike box for each latch or lock bolt, with curved lip extended to protect frame, finished to match door hardware set, unless otherwise indicated, and as follows:

1. Flat-Lip Strikes: For locks with three-piece antifriction latchbolts, as recommended by manufacturer.
2. Extra-Long-Lip Strikes: For locks used on frames with applied wood casing trim.
3. Aluminum-Frame Strike Box: Provide manufacturer's special strike box fabricated for aluminum framing.
4. Double-lipped strikes: For locks at double acting doors. Furnish with retractable stop for rescue hardware applications.

B. Standards: Comply with the following:

2. Strikes for Bored Locks and Latches: BHMA A156.2.
3. Strikes for Auxiliary Deadlocks: BHMA A156.36.
4. Dustproof Strikes: BHMA A156.16.

2.10 CONVENTIONAL EXIT DEVICES

A. General Requirements: All exit devices specified herein shall meet or exceed the following criteria:

1. At doors not requiring a fire rating, provide devices complying with NFPA 101 and listed and labeled for "Panic Hardware" according to UL305. Provide proper fasteners as required by manufacturer including sex nuts and bolts at openings specified in the Hardware Sets.

2. Where exit devices are required on fire rated doors, provide devices complying with NFPA 80 and with UL labeling indicating "Fire Exit Hardware". Provide devices with the proper fasteners for installation as tested and listed by UL. Consult manufacturer's catalog and template book for specific requirements.

3. Except on fire rated doors, provide exit devices with hex key dogging device to hold the pushbar and latch in a retracted position. Provide optional keyed cylinder dogging on devices where specified in Hardware Sets.

4. Devices must fit flat against the door face with no gap that permits unauthorized dogging of the push bar. The addition of filler strips is required in any case where the door light extends behind the device as in a full glass configuration.

5. Lever Operating Trim: Where exit devices require lever trim, furnish manufacturer's heavy duty escutcheon trim with threaded studs for thru-bolts.

 a. Lock Trim Design: As indicated in Hardware Sets, provide finishes and designs to match that of the specified locksets.
b. Where function of exit device requires a cylinder, provide a cylinder (Rim or Mortise) as specified in Hardware Sets.

6. Vertical Rod Exit Devices: Where surface or concealed vertical rod exit devices are used at interior openings, provide as less bottom rod (LBR) unless otherwise indicated. Provide dust proof strikes where thermal pins are required to project into the floor.

7. Narrow Stile Applications: At doors constructed with narrow stiles, or as specified in Hardware Sets, provide devices designed for maximum 2” wide stiles.

9. Rail Sizing: Provide exit device rails factory sized for proper door width application.

10. Through Bolt Installation: For exit devices and trim as indicated in Door Hardware Sets.

B. Conventional Push Rail Exit Devices (Heavy Duty): ANSI/BHMA A156.3, Grade 1 certified panic and fire exit hardware devices furnished in the functions specified in the Hardware Sets. Exit device latch to be stainless steel, pullman type, with deadlock feature.

1. Manufacturers:
 a. Corbin Russwin Hardware (RU) - ED4000 / ED5000 Series.
 b. Sargent Manufacturing (SA) - 80 Series.

2.11 INTEGRATED WIEGAND OUTPUT EXIT DEVICES – MULTI-CLASS READER

A. Integrated Wiegand Output Multi-Class Exit Hardware: Wiegand output ANSI 156.3 Grade 1 rim, mortise, and vertical rod exit device hardware with integrated proximity card reader, latchbolt and touchbar monitoring, and request-to-exit signaling, in one complete unit. Hard wired, solenoid driven locking/unlocking control of the lever handle exit trim with 3/4” throw latch bolt. U.L listed and labeled for either panic or “fire exit hardware” for use on up to 3 hour fire rated openings. Available with or without keyed high security cylinder override.

1. Open architecture, hard wired platform supports centralized control of locking units with new or existing Wiegand compatible access control systems. Inside push bar (request-to-exit) signaling and door position (open/closed status) monitoring (via separately connected DPS).

2. Integrated reader supports the following credentials:
 a. 125kHz proximity credentials: HID, AWID, Indala, and EM4102.
 b. 13.56 MHz proximity credentials: HID iClass, HID iClass SE, SE for MIFARE Classic, DESFire EV1.

3. 12VDC external power supply required for reader. 24VDC required for solenoid operated exit trim. Fail safe or fail secure options.

4. Installation requires only one cable run from the exit hardware to the access control panel without requirements for additional proprietary lock panel interface boards or modules.

5. Competitor Alternates Allowed Option>Installation to include manufacturer's access control panel interface board or module where required for Wiegand output protocol.

6. Manufacturers:
 a. Corbin Russwin (RU) – ED5000 SE-LP10 Series.
2.12 DOOR CLOSERS

A. All door closers specified herein shall meet or exceed the following criteria:

1. General: Door closers to be from one manufacturer, matching in design and style, with the same type door preparations and templates regardless of application or spring size. Closers to be non-handed with full sized covers including installation and adjusting information on inside of cover.

2. Standards: Closers to comply with UL-10C for Positive Pressure Fire Test and be U.L. listed for use of fire rated doors.

3. Cycle Testing: Provide closers which have surpassed 15 million cycles in a test witnessed and verified by UL.

4. Size of Units: Comply with manufacturer's written recommendations for sizing of door closers depending on size of door, exposure to weather, and anticipated frequency of use. Where closers are indicated for doors required to be accessible to the physically handicapped, provide units complying with ANSI ICC/A117.1.

5. Closer Arms: Provide heavy duty, forged steel closer arms unless otherwise indicated in Hardware Sets.

6. Closers shall not be installed on exterior or corridor side of doors; where possible install closers on door for optimum aesthetics.

7. Closer Accessories: Provide door closer accessories including custom templates, special mounting brackets, spacers and drop plates as required for proper installation. Provide through-bolt and security type fasteners as specified in the hardware sets.

B. Door Closers, Surface Mounted (Heavy Duty): ANSI/BHMA A156.4, Grade 1 surface mounted, heavy duty door closers with complete spring power adjustment, sizes 1 thru 6; and fully operational adjustable according to door size, frequency of use, and opening force. Closers to be rack and pinion type, one piece cast iron or aluminum alloy body construction, with adjustable backcheck and separate non-critical valves for closing sweep and latch speed control. Provide non-handed units standard.

1. Manufacturers:
 a. Corbin Russwin Hardware (RU) - DC8000 Series.
 b. Sargent Manufacturing (SA) - 351 Series.
 c. Norton Door Controls (NO) - 7500 Series.

2.13 ARCHITECTURAL TRIM

A. Door Protective Trim

1. General: Door protective trim units to be of type and design as specified below or in the Hardware Sets.
2. Size: Fabricate protection plates (kick, armor, or mop) not more than 2" less than door width (LDW) on stop side of single doors and 1" LDW on stop side of pairs of doors, and not more than 1" less than door width on pull side. Coordinate and provide proper width and height as required where conflicting hardware dictates. Height to be as specified in the Hardware Sets.

3. Where plates are applied to fire rated doors with the top of the plate more than 16" above the bottom of the door, provide plates complying with NFPA 80. Consult manufacturer’s catalog and template book for specific requirements for size and applications.

4. Protection Plates: ANSI/BHMA A156.6 certified protection plates (kick, armor, or mop), fabricated from the following:
 a. Stainless Steel: 300 grade, 050-inch thick.

5. Options and fasteners: Provide manufacturer’s designated fastener type as specified in the Hardware Sets. Provide countersunk screw holes.

6. Manufacturers:
 a. Hiawatha, Inc. (HI).
 b. Rockwood Products; ASSA ABLOY Architectural Door Accessories (RO).
 c. Trimco (TC).

2.14 DOOR STOPS AND HOLDERS

A. General: Door stops and holders to be of type and design as specified below or in the Hardware Sets.

B. Door Stops and Bumpers: ANSI/BHMA A156.16, Grade 1 certified door stops and wall bumpers. Provide wall bumpers, either convex or concave types with anchorage as indicated, unless floor or other types of door stops are specified in Hardware Sets. Do not mount floor stops where they will impede traffic. Where floor or wall bumpers are not appropriate, provide overhead type stops and holders.

 i. Manufacturers:
 a. Hiawatha, Inc. (HI).
 b. Rockwood Products; ASSA ABLOY Architectural Door Accessories (RO).
 c. Trimco (TC).

2.15 ARCHITECTURAL SEALS

A. General: Thresholds, weatherstripping, and gasket seals to be of type and design as specified below or in the Hardware Sets. Provide continuous weatherstrip gasketing on exterior doors and provide smoke, light, or sound gasketing on interior doors where indicated. At exterior applications provide non-corrosive fasteners and elsewhere where indicated.

B. Smoke Labeled Gasketing: Assemblies complying with NFPA 105 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for smoke control ratings indicated, based on testing according to UL 1784.
1. Provide smoke labeled perimeter gasketing at all smoke labeled openings.

C. Fire Labeled Gasketing: Assemblies complying with NFPA 80 that are listed and labeled by a testing and inspecting agency acceptable to authorities having jurisdiction, for fire ratings indicated, based on testing according to UL-10C.

D. Sound-Rated Gasketing: Assemblies that are listed and labeled by a testing and inspecting agency, for sound ratings indicated.

E. Replaceable Seal Strips: Provide only those units where resilient or flexible seal strips are easily replaceable and readily available from stocks maintained by manufacturer.

F. Manufacturers:

 1. National Guard Products (NG).
 2. Pemko Products; ASSA ABLOY Architectural Door Accessories (PE).

2.16 ELECTRONIC ACCESSORIES

A. Door Position Switches: Door position magnetic reed contact switches specifically designed for use in commercial door applications. On recessed models the contact and magnetic housing snap-lock into a 1" diameter hole. Surface mounted models include wide gap distance design complete with armored flex cabling. Provide SPDT, N/O switches with optional Rare Earth Magnet installation on steel doors with flush top channels.

 1. Manufacturers:

 a. Sargent Manufacturing (SA) – 3280 Series.
 b. Securitron (SU) - DPS Series.

B. Wiegand Test Unit: Test unit verifies proper Wiegand output integrated card reader lock installation in the field by testing for proper wiring, card reader data integrity, and lock functionality including lock/unlock, door position, and request-to-exit status. 12 or 24VDC voltage adjustable operating as Fail Safe or Fail Secure.

 1. Manufacturers:

 a. Corbin Russwin Hardware (RU) – WT2 Wiegand Test Unit.
 b. Sargent Manufacturing (SA) – WT2 Wiegand Test Unit.
 c. Yale Locks and Hardware (YA) – WT2 Wiegand Test Unit.

C. Switching Power Supplies: Provide switching power supplies that are dual voltage, UL listed, supervised units. Units shall be field selectable with a dedicated battery charging circuit that provide 4 Amp at 12VDC or 24VDC continuous, with up to 16 independently controlled power limited outputs. Units shall tolerate brownout or overvoltage input ± 15% of nominal voltage and have thermal shutdown protection with auto restart. Circuit breaker shall protect against overcurrent and reverse battery faults and units shall be available with a single relay fire trigger
or individually triggered relayed outputs. Provide the least number of units, at the appropriate amperage level, sufficient to exceed the required total draw for the specified electrified hardware and access control equipment.

1. Manufacturers:
 a. Securitron (SU) - AQ Series.

2.17 FABRICATION

A. Fasteners: Provide door hardware manufactured to comply with published templates generally prepared for machine, wood, and sheet metal screws. Provide screws according to manufacturers recognized installation standards for application intended.

2.18 FINISHES

A. Standard: Designations used in the Hardware Sets and elsewhere indicate hardware finishes complying with ANSI/BHMA A156.18, including coordination with traditional U.S. finishes indicated by certain manufacturers for their products.

B. Provide quality of finish, including thickness of plating or coating (if any), composition, hardness, and other qualities complying with manufacturer's standards, but in no case less than specified by referenced standards for the applicable units of hardware.

C. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine scheduled openings, with Installer present, for compliance with requirements for installation tolerances, labeled fire door assembly construction, wall and floor construction, and other conditions affecting performance.

B. Notify architect of any discrepancies or conflicts between the door schedule, door types, drawings and scheduled hardware. Proceed only after such discrepancies or conflicts have been resolved in writing.

3.2 PREPARATION

A. Hollow Metal Doors and Frames: Comply with ANSI/DHI A115 series.

3.3 INSTALLATION

A. Install each item of mechanical and electromechanical hardware and access control equipment to comply with manufacturer's written instructions and according to specifications.

1. Installers are to be trained and certified by the manufacturer on the proper installation and adjustment of fire, life safety, and security products including: hanging devices; locking devices; closing devices; and seals.

B. Mounting Heights: Mount door hardware units at heights indicated in following applicable publications, unless specifically indicated or required to comply with governing regulations:

2. Wood Doors: DHI WDHS.3, "Recommended Locations for Architectural Hardware for Wood Flush Doors."
3. Where indicated to comply with accessibility requirements, comply with ANSI A117.1 "Accessibility Guidelines for Buildings and Facilities."
4. Provide blocking in drywall partitions where wall stops or other wall mounted hardware is located.

C. Retrofitting: Install door hardware to comply with manufacturer's published templates and written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing work specified in Division 9 Sections. Do not install surface-mounted items until finishes have been completed on substrates involved.

D. Thresholds: Set thresholds for exterior and acoustical doors in full bed of sealant complying with requirements specified in Division 7 Section "Joint Sealants."

E. Storage: Provide a secure lock up for hardware delivered to the project but not yet installed. Control the handling and installation of hardware items so that the completion of the work will not be delayed by hardware losses before and after installation.

3.4 FIELD QUALITY CONTROL

A. Field Inspection: Supplier will perform a final inspection of installed door hardware and state in report whether work complies with or deviates from requirements, including whether door hardware is properly installed, operating and adjusted.

3.5 ADJUSTING

A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.
3.6 CLEANING AND PROTECTION

A. Protect all hardware stored on construction site in a covered and dry place. Protect exposed hardware installed on doors during the construction phase. Install any and all hardware at the latest possible time frame.

B. Clean adjacent surfaces soiled by door hardware installation.

C. Clean operating items as necessary to restore proper finish. Provide final protection and maintain conditions that ensure door hardware is without damage or deterioration at time of owner occupancy.

3.7 DEMONSTRATION

A. Instruct Owner’s maintenance personnel to adjust, operate, and maintain mechanical and electromechanical door hardware.

3.8 DOOR HARDWARE SETS

A. The hardware sets represent the design intent and direction of the owner and architect. They are a guideline only and should not be considered a detailed hardware schedule. Discrepancies, conflicting hardware and missing items should be brought to the attention of the architect with corrections made prior to the bidding process. Omitted items not included in a hardware set should be scheduled with the appropriate additional hardware required for proper application and functionality.

B. The supplier is responsible for handing and sizing all products and providing the correct option for the appropriate door type and material where more than one is presented in the hardware sets. Quantities listed are for each pair of doors, or for each single door.

Hardware Sets

Set: 1.0

Doors: 112A

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Code 1</th>
<th>Code 2</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Continuous Hinge</td>
<td>CFM__HD1 X LAR</td>
<td>PE</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Flush Bolt (manual)</td>
<td>555 (metal) / 557 (wood)</td>
<td>US26D D RO</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dust Proof Strike</td>
<td>570</td>
<td>US26D D RO</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Mortise Deadlock</td>
<td>MS1850S</td>
<td>628</td>
<td>AD</td>
</tr>
<tr>
<td>1</td>
<td>Cylinder</td>
<td>4066</td>
<td>130</td>
<td>AD</td>
</tr>
<tr>
<td>1</td>
<td>Cylinder</td>
<td>DG2 63 42</td>
<td>US32D D SA</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Pull</td>
<td>RM201 Mtg-Type 12XHD</td>
<td>US32D-316 RO</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Push Bar</td>
<td>RM350 Mtg-Type 12XHD</td>
<td>US32D- RO</td>
<td></td>
</tr>
</tbody>
</table>

Door Hardware 19 of 26 08 71 00
<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Surface Closer</td>
<td>CPS7500 (brackets and drop plate as required)</td>
<td>316</td>
<td>NO</td>
</tr>
<tr>
<td>1 Threshold</td>
<td>273x3AFG MSES10SS</td>
<td>689</td>
<td>PE</td>
</tr>
<tr>
<td>1 Gasketing</td>
<td>By Door Manufacturer</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>2 Sweep</td>
<td>307APK</td>
<td></td>
<td>PE</td>
</tr>
</tbody>
</table>

Set: 2.0

Doors: 113C

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Continuous Hinge</td>
<td>CFM__HD1 X LAR</td>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>1 Exit Device</td>
<td>DG263 16 8804</td>
<td>US32D</td>
<td>SA</td>
</tr>
<tr>
<td>1 Pull</td>
<td>RM201 Mtg-Type 12XHD</td>
<td>US32D-316</td>
<td>RO</td>
</tr>
<tr>
<td>1 Surface Closer</td>
<td>CPS7500 (brackets and drop plate as required)</td>
<td>689</td>
<td>NO</td>
</tr>
<tr>
<td>1 Threshold</td>
<td>271A MSES10SS</td>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>1 Gasketing</td>
<td>By Door Manufacturer</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>1 Sweep</td>
<td>307APK</td>
<td></td>
<td>PE</td>
</tr>
</tbody>
</table>

Set: 3.0

Doors: 120A, 120B, 120C, 120D, 120E, 301

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Continuous Hinge</td>
<td>CFM__HD1 X LAR</td>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>1 Exit Device</td>
<td>DG263 16 8804</td>
<td>US32D</td>
<td>SA</td>
</tr>
<tr>
<td>1 Pull</td>
<td>RM201 Mtg-Type 12XHD</td>
<td>US32D-316</td>
<td>RO</td>
</tr>
<tr>
<td>1 Surface Closer</td>
<td>CLP7500 (brackets and drop plate as required)</td>
<td>689</td>
<td>NO</td>
</tr>
<tr>
<td>1 Kick Plate</td>
<td>K1050 10" high BEV CSK</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td>1 Threshold</td>
<td>271A MSES10SS</td>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>1 Gasketing</td>
<td>S88BL (Head & Jambs)</td>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>1 Sweep</td>
<td>307APK</td>
<td></td>
<td>PE</td>
</tr>
</tbody>
</table>

Set: 4.0

Doors: 124, 124F, 124JJ, 124PP, 124Q, 124Z

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Continuous Hinge</td>
<td>CFM__HD1 PT X LAR</td>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>1 Access Control</td>
<td>DG263 M1-8876-24V-IPS ETNJ</td>
<td>US32D</td>
<td>SA</td>
</tr>
<tr>
<td>1 Surface Closer</td>
<td>CLP7500 (brackets and drop plate as required)</td>
<td>689</td>
<td>NO</td>
</tr>
<tr>
<td>1 Kick Plate</td>
<td>K1050 10" high BEV CSK</td>
<td>US32D</td>
<td>RO</td>
</tr>
<tr>
<td>1 Threshold</td>
<td>271A MSES10SS</td>
<td></td>
<td>PE</td>
</tr>
<tr>
<td>1 Gasketing</td>
<td>S88BL (Head & Jambs)</td>
<td></td>
<td>PE</td>
</tr>
</tbody>
</table>
1 Sweep 307APK PE
1 ElectroLynx Harness (frame) QC-C1500P MK
1 ElectroLynx Harness (door) QC-C** (Length / Type as Required) MK
1 Wiring Diagram WD-SYSKP (Elevations and Point to Point) SA
1 Electric Power Transfer EL-CEPT SU
1 Power Supply AQD4-8C8R2 SU

Doors: 125

Set: 5.0

1 Continuous Hinge CFM_HD1 X LAR PE
1 Flush Bolt (set, automatic) 2842/2942 US26D RO
1 Dust Proof Strike 570 US26D RO
1 Storeroom Lock DG263 8204 LNNJ US26D SA
1 Coordinator 2672 Wear Plates Black RO
2 Surface Closer CLP7500 (brackets and drop plate as required) 689 NO
2 Kick Plate K1050 10" high BEV CSK US32D RO
1 Threshold 1715A PE
1 Gasketing S88BL (Head & Jambs) PE
2 Sweep 307APK PE
1 Astragal S771C PE

Doors: 101A, 102A

Set: 6.0

1 Continuous Hinge CFM_HD1 X LAR PE
1 Storeroom Lock DG263 8204 LNNJ US26D SA
1 Surface Closer CLP7500 (brackets and drop plate as required) 689 NO
1 Threshold 271A MSES10SS PE
1 Gasketing S88BL (Head & Jambs) PE
1 Rain Guard 346C PE
1 Sweep 307APK PE

Doors: 113A

Set: 7.0

3 Hinge TA2714 FT US26D MK
1 Exit Device (passage) 12 8815 ETNJ US32D SA
1 Surface Closer 7500 (brackets and drop plate as required) 689 NO

Door Hardware 21 of 26 08 71 00
<table>
<thead>
<tr>
<th>Item Description</th>
<th>Model/Part Number</th>
<th>Finish</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Wall/ Floor Stop</td>
<td>RM861 / RM850</td>
<td>US32D RO</td>
<td>1</td>
</tr>
<tr>
<td>1 Gasketing</td>
<td>S88BL (Head & Jambs)</td>
<td>PE</td>
<td>1</td>
</tr>
<tr>
<td>Set: 8.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Hinge (heavy weight)</td>
<td>T4A3786 FT</td>
<td>US26D MK</td>
<td>3</td>
</tr>
<tr>
<td>1 Exit Device (passage)</td>
<td>12 8815 ETNJ</td>
<td>US32D SA</td>
<td>1</td>
</tr>
<tr>
<td>1 Surface Closer</td>
<td>CLP7500 (brackets and drop plate as required)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1 Kick Plate</td>
<td>K1050 10" high BEV CSK</td>
<td>US32D RO</td>
<td>1</td>
</tr>
<tr>
<td>1 Gasketing</td>
<td>S88BL (Head & Jambs)</td>
<td>PE</td>
<td>1</td>
</tr>
<tr>
<td>Doors: 113B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Hinge</td>
<td>TA2714 FT</td>
<td>US26D MK</td>
<td>3</td>
</tr>
<tr>
<td>1 Storeroom Lock</td>
<td>DG263 8204 LNNJ</td>
<td>US26D SA</td>
<td>1</td>
</tr>
<tr>
<td>2 Wall/ Floor Stop</td>
<td>RM861 / RM850</td>
<td>US32D RO</td>
<td>2</td>
</tr>
<tr>
<td>3 Silencer</td>
<td>608</td>
<td>RO</td>
<td>3</td>
</tr>
<tr>
<td>Set: 9.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Hinge</td>
<td>TA2714 x NRP FT</td>
<td>US26D MK</td>
<td>3</td>
</tr>
<tr>
<td>1 Storeroom Lock</td>
<td>DG263 8204 LNNJ</td>
<td>US26D SA</td>
<td>1</td>
</tr>
<tr>
<td>1 Wall/ Floor Stop</td>
<td>RM861 / RM850</td>
<td>US32D RO</td>
<td>1</td>
</tr>
<tr>
<td>3 Silencer</td>
<td>608</td>
<td>RO</td>
<td>3</td>
</tr>
<tr>
<td>Doors: 118</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Hinge</td>
<td>TA2714 FT</td>
<td>US26D MK</td>
<td>3</td>
</tr>
<tr>
<td>1 Storeroom Lock</td>
<td>DG263 8204 LNNJ</td>
<td>US26D SA</td>
<td>1</td>
</tr>
<tr>
<td>1 Surface Closer</td>
<td>(PR) 7500 (Reg or PA) (brackets and drop plate as required)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1 Kick Plate</td>
<td>K1050 10" high BEV CSK</td>
<td>US32D RO</td>
<td>1</td>
</tr>
<tr>
<td>1 Wall/ Floor Stop</td>
<td>RM861 / RM850</td>
<td>US32D RO</td>
<td>1</td>
</tr>
<tr>
<td>3 Silencer</td>
<td>608</td>
<td>RO</td>
<td>3</td>
</tr>
<tr>
<td>Set: 10.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Hinge</td>
<td>TA2714 FT</td>
<td>US26D MK</td>
<td>3</td>
</tr>
<tr>
<td>1 Storeroom Lock</td>
<td>DG263 8204 LNNJ</td>
<td>US26D SA</td>
<td>1</td>
</tr>
<tr>
<td>1 Wall/ Floor Stop</td>
<td>RM861 / RM850</td>
<td>US32D RO</td>
<td>1</td>
</tr>
<tr>
<td>3 Silencer</td>
<td>608</td>
<td>RO</td>
<td>3</td>
</tr>
<tr>
<td>Doors: 103, 123</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Hinge</td>
<td>TA2714 FT</td>
<td>US26D MK</td>
<td>3</td>
</tr>
<tr>
<td>1 Storeroom Lock</td>
<td>DG263 8204 LNNJ</td>
<td>US26D SA</td>
<td>1</td>
</tr>
<tr>
<td>1 Surface Closer</td>
<td>(PR) 7500 (Reg or PA) (brackets and drop plate as required)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1 Kick Plate</td>
<td>K1050 10" high BEV CSK</td>
<td>US32D RO</td>
<td>1</td>
</tr>
<tr>
<td>1 Wall/ Floor Stop</td>
<td>RM861 / RM850</td>
<td>US32D RO</td>
<td>1</td>
</tr>
<tr>
<td>3 Silencer</td>
<td>608</td>
<td>RO</td>
<td>3</td>
</tr>
<tr>
<td>Set: 12.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Model 1</td>
<td>Model 2</td>
<td>Model 3</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Door Hardware</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Hinge</td>
<td>TA2714 FT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Storeroom Lock</td>
<td>DG263 8204 LNNJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Surface Closer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Kick Plate</td>
<td>K1050 10" high BEV CSK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Wall/ Floor Stop</td>
<td>RM861 / RM850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Gasketing</td>
<td>S88BL (Head & Jambs)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set: 13.0

Doors: 102B

<table>
<thead>
<tr>
<th>Item</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Hardware</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Hinge</td>
<td>TA2714 FT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Storeroom Lock</td>
<td>DG263 8204 LNNJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Surface Closer</td>
<td>(PR) 7500 (Reg or PA) (brackets and drop plate as required)</td>
<td>689 NO</td>
<td></td>
</tr>
<tr>
<td>1 Kick Plate</td>
<td>K1050 10" high BEV CSK</td>
<td>US32D RO</td>
<td></td>
</tr>
<tr>
<td>1 Wall/ Floor Stop</td>
<td>RM861 / RM850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Gasketing</td>
<td>S88BL (Head & Jambs)</td>
<td>PE</td>
<td></td>
</tr>
</tbody>
</table>

Set: 14.0

Doors: 101B

<table>
<thead>
<tr>
<th>Item</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Hardware</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Hinge</td>
<td>TA2714 FT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Storeroom Lock</td>
<td>DG263 8204 LNNJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Surface Closer</td>
<td>CLP7500 (brackets and drop plate as required)</td>
<td>689 NO</td>
<td></td>
</tr>
<tr>
<td>1 Kick Plate</td>
<td>K1050 10" high BEV CSK</td>
<td>US32D RO</td>
<td></td>
</tr>
<tr>
<td>1 Gasketing</td>
<td>S88BL (Head & Jambs)</td>
<td>PE</td>
<td></td>
</tr>
</tbody>
</table>

Set: 15.0

Doors: 104, 105, 108, 201, 204, 205

<table>
<thead>
<tr>
<th>Item</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Hardware</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Hinge</td>
<td>TA2714 FT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Office Lock</td>
<td>DG263 8205 LNNJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Wall/ Floor Stop</td>
<td>RM861 / RM850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Silencer</td>
<td>608</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set: 16.0

Doors: 109, 114A

<table>
<thead>
<tr>
<th>Item</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Hardware</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Hinge</td>
<td>TA2714 FT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Passage Latch</td>
<td>8215 LNNJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Surface Closer</td>
<td>7500 (brackets and drop plate as required)</td>
<td>689 NO</td>
<td></td>
</tr>
<tr>
<td>Set: 17.0</td>
<td>Set: 18.0</td>
<td>Set: 19.0</td>
<td>Set: 20.0</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1 Kick Plate</td>
<td>1 Kick Plate</td>
<td>1 Kick Plate</td>
<td>1 Kick Plate</td>
</tr>
<tr>
<td>K1050 10" high BEV CSK</td>
</tr>
<tr>
<td>1 Wall/ Floor Stop</td>
<td>1 Wall/ Floor Stop</td>
<td>1 Wall/ Floor Stop</td>
<td>1 Wall/ Floor Stop</td>
</tr>
<tr>
<td>RM861 / RM850</td>
<td>RM861 / RM850</td>
<td>RM861 / RM850</td>
<td>RM861 / RM850</td>
</tr>
<tr>
<td>3 Silencer</td>
<td>3 Silencer</td>
<td>3 Silencer</td>
<td>3 Silencer</td>
</tr>
<tr>
<td>608</td>
<td>608</td>
<td>608</td>
<td>608</td>
</tr>
<tr>
<td>Doors: 203, 206</td>
<td>Doors:</td>
<td>Doors:</td>
<td>Doors:</td>
</tr>
<tr>
<td>3 Hinge</td>
<td>TA2714 FT</td>
<td>TA2714 FT</td>
<td>TA2714 FT</td>
</tr>
<tr>
<td>1 Classroom Lock</td>
<td>DG263 8237 LNNJ</td>
<td>DG263 8237 LNNJ</td>
<td>DG263 8237 LNNJ</td>
</tr>
<tr>
<td>1 Surface Closer</td>
<td>(PR) 7500 (Reg or PA) (brackets and drop plate as required)</td>
<td>CLP7500 (brackets and drop plate as required)</td>
<td>CLP7500 (brackets and drop plate as required)</td>
</tr>
<tr>
<td>689</td>
<td>689</td>
<td>689</td>
<td>689</td>
</tr>
<tr>
<td>1 Kick Plate</td>
<td>K1050 10" high BEV CSK</td>
<td>K1050 10" high BEV CSK</td>
<td>K1050 10" high BEV CSK</td>
</tr>
<tr>
<td>1 Wall/ Floor Stop</td>
<td>RM861 / RM850</td>
<td>RM861 / RM850</td>
<td>RM861 / RM850</td>
</tr>
<tr>
<td>3 Silencer</td>
<td>608</td>
<td>608</td>
<td>608</td>
</tr>
<tr>
<td>Doors: 121</td>
<td>Doors:</td>
<td>Doors:</td>
<td>Doors:</td>
</tr>
<tr>
<td>3 Hinge</td>
<td>TA2714 FT</td>
<td>TA2714 FT</td>
<td>TA2714 FT</td>
</tr>
<tr>
<td>1 Classroom Lock</td>
<td>DG263 8237 LNNJ</td>
<td>DG263 8237 LNNJ</td>
<td>DG263 8237 LNNJ</td>
</tr>
<tr>
<td>1 Surface Closer</td>
<td>CLP7500 (brackets and drop plate as required)</td>
<td>CLP7500 (brackets and drop plate as required)</td>
<td>CLP7500 (brackets and drop plate as required)</td>
</tr>
<tr>
<td>689</td>
<td>689</td>
<td>689</td>
<td>689</td>
</tr>
<tr>
<td>1 Kick Plate</td>
<td>K1050 10" high BEV CSK</td>
<td>K1050 10" high BEV CSK</td>
<td>K1050 10" high BEV CSK</td>
</tr>
<tr>
<td>1 Privacy Lock</td>
<td>49 8265 LNNJ</td>
<td>49 8265 LNNJ</td>
<td>49 8265 LNNJ</td>
</tr>
<tr>
<td>1 Wall/ Floor Stop</td>
<td>RM861 / RM850</td>
<td>RM861 / RM850</td>
<td>RM861 / RM850</td>
</tr>
<tr>
<td>3 Silencer</td>
<td>608</td>
<td>608</td>
<td>608</td>
</tr>
<tr>
<td>Doors: 110, 111, 122, 209</td>
<td>Doors:</td>
<td>Doors:</td>
<td>Doors:</td>
</tr>
<tr>
<td>3 Hinge</td>
<td>TA2714 FT</td>
<td>TA2714 FT</td>
<td>TA2714 FT</td>
</tr>
<tr>
<td>1 Privacy Lock</td>
<td>49 8265 LNNJ</td>
<td>49 8265 LNNJ</td>
<td>49 8265 LNNJ</td>
</tr>
<tr>
<td>1 Wall/ Floor Stop</td>
<td>RM861 / RM850</td>
<td>RM861 / RM850</td>
<td>RM861 / RM850</td>
</tr>
<tr>
<td>3 Silencer</td>
<td>608</td>
<td>608</td>
<td>608</td>
</tr>
<tr>
<td>Doors: 106, 112B, 119, 202</td>
<td>Doors:</td>
<td>Doors:</td>
<td>Doors:</td>
</tr>
<tr>
<td>3 Hinge</td>
<td>TA2714 FT</td>
<td>TA2714 FT</td>
<td>TA2714 FT</td>
</tr>
<tr>
<td>1 Privacy Lock</td>
<td>49 8265 LNNJ</td>
<td>49 8265 LNNJ</td>
<td>49 8265 LNNJ</td>
</tr>
<tr>
<td>1 Wall/ Floor Stop</td>
<td>RM861 / RM850</td>
<td>RM861 / RM850</td>
<td>RM861 / RM850</td>
</tr>
<tr>
<td>3 Silencer</td>
<td>608</td>
<td>608</td>
<td>608</td>
</tr>
<tr>
<td>Doors: 106, 112B, 119, 202</td>
<td>Doors:</td>
<td>Doors:</td>
<td>Doors:</td>
</tr>
</tbody>
</table>
Door Hardware

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Specification</th>
<th>Finish 1</th>
<th>Finish 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hinge (heavy weight)</td>
<td>T4A3786 x NRP FT</td>
<td>US26D MK</td>
<td>MK</td>
</tr>
<tr>
<td>1 Access Control Mort Lock</td>
<td>DG263 M1-82271-24V-IPS LNNJ</td>
<td>US26D SA</td>
<td>SA</td>
</tr>
<tr>
<td>1 Surface Closer</td>
<td>CLP7500 (brackets and drop plate as required)</td>
<td>689 NO</td>
<td>NO</td>
</tr>
<tr>
<td>1 Threshold</td>
<td>151A MSES10</td>
<td>PE</td>
<td>PE</td>
</tr>
<tr>
<td>1 Gasketing</td>
<td>S88BL (Head & Jambs)</td>
<td>PE</td>
<td>PE</td>
</tr>
<tr>
<td>1 Door Bottom</td>
<td>411ANBL</td>
<td>PE</td>
<td>PE</td>
</tr>
<tr>
<td>1 ElectroLynx Harness (frame)</td>
<td>QC-C1500P</td>
<td>MK</td>
<td>MK</td>
</tr>
<tr>
<td>1 ElectroLynx Harness (door)</td>
<td>QC-C*** (Length / Type as Required)</td>
<td>MK</td>
<td>MK</td>
</tr>
<tr>
<td>1 Wiring Diagram</td>
<td>WD-SYSPK (Elevations and Point to Point)</td>
<td>SA</td>
<td>SA</td>
</tr>
<tr>
<td>1 Electric Power Transfer</td>
<td>EL-CEPT</td>
<td>SU</td>
<td>SU</td>
</tr>
<tr>
<td>1 Position Switch</td>
<td>DPS-M-BK</td>
<td>SU</td>
<td>SU</td>
</tr>
<tr>
<td>1 Power Supply</td>
<td>AQD4-8C8R2</td>
<td>SU</td>
<td>SU</td>
</tr>
</tbody>
</table>

Notes: PRESENTING AUTHORIZED CREDENTIAL TO INTERGAL LOCK CARD READER UNLOCKS EXTERIOR TRIM ALLOWING ACCESS. INSIDE LEVER ALLOWS EGRESS AT ALL TIMES. INSIDE LEVER HAS RX SWITCH. LATCHBOLT MONITORED.

Set: 22.0

Doors: 114B, 115

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Specification</th>
<th>Finish 1</th>
<th>Finish 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hinge (heavy weight)</td>
<td>T4A3786 FT</td>
<td>US26D MK</td>
<td>MK</td>
</tr>
<tr>
<td>1 Push Plate</td>
<td>70C</td>
<td>US32D RO</td>
<td>RO</td>
</tr>
<tr>
<td>1 Pull Plate</td>
<td>BF 110x70C</td>
<td>US32D RO</td>
<td>RO</td>
</tr>
<tr>
<td>1 Surface Closer</td>
<td>(PR) 7500 (Reg or PA) (brackets and drop plate as required)</td>
<td>689 NO</td>
<td>NO</td>
</tr>
<tr>
<td>1 Kick Plate</td>
<td>K1050 10" high BEV CSK</td>
<td>US32D RO</td>
<td>RO</td>
</tr>
<tr>
<td>1 Wall/ Floor Stop</td>
<td>RM861 / RM850</td>
<td>US32D RO</td>
<td>RO</td>
</tr>
<tr>
<td>3 Silencer</td>
<td>608</td>
<td>RO</td>
<td>RO</td>
</tr>
</tbody>
</table>

Set: 23.0

Doors: 116, 117

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Specification</th>
<th>Finish 1</th>
<th>Finish 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hinge (heavy weight)</td>
<td>T4A3786 FT</td>
<td>US26D MK</td>
<td>MK</td>
</tr>
<tr>
<td>1 Push Plate</td>
<td>70C</td>
<td>US32D RO</td>
<td>RO</td>
</tr>
<tr>
<td>1 Pull Plate</td>
<td>BF 110x70C</td>
<td>US32D RO</td>
<td>RO</td>
</tr>
<tr>
<td>1 Surface Closer</td>
<td>CLP7500 (brackets and drop plate as required)</td>
<td>689 NO</td>
<td>NO</td>
</tr>
<tr>
<td>1 Kick Plate</td>
<td>K1050 10" high BEV CSK</td>
<td>US32D RO</td>
<td>RO</td>
</tr>
<tr>
<td>3 Silencer</td>
<td>608</td>
<td>RO</td>
<td>RO</td>
</tr>
</tbody>
</table>
Set: 24.0

1 Hardware By Door Manufacturer 00

Doors: MISC

Set: 25.0

1 Repair Kit QC-R001 MK ⋆
1 Crimp Tool QC-R003 MK ⋆
1 Wiring Diagram WD-SYSPK (Elevations and Point to Point) SA
1 Test Unit WT1 SA ⋆
1 Key Cabinet 1205 LU

END OF SECTION 087100
SECTION 08 80 00
GLAZING

PART 1 GENERAL
1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section includes:
 1. Glass for windows, doors, interior borrowed lites, storefront framing, glazed curtain walls.
 2. Glazing sealants and accessories.
B. Related Requirements:
 1. Section 08 41 13 “Aluminum-Framed Entrances and Storefronts
 2. Section 08 51 23 “Steel Windows”
 3. Section 08 54 13 “Fiberglass Windows”

1.03 DEFINITIONS
A. Glass Manufacturers: Firms that produce primary glass, fabricated glass, or both, as defined in referenced glazing publications.
B. Glass Thicknesses: Indicated by thickness designations in millimeters according to ASTM C 1036.
D. Interspace: Space between lites of an insulating-glass unit.

1.04 COORDINATION
A. Coordinate glazing channel dimensions to provide necessary bite on glass, minimum edge and face clearances, and adequate sealant thicknesses, with reasonable tolerances.

1.05 PREINSTALLATION MEETINGS
A. Preinstallation Conference: Conduct conference at Project site.
 1. Review and finalize construction schedule and verify availability of materials, Installer’s personnel, equipment, and facilities needed to make progress and avoid delays.
 2. Review temporary protection requirements for glazing during and after installation.

1.06 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Glass Samples: For each type of the following products; 12 inches square.
 1. Tinted glass.
 2. Coated glass.
 3. Laminated glass.
 4. Insulating glass.
C. Glazing Accessory Samples: For sealants and colored spacers, in 12-inch lengths.
D. Glazing Schedule: List glass types and thicknesses for each size opening and location. Use same designations indicated on Drawings.
E. Delegated-Design Submittal: For glass indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.07 INFORMATIONAL SUBMITTALS

A. Qualification Data: For and.
B. Sample Warranties: For special warranties.

1.08 QUALITY ASSURANCE

1.09 DELIVERY, STORAGE, AND HANDLING

A. Protect glazing materials according to manufacturer's written instructions. Prevent damage to glass and glazing materials from condensation, temperature changes, direct exposure to sun, or other causes.
B. Protect glass and glazing materials from condensation, temperature changes, direct exposure to sun, or
C. Comply with insulating-glass manufacturer's written instructions for venting and sealing units to avoid hermetic seal ruptures due to altitude change.

1.10 FIELD CONDITIONS

A. Environmental Limitations: Do not proceed with glazing when ambient and substrate temperature conditions are outside limits permitted by glazing material manufacturers and when glazing channel substrates are wet from rain, frost, condensation, or other causes.
 1. Do not install glazing sealants when ambient and substrate temperature conditions are outside limits permitted by sealant manufacturer or are below 40 deg F.

1.11 WARRANTY

A. Manufacturer's Special Warranty for Coated-Glass Products: Manufacturer agrees to replace coated-glass units that deteriorate within specified warranty period. Deterioration of coated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning coated glass contrary to manufacturer's written instructions. Defects include peeling, cracking, and other indications of deterioration in coating.
 1. Warranty Period: 10 years from date of Substantial Completion.

B. Manufacturer's Special Warranty for Laminated Glass: Manufacturer agrees to replace laminated-glass units that deteriorate within specified warranty period. Deterioration of laminated glass is defined as defects developed from normal use that are not attributed to glass breakage or to maintaining and cleaning laminated glass contrary to manufacturer's written instructions. Defects include edge separation, delamination materially obstructing vision through glass, and blemishes exceeding those allowed by referenced laminated-glass standard.
 1. Warranty Period: 10 years from date of Substantial Completion.

C. Manufacturer's Special Warranty for Insulating Glass: Manufacturer agrees to replace insulating-glass units that deteriorate within specified warranty period. Deterioration of insulating glass is defined as failure of hermetic seal under normal use that is not attributed to glass breakage or to maintaining and cleaning insulating glass contrary to manufacturer's written instructions. Evidence of failure is the obstruction of vision by dust, moisture, or film on interior surfaces of glass.
 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 PRODUCTS
2.01 MANUFACTURERS
A. Source Limitations for Glass: Obtain from single source from single manufacturer for each glass type.
 1. Obtain tinted glass from single source from single manufacturer.
 2. Obtain reflective-coated glass from single source from single manufacturer.
B. Source Limitations for Glazing Accessories: Obtain from single source from single manufacturer for each product and installation method.

2.02 PERFORMANCE REQUIREMENTS
A. General: Installed glazing systems shall withstand normal thermal movement and wind and impact loads (where applicable) without failure, including loss or glass breakage attributable to the following: defective manufacture, fabrication, or installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; or other defects in construction.
B. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 “Quality Requirements,” to design glazing.
C. Structural Performance: Glazing shall withstand the following design loads within limits and under conditions indicated determined according to the IBC and ASTM E 1300.
 1. Design Wind Pressures: As indicated on Drawings.
 2. Design Wind Pressures: Determine design wind pressures applicable to Project according to ASCE/SEI 7, based on heights above grade indicated on Drawings.
 3. Design Snow Loads: As indicated on Drawings.
 4. Thickness of Patterned Glass: Base design of patterned glass on thickness at thinnest part of the glass.
 5. Probability of Breakage for Sloped Glazing: For glass surfaces sloped more than 15 degrees from vertical, design glass for a probability of breakage not greater than 0.001.
 6. Maximum Lateral Deflection: For glass supported on all four edges, limit center-of-glass deflection at design wind pressure to not more than 1/50 times the short-side length or 1 inch, whichever is less.
 7. Differential Shading: Design glass to resist thermal stresses induced by differential shading within individual glass lites.
D. Safety Glazing: Where safety glazing is indicated, provide glazing that complies with 16 CFR 1201, Category II.

2.03 GLASS PRODUCTS, GENERAL
A. Glazing Publications: Comply with published recommendations of glass product manufacturers and organizations below unless more stringent requirements are indicated. See these publications for glazing terms not otherwise defined in this Section or in referenced standards.
B. Safety Glazing Labeling: Where safety glazing is indicated, permanently mark glazing with certification label of the SGCC or another certification agency acceptable to authorities having jurisdiction or manufacturer. Label shall indicate manufacturer's name, type of glass, thickness, and safety glazing standard with which glass complies.

C. Insulating-Glass Certification Program: Permanently marked either on spacers or on at least one component lite of units with appropriate certification label of IGCC.

D. Thickness: Where glass thickness is indicated, it is a minimum. Provide glass that complies with performance requirements and is not less than the thickness indicated.
 1. Minimum Glass Thickness for Exterior Lites: 6 mm.
 2. Thickness of Tinted Glass: Provide same thickness for each tint color indicated throughout Project.

E. Strength: Where annealed float glass is indicated, provide annealed float glass, heat-strengthened float glass, or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where heat-strengthened float glass is indicated, provide heat-strengthened float glass or fully tempered float glass as needed to comply with "Performance Requirements" Article. Where fully tempered float glass is indicated, provide fully tempered float glass.

2.04 GLASS PRODUCTS

A. Clear Annealed Float Glass: ASTM C 1036, Type I, Class 1 (clear), Quality-Q3.

B. Ultraclear Float Glass: ASTM C 1036, Type I, Class I (clear), Quality-Q3; and with visible light transmission of not less than 91 percent and solar heat gain coefficient of not less than 0.87.

C. Tinted Annealed Float Glass: ASTM C 1036, Type I, Class 2 (tinted), Quality-Q3.

D. Fully Tempered Float Glass: ASTM C 1048, Kind FT (fully tempered), Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.
 1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.

E. Heat-Strengthened Float Glass: ASTM C 1048, Kind HS (heat strengthened), Type I, Condition A (uncoated) unless otherwise indicated, Type I, Class 1 (clear) or Class 2 (tinted) as indicated, Quality-Q3.
 1. Fabrication Process: By horizontal (roller-hearth) process with roll-wave distortion parallel to bottom edge of glass as installed unless otherwise indicated.

F. Pyrolytic-Coated, Low-Maintenance Glass: Clear float glass with a coating on first surface having both photocatalytic and hydrophilic properties that act to loosen dirt and to cause water to sheet evenly over the glass instead of beading.

2.05 LAMINATED GLASS

A. Laminated Glass: ASTM C 1172. Use materials that have a proven record of no tendency to bubble, discolor, or lose physical and mechanical properties after fabrication and installation.
 1. Construction: Laminate glass with polyvinyl butyral interlayer or cast-in-place and cured- transparent-resin interlayer to comply with interlayer manufacturer's written instructions.
 2. Interlayer Thickness: Provide thickness not less than that indicated and as needed to comply with requirements.
3. Interlayer Color: Clear unless otherwise indicated.

B. Windborne-Debris-Impact-Resistant Laminated Glass: Comply with requirements specified above for laminated glass except laminate glass with one of the following to comply with interlayer manufacturer's written instructions:
 1. Polyvinyl butyral interlayer.
 2. Polyvinyl butyral interlayers reinforced with polyethylene terephthalate film.
 3. Ionomeric polymer interlayer.

2.06 INSULATING GLASS
A. Insulating-Glass Units: Factory-assembled units consisting of sealed lites of glass separated by a dehydrated interspace, qualified according to ASTM E 2190.
 1. Sealing System: Dual seal, with manufacturer's standard primary and secondary sealants.
 2. Perimeter Spacer: Manufacturer's standard spacer material and construction.
 3. Desiccant: Molecular sieve or silica gel, or a blend of both.

2.07 GLAZING SEALANTS
A. General:
 1. Compatibility: Compatible with one another and with other materials they contact, including glass products, seals of insulating-glass units, and glazing channel substrates, under conditions of service and application, as demonstrated by sealant manufacturer based on testing and field experience.
 2. Suitability: Comply with sealant and glass manufacturers’ written instructions for selecting glazing sealants suitable for applications indicated and for conditions existing at time of installation.
 3. Colors of Exposed Glazing Sealants: As selected by Architect from manufacturer's full range.

B. Glazing Sealant: Neutral-curing silicone glazing sealant complying with ASTM C 920, Type S, Grade NS, Class 100/50, Use NT.

2.08 GLAZING TAPES
A. Back-Bedding Mastic Glazing Tapes: Preformed, butyl-based, 100 percent solids elastomeric tape; nonstaining and nonmigrating in contact with nonporous surfaces; with or without spacer rod as recommended in writing by tape and glass manufacturers for application indicated; and complying with ASTM C 1281 and AAMA 800 for products indicated below:
 1. AAMA 804.3 tape, where indicated.
 2. AAMA 806.3 tape, for glazing applications in which tape is subject to continuous pressure.
 3. AAMA 807.3 tape, for glazing applications in which tape is not subject to continuous pressure.

2.09 MISCELLANEOUS GLAZING MATERIALS
A. General: Provide products of material, size, and shape complying with referenced glazing standard, with requirements of manufacturers of glass and other glazing materials for application indicated, and with a proven record of compatibility with surfaces contacted in installation.

B. Cleaners, Primers, and Sealers: Types recommended by sealant or gasket manufacturer.

C. Setting Blocks:
 1. Neoprene with a Shore A durometer hardness of 85, plus or minus 5.
 2. Type recommended by sealant or glass manufacturer.

D. Spacers:
 1. Neoprene blocks or continuous extrusions of hardness required by glass manufacturer to maintain glass lites in place for installation indicated.
 2. Type recommended by sealant or glass manufacturer.

E. Edge Blocks:
 1. Neoprene with a Shore A durometer hardness per manufacturer's written instructions.
 2. Type recommended by sealant or glass manufacturer.

F. Cylindrical Glazing Sealant Backing: ASTM C 1330, Type O (open-cell material), of size and density to control glazing sealant depth and otherwise produce optimum glazing sealant performance.

2.10 FABRICATION OF GLAZING UNITS

A. Fabricate glazing units in sizes required to fit openings indicated for Project, with edge and face clearances, edge and surface conditions, and bite complying with written instructions of product manufacturer and referenced glazing publications, to comply with system performance requirements.
 1. Allow for thermal movements from ambient and surface temperature changes acting on glass framing members and glazing components.
 a. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

B. Clean-cut or flat-grind vertical edges of butt-glazed monolithic lites to produce square edges with slight chamfers at junctions of edges and faces.

C. Grind smooth and polish exposed glass edges and corners.

PART 3 EXECUTION

3.01 EXAMINATION

A. Examine framing, glazing channels, and stops, with Installer present, for compliance with the following:
 1. Manufacturing and installation tolerances, including those for size, squareness, and offsets at corners.
 2. Presence and functioning of weep systems.
 3. Minimum required face and edge clearances.
 4. Effective sealing between joints of glass-framing members.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION

A. Clean glazing channels and other framing members receiving glass immediately before glazing. Remove coatings not firmly bonded to substrates.
B. Examine glazing units to locate exterior and interior surfaces. Label or mark units as needed so that exterior and interior surfaces are readily identifiable. Do not use materials that leave visible marks in the completed Work.

3.03 GLAZING, GENERAL

A. Comply with combined written instructions of manufacturers of glass, sealants, gaskets, and other glazing materials, unless more stringent requirements are indicated, including those in referenced glazing publications.

B. Protect glass edges from damage during handling and installation. Remove damaged glass from Project site and legally dispose of off Project site. Damaged glass includes glass with edge damage or other imperfections that, when installed, could weaken glass, impair performance, or impair appearance.

C. Apply primers to joint surfaces where required for adhesion of sealants, as determined by preconstruction testing.

D. Install setting blocks in sill rabbets, sized and located to comply with referenced glazing publications, unless otherwise required by glass manufacturer. Set blocks in thin course of compatible sealant suitable for heel bead.

E. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.

F. Provide spacers for glass lites where length plus width is larger than 50 inches.
 1. Locate spacers directly opposite each other on both inside and outside faces of glass. Install correct size and spacing to preserve required face clearances, unless gaskets and glazing tapes are used that have demonstrated ability to maintain required face clearances and to comply with system performance requirements.
 2. Provide 1/8-inch minimum bite of spacers on glass and use thickness equal to sealant width. With glazing tape, use thickness slightly less than final compressed thickness of tape.

G. Provide edge blocking where indicated or needed to prevent glass lites from moving sideways in glazing channel, as recommended in writing by glass manufacturer and according to requirements in referenced glazing publications.

H. Set glass lites in each series with uniform pattern, draw, bow, and similar characteristics.

I. Set glass lites with proper orientation so that coatings face exterior or interior as specified.

J. Where wedge-shaped gaskets are driven into one side of channel to pressurize sealant or gasket on opposite side, provide adequate anchorage so gasket cannot walk out when installation is subjected to movement.

K. Square cut wedge-shaped gaskets at corners and install gaskets in a manner recommended by gasket manufacturer to prevent corners from pulling away; seal corner joints and butt joints with sealant recommended by gasket manufacturer.

3.04 TAPE GLAZING

A. Position tapes on fixed stops so that, when compressed by glass, their exposed edges are flush with or protrude slightly above sightline of stops.

B. Install tapes continuously, but not necessarily in one continuous length. Do not stretch tapes to make them fit opening.

C. Cover vertical framing joints by applying tapes to heads and sills first, then to jambs. Cover horizontal framing joints by applying tapes to jambs, then to heads and sills.

D. Place joints in tapes at corners of opening with adjoining lengths butted together, not lapped. Seal joints in tapes with compatible sealant approved by tape manufacturer.
E. Do not remove release paper from tape until right before each glazing unit is installed.

F. Apply heel bead of elastomeric sealant.

G. Center glass lites in openings on setting blocks, and press firmly against tape by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings.

H. Apply cap bead of elastomeric sealant over exposed edge of tape.

3.05 GASKET GLAZING (DRY)

A. Cut compression gaskets to lengths recommended by gasket manufacturer to fit openings exactly, with allowance for stretch during installation.

B. Insert soft compression gasket between glass and frame or fixed stop so it is securely in place with joints miter cut and bonded together at corners.

C. Installation with Drive-in Wedge Gaskets: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket by inserting dense compression gaskets formed and installed to lock in place against faces of removable stops. Start gasket applications at corners and work toward centers of openings. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

D. Installation with Pressure-Glazing Stops: Center glass lites in openings on setting blocks, and press firmly against soft compression gasket. Install dense compression gaskets and pressure-glazing stops, applying pressure uniformly to compression gaskets. Compress gaskets to produce a weathertight seal without developing bending stresses in glass. Seal gasket joints with sealant recommended by gasket manufacturer.

E. Install gaskets so they protrude past face of glazing stops.

3.06 SEALANT GLAZING (WET)

A. Install continuous spacers, or spacers combined with cylindrical sealant backing, between glass lites and glazing stops to maintain glass face clearances and to prevent sealant from extruding into glass channel and blocking weep systems until sealants cure. Secure spacers or spacers and backings in place and in position to control depth of installed sealant relative to edge clearance for optimum sealant performance.

B. Force sealants into glazing channels to eliminate voids and to ensure complete wetting or bond of sealant to glass and channel surfaces.

C. Tool exposed surfaces of sealants to provide a substantial wash away from glass.

3.07 CLEANING AND PROTECTION

A. Immediately after installation remove nonpermanent labels and clean surfaces.

B. Protect glass from contact with contaminating substances resulting from construction operations. Examine glass surfaces adjacent to or below exterior concrete and other masonry surfaces at frequent intervals during construction, but not less than once a month, for buildup of dirt, scum, alkaline deposits, or stains.

1. If, despite such protection, contaminating substances do come into contact with glass, remove substances immediately as recommended in writing by glass manufacturer. Remove and replace glass that cannot be cleaned without damage to coatings.

C. Remove and replace glass that is damaged during construction period.

D. Wash glass on both exposed surfaces not more than four days before date scheduled for inspections that establish date of Substantial Completion. Wash glass as recommended in writing by glass manufacturer.
3.08 MONOLITHIC GLASS SCHEDULE
A. Glass Type GL-<#>: Clear fully tempered float glass.
 1. Minimum Thickness: 6 mm.
 2. Safety glazing required.
B. Glass Type: Tinted fully tempered float glass.
 1. Minimum Thickness: 6 mm.
 2. Winter Nighttime U-Factor: 0.3 maximum.
 3. Summer Daytime U-Factor: 0.3 maximum.
 4. Visible Light Transmittance: 0.3 percent minimum.
 5. Solar Heat Gain Coefficient: 0.3 maximum.
 6. Safety glazing required.

3.09 LAMINATED GLASS SCHEDULE
A. Glass Type: Clear laminated glass with two plies of annealed float glass.
 1. Minimum Thickness of Each Glass Ply: 6 mm.
 2. Interlayer Thickness: 0.060 inch.
 3. Safety glazing required.
B. Glass Type: Tinted laminated glass with two plies of annealed float glass with outer ply tinted and inner ply clear.
 1. Tint Color: Gray.
 3. Interlayer Thickness: 0.060 inch 0.090 inch.
 4. Winter Nighttime U-Factor: 0.3 maximum.
 5. Summer Daytime U-Factor: 0.3 maximum.
 6. Visible Light Transmittance: 0.3 percent minimum.
 7. Solar Heat Gain Coefficient: 0.3 maximum.
 8. Safety glazing required.

3.10 INSULATING GLASS SCHEDULE
A. Glass Type: Low-E-coated, tinted insulating glass.
 1. Overall Unit Thickness: 1 inch.
 2. Minimum Thickness of Each Glass Lite: 6 mm.
 3. Outdoor Lite: Tinted fully tempered float glass.
 4. Tint Color: Gray.
 5. Interspace Content: Argon.
 6. Indoor Lite: Clear fully tempered float glass.
 7. Low-E Coating: Sputtered on second surface.
 8. Winter Nighttime U-Factor: 0.3 maximum.
 9. Summer Daytime U-Factor: 0.3 maximum.
 10. Visible Light Transmittance: 0.3 percent minimum.
11. Solar Heat Gain Coefficient: 0.3 maximum.
12. Safety glazing required.

3.11 **INSULATING-LAMINATED-GLASS SCHEDULE**

A. Glass Type: Low-E-coated, clear insulating laminated glass.
 1. Overall Unit Thickness: 1 inch.
 2. Minimum Thickness of Outdoor Lite: 6 mm.
 3. Outdoor Lite: Fully tempered float glass.
 4. Interspace Content: Argon.
 5. Indoor Lite: Clear laminated glass with two plies of fully tempered float glass.
 a. Minimum Thickness of Each Glass Ply: 6 mm.
 b. Interlayer Thickness: 0.060 inch.
 7. Winter Nighttime U-Factor: 0.3 maximum.
 8. Summer Daytime U-Factor: 0.3 maximum.
 9. Visible Light Transmittance: 0.3 percent minimum.
 10. Solar Heat Gain Coefficient: 0.3 maximum.
 11. Safety glazing required.

END OF SECTION
SECTION 09 22 16
NON-STRUCTURAL METAL FRAMING

PART 1 GENERAL

1.01 REFERENCE STANDARDS

A. AISI S100-12 - North American Specification for the Design of Cold-Formed Steel Structural Members 2012.

1.02 SUBMITTALS

A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.

B. Product Data: Provide data describing framing member materials and finish, product criteria, load charts and limitations.

C. Product Data: Provide manufacturer’s data on partition head to structure connectors, showing compliance with requirements.

PART 2 PRODUCTS

2.01 FRAMING MATERIALS

A. Non-Loadbearing Framing System Components: ASTM C645; galvanized sheet steel, of size and properties necessary to comply with ASTM C754 for the spacing indicated, with maximum deflection of wall framing of L/240 at 5 psf.
 1. Studs: C shaped with flat or formed webs with knurled faces.
 2. Runners: U shaped, sized to match studs.
 3. Ceiling Channels: C shaped.

B. Partition Head to Structure Connections: Provide track fastened to structure with legs of sufficient length to accommodate deflection, for friction fit of studs cut short and braced with continuous bridging on both sides.

C. Partition Head to Structure Connections: Provide mechanical anchorage devices that accommodate deflection using slotted holes, screws and anti-friction bushings, preventing rotation of studs while maintaining structural performance of partition.
 1. Structural Performance: Maintain lateral load resistance and vertical movement capacity required by applicable code, when evaluated in accordance with AISI S100-12.
 3. Provide components UL-listed for use in UL-listed fire-rated head of partition joint systems indicated on drawings.

D. Non-Loadbearing Framing Accessories:
1. Sound Isolation Clips: Molded rubber isolator and steel clip, fastens directly to framing or structure to provide acoustical separation in gypsum board walls and ceilings.
2. Acoustic Sealant: Acrylic emulsion latex or water-based elastomeric sealant; do not use solvent-based non-curing butyl sealant.

E. Sound Isolation Tape: Elastomeric foam tape for sound decoupling.
 1. Surface Burning Characteristics: Provide assemblies with flame spread index of 75 or less and smoke developed index of 450 or less, when tested in accordance with ASTM E84.
 2. Tape Thickness: 1/4 inch.

2.02 FABRICATION
 A. Fabricate assemblies of framed sections to sizes and profiles required.
 B. Fit, reinforce, and brace framing members to suit design requirements.
 C. Fit and assemble in largest practical sections for delivery to site, ready for installation.

PART 3 EXECUTION
3.01 INSTALLATION OF STUD FRAMING
 A. Comply with requirements of ASTM C754.
 B. Extend partition framing to structure where indicated and to ceiling in other locations.
 C. Partitions Terminating at Ceiling: Attach ceiling runner securely to ceiling track in accordance with manufacturer's instructions.
 D. Align and secure top and bottom runners at 24 inches on center or as indicated on drawings.
 E. Fit runners under and above openings; secure intermediate studs to same spacing as wall studs.
 F. Install studs vertically at 12 inches on center or as indicated on drawings.
 G. Align stud web openings horizontally.
 H. Secure studs to tracks using crimping method. Do not weld.
 I. Fabricate corners using a minimum of three studs.
 J. Double stud at wall openings, door and window jambs, not more than 2 inches from each side of openings.
 K. Coordinate installation of bucks, anchors, and blocking with electrical, mechanical, and other work to be placed within or behind stud framing.
 L. Furring: Install at spacing and locations shown on drawings. Lap splices a minimum of 6 inches.

3.02 CEILING AND SOFFIT FRAMING
 A. Comply with requirements of ASTM C754.
 B. Install furring after work above ceiling or soffit is complete. Coordinate the location of hangers with other work.
 C. Install furring independent of walls, columns, and above-ceiling work.
 D. Securely anchor hangers to structural members or embed in structural slab. Space hangers as required to limit deflection to criteria indicated. Use rigid hangers at exterior soffits.
 E. Space main carrying channels at maximum 72 inch on center, and not more than 6 inches from wall surfaces. Lap splice securely.
F. Securely fix carrying channels to hangers to prevent turning or twisting and to transmit full load to hangers.

G. Place furring channels perpendicular to carrying channels, not more than 2 inches from perimeter walls, and rigidly secure. Lap splices securely.

H. Laterally brace suspension system.

END OF SECTION
SECTION 09 29 00
GYPSUM BOARD

PART 1 GENERAL
1.01 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY
A. Section Includes:
 1. Interior gypsum board.
 2. Exterior gypsum board for ceilings and soffits.
 3. Tile backing panels.
 4. Gypsum board for rated floor/ceiling assemblies
B. Related Requirements:
 1. Section 092216 "Non-Structural Metal Framing" for non-structural steel framing and suspension systems that support gypsum board panels.

1.03 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.04 QUALITY ASSURANCE

1.05 DELIVERY, STORAGE AND HANDLING
A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on risers on a flat platform to prevent sagging.

1.06 FIELD CONDITIONS
A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer's written instructions, whichever are more stringent.
B. Do not install paper-faced gypsum panels until installation areas are enclosed and conditioned.
C. Do not install panels that are wet, moisture damaged, and mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 PRODUCTS
2.01 PERFORMANCE REQUIREMENTS
A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.

2.02 GYPSUM BOARD, GENERAL
A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.03 INTERIOR GYPSUM BOARD
A. Gypsum Wallboard: ASTM C 1396/C 1396M.
 1. Thickness: 5/8 inch.
 2. Long Edges: Tapered.

B. Gypsum Board, Type X: ASTM C 1396/C 1396M.
 1. Thickness: 5/8 inch.
 2. Long Edges: Tapered.

C. Gypsum Ceiling Board: ASTM C 1396/C 1396M.
 1. Thickness: 1/2 inch.
 2. Long Edges: Tapered.

D. Impact-Resistant Gypsum Board: ASTM C 1396/C 1396M gypsum board, tested according to ASTM C 1629/C 1629M.
 1. Core: 5/8 inch, Type X.
 2. Surface Abrasion: ASTM C 1629/C 1629M, meets or exceeds Level 2 requirements.
 3. Indentation: ASTM C 1629/C 1629M, meets or exceeds Level 1 Level 2 requirements.
 7. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

E. Mold-Resistant Gypsum Board: ASTM C I396/C 1396M. With moisture- and mold-resistant core and paper surfaces.
 1. Core: As indicated.
 2. Long Edges: Tapered.
 3. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

2.04 SPECIALTY GYPSUM BOARD

A. Gypsum Board, Type C: ASTM C 1396/C 1396M. Manufactured to have increased fire-resistive capability.
 1. Thickness: As required by fire-resistance-rated assembly indicated on Drawings.
 2. Long Edges: Tapered.

B. Glass-Mat Interior Gypsum Board: ASTM C 1658/C 1658M. With fiberglass mat laminated to both sides. Specifically designed for interior use.
 1. Core: 5/8 inch, Type X.
 2. Long Edges: Tapered.
 3. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

2.05 EXTERIOR GYPSUM BOARD FOR CEILINGS AND SOFFITS

A. Glass-Mat Gypsum Sheathing Board: ASTM C 1177/C 1177M, with fiberglass mat laminated to both sides and with manufacturer’s standard edges.
 1. Core: 5/8 inch, Type X.

2.06 TILE BACKING PANELS
A. Glass-Mat, Water-Resistant Backing Board: ASTM C 1178/C 1178M, with manufacturer's standard edges.
 1. Core: As indicated on Drawings.
 2. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

B. Cementitious Backer Units: ANSI A118.9 and ASTM C 1288 or ASTM C 1325, with manufacturer's standard edges.
 1. Thickness: As indicated.
 2. Mold Resistance: ASTM D 3273, score of 10 as rated according to ASTM D 3274.

C. Water-Resistant Gypsum Backing Board: ASTM C 1396/C 1396M, with manufacturer's standard edges.
 1. Core: As indicated on Drawings.

2.07 TRIM ACCESSORIES

A. Interior Trim: ASTM C 1047.
 1. Material: Galvanized or aluminum-coated steel sheet, rolled zinc, plastic, or paper-faced galvanized-steel sheet.
 2. Shapes:
 a. Cornerbead.
 b. LC-Bead: J-shaped; exposed long flange receives joint compound.

B. Aluminum Trim: Extruded accessories of profiles and dimensions indicated.
 1. Aluminum: Alloy and temper with not less than the strength and durability properties of ASTM B 221, Alloy 6063-TS.
 2. Finish: Corrosion-resistant primer compatible with joint compound and finish materials specified.

2.08 JOINT TREATMENT MATERIALS

A. General: Comply with ASTM C 475/C 475M.

B. Joint Tape:
 1. Interior Gypsum Board: Paper.
 4. Tile Backing Panels: As recommended by panel manufacturer.

C. Joint Compound for Interior Gypsum Board: For each coat, use formulation that is compatible with other compounds applied on previous or for successive coats.
 1. Prefilling: At open joints, rounded or beveled panel edges, and damaged surface areas, use setting-type taping compound.
 2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use setting-type taping compound.
 a. Use setting-type compound for installing paper-faced metal trim accessories.
 3. Fill Coat: For second coat, use setting-type, sandable topping compound.
 4. Finish Coat: For third coat, use setting-type, sandable topping compound.
 5. Skim Coat: For final coat of Level 5 finish, use setting-type, sandable topping compound [drying-type, all-purpose compound].
D. Joint Compound for Exterior Applications:
 1. Exterior Gypsum Soffit Board: Use setting-type taping compound and setting-type, sandable topping compound.
 2. Glass-Mat Gypsum Sheathing Board: As recommended by sheathing board manufacturer.

E. Joint Compound for Tile Backing Panels:
 1. Glass-Mat, Water-Resistant Backing Panel: As recommended by backing panel manufacturer.
 2. Cementitious Backer Units: As recommended by backer unit manufacturer.
 3. Water-Resistant Gypsum Backing Board: Use setting-type taping compound and setting-type, sandable topping compound.

2.09 AUXILIARY MATERIALS

A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written instructions.

B. Steel Drill Screws: ASTM C 1002 unless otherwise indicated.
 1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch thick.
 2. For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.

C. Sound-Attenuation Blankets: ASTM C 665, Type I (blankets without membrane facing) produced by combining thermosetting resins with mineral fibers manufactured from glass, slag wool, or rock wool.
 1. Fire-Resistance-Rated Assemblies: Comply with mineral-fiber requirements of assembly.

D. Acoustical Sealant: Manufacturer's standard nonsag, paintable, nonstaining latex sealant complying with ASTM C 834. Product effectively reduces airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.

E. Thermal Insulation: As specified in Section 072100 "Thermal Insulation."

PART 3 EXECUTION

3.01 EXAMINATION

A. Examine areas and substrates including welded hollow-metal frames and support framing, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.

B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 APPLYING AND FINISHING PANELS, GENERAL

A. Comply with ASTM C 840.

B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.
C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch of open space between panels. Do not force into place.

D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.

E. Form control and expansion joints with space between edges of adjoining gypsum panels.

F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.
 1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. in area.
 2. Fit gypsum panels around ducts, pipes, and conduits.
 3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4- to 3/8-inch wide joints to install sealant.

G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments. Provide 1/4- to 1/2-inch wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.

H. Attachment to Steel Framing: Attach panels so leading edge or end of each panel is attached to open (unsupported) edges of stud flanges first.

I. Install sound attenuation blankets before installing gypsum panels unless blankets are readily installed after panels have been installed on one side.

3.03 APPLYING INTERIOR GYPSUM BOARD

A. Install interior gypsum board in the following locations:
 1. Wallboard Type: Vertical surfaces unless otherwise indicated.
 2. Type X: Where required for fire-resistance-rated assembly.
 3. Ceiling Type: As indicated on Drawings.
 4. Abuse-Resistant Type: As indicated on Drawings.
 5. Impact-Resistant Type: corridors, corridors and storage areas.
 6. Mold-Resistant Type: wet locations and adjacent to exterior doors.
 7. Type C: Where required for specific fire-resistance-rated assembly indicated.
 8. Glass-Mat Interior Type: As indicated on Drawings.

B. Single-Layer Application:
 1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.
 2. On partitions/walls, apply gypsum panels vertically (parallel to framing) unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.
 a. Stagger abutting end joints not less than one framing member in alternate courses of panels.
 b. At stairwells and other high walls, install panels horizontally unless otherwise indicated or required by fire-resistance-rated assembly.
3. On Z-shaped furring members, apply gypsum panels vertically (parallel to framing) with no end joints. Locate edge joints over furring members.

4. Fastening Methods: Apply gypsum panels to supports with steel drill screws.

C. Multilayer Application:

1. On ceilings, apply gypsum board indicated for base layers before applying base layers on walls/partitions; apply face layers in same sequence. Apply base layers at right angles to framing members and offset face-layer joints one framing member, 16 inches minimum, from parallel base-layer joints, unless otherwise indicated or required by fire-resistance-rated assembly.

2. On partitions/walls, apply gypsum board indicated for base layers and face layers vertically (parallel to framing) with joints of base layers located over stud or furring member and face-layer joints offset at least one stud or furring member with base-layer joints unless otherwise indicated or required by fire-resistance-rated assembly. Stagger joints on opposite sides of partitions.

3. On Z-shaped furring members, apply base layer vertically (parallel to framing) and face layer either vertically (parallel to framing) or horizontally (perpendicular to framing) with vertical joints offset at least one furring member. Locate edge joints of base layer over furring members.

4. Fastening Methods: Fasten base layers with screws; fasten face layers with adhesive and supplementary fasteners.

D. Laminating to Substrate: Where gypsum panels are indicated as directly adhered to a substrate (other than studs, joists, furring members, or base layer of gypsum board), comply with gypsum board manufacturer's written instructions and temporarily brace or fasten gypsum panels until fastening adhesive has set.

3.04 APPLYING EXTERIOR GYPSUM PANELS FOR CEILINGS AND SOFFITS

A. Apply panels perpendicular to supports, with end joints staggered and located over supports.

1. Install with 1/4-inch open space where panels abut other construction or structural penetrations.

2. Fasten with corrosion-resistant screws.

3.05 APPLYING TILE BACKING PANELS

A. Glass-Mat, Water-Resistant Backing Panels: Comply with manufacturer's written installation instructions and install at showers, tubs, and where indicated locations indicated to receive tile. Install with 1/4-inch gap where panels abut other construction or penetrations.

B. Cementitious Backer Units: ANSI A108.11, at showers, tubs, and where indicated locations indicated to receive tile.

C. Water-Resistant Backing Board: Install where indicated with 1/4-inch gap where panels abut other construction or penetrations.

D. Where tile backing panels abut other types of panels in same plane, shim surfaces to produce a uniform plane across panel surfaces.

3.06 INSTALLING TRIM ACCESSORIES

A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.
B. Control Joints: Install control joints according to ASTM C 840 and in specific locations approved by Architect for visual effect.

C. Interior Trim: Install in the following locations:
 1. Cornerbead: Use at outside corners.
 2. LC-Bead: Use at exposed panel edges.

D. Aluminum Trim: Install in locations indicated on Drawings.

3.07 FINISHING GYPSUM BOARD
A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.

B. Prefill open joints, rounded or beveled edges, and damaged surface areas.

C. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.

D. Gypsum Board Finish Levels: Finish panels to levels indicated below and according to ASTM C 840:
 1. Level 1: Ceiling plenum areas, concealed areas, and where indicated.
 2. Level 2: Panels that are substrate for tile.
 3. Level 4: At panel surfaces that will be exposed to view unless otherwise indicated.
 a. Primer and its application to surfaces are specified in Section 099123 "Interior Painting."

E. Glass-Mat Gypsum Sheathing Board: Finish according to manufacturer's written instructions for use as exposed soffit board.

F. Glass-Mat Faced Panels: Finish according to manufacturer's written instructions.

G. Cementitious Backer Units: Finish according to manufacturer's written instructions.

3.08 PROTECTION
A. Protect adjacent surfaces from drywall compound and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.

B. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.

C. Remove and replace panels that are wet, moisture damaged, and mold damaged.
 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION
PART 1 GENERAL

1.01 REFERENCE STANDARDS

1.02 SUBMITTALS

A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.

B. Product Data: Provide manufacturers' data sheets on tile, mortar, grout, and accessories. Include instructions for using grouts and adhesives.

C. Samples: Mount tile and apply grout on two plywood panels, minimum 18 by 18 inches in size illustrating pattern, color variations, and grout joint size variations.

1.03 FIELD CONDITIONS

A. Do not install solvent-based products in an unventilated environment.

B. Maintain ambient and substrate temperature of 50 degrees F during installation of mortar materials.

PART 2 PRODUCTS

2.01 TILE

A. Glazed Wall Tile, Type [__]: ANSI A137.1 standard grade.

1. Size: as indicated on drawings

2. Surface Finish: as indicated on drawings

3. Color(s): To be selected by Architect from manufacturer's standard range.

4. Pattern: or as indicated on drawings.

B. Porcelain Tile: ANSI A137.1 standard grade.

1. Size: as indicated on drawings

2. Thickness: 3/8 inch.

3. Edges: Cushioned.

4. Surface Finish: as indicated on drawings.

5. Color(s): As indicated on drawings.

6. Pattern: as indicated on drawings.

2.02 TRIM AND ACCESSORIES

A. Ceramic Accessories: Glazed finish, same color and finish as adjacent field tile; same manufacturer as tile.

B. Thresholds: Marble, white or gray, honed finish; 2 inches wide by full width of wall or frame opening; 1/2 inch thick; beveled one long edge with radiused corners on top side; without
holes, cracks, or open seams.

2.03 SETTING MATERIALS
 A. Improved Latex-Portland Cement Mortar Bond Coat: ANSI A118.15.

2.04 GROUTS
 A. High Performance Polymer Modified Grout: ANSI A118.7 polymer modified cement grout.
 1. Applications: Use this type of grout where indicated and where no other type of grout is indicated.
 2. Use sanded grout for joints 1/8 inch wide and larger; use unsanded grout for joints less than 1/8 inch wide.

2.05 MAINTENANCE MATERIALS
 A. Tile Sealant: Gunnable, silicone, siliconized acrylic, or urethane sealant; moisture and mildew resistant type.
 1. Applications: Between tile and plumbing fixtures.
 B. Grout Sealer: Liquid-applied, moisture and stain protection for existing or new Portland cement grout.
 1. Composition: Water-based colorless silicone.
 C. Grout Release: Temporary, water-soluble pre-grout coating.

2.06 ACCESSORY MATERIALS
 A. Concrete Floor Slab Crack Isolation Membrane: Material complying with ANSI A118.12; not intended as waterproofing.
 1. Type: Fluid-applied.
 2. Thickness: 20 mils, maximum.
 3. Crack Resistance: No failure at 1/8 inch gap, minimum.
 B. Backer Board: Cementitious type complying with ANSI A118.9; high density, glass fiber reinforced, 1/2 inch thick; 2 inch wide coated glass fiber tape for joints and corners.

PART 3 EXECUTION
3.01 INSTALLATION - GENERAL
 A. Install tile, thresholds and stair treads and grout in accordance with applicable requirements of ANSI A108.1a through ANSI A108.13, manufacturer's instructions, and TCNA (HB) recommendations.
 B. Lay tile to pattern indicated. Do not interrupt tile pattern through openings.
 C. Cut and fit tile to penetrations through tile, leaving sealant joint space. Form corners and bases neatly. Align floor joints.
 D. Place tile joints uniform in width, subject to variance in tolerance allowed in tile size. Make grout joints without voids, cracks, excess mortar or excess grout, or too little grout.
 E. Form internal angles square and external angles bullnosed.
 F. Install ceramic accessories rigidly in prepared openings.
 G. Install thresholds where indicated.
 H. Sound tile after setting. Replace hollow sounding units.
 I. Keep control and expansion joints free of mortar, grout, and adhesive.
 J. Prior to grouting, allow installation to completely cure; minimum of 48 hours.
K. Grout tile joints unless otherwise indicated. Use standard grout unless otherwise indicated.

L. At changes in plane and tile-to-tile control joints, use tile sealant instead of grout, with either bond breaker tape or backer rod as appropriate to prevent three-sided bonding.

3.02 INSTALLATION - FLOORS - THIN-SET METHODS

A. Over interior concrete substrates, install in accordance with TCNA (HB) Method F113, dry-set or latex-Portland cement bond coat, with standard grout, unless otherwise indicated.

 1. Use uncoupling membrane under all tile unless other underlayment is indicated.

3.03 INSTALLATION - WALL TILE

A. Over cementitious backer units on studs, install in accordance with TCNA (HB) Method W244, using membrane at toilet rooms.

B. Over cementitious backer units install in accordance with TCNA (HB) Method W223, organic adhesive.

C. Over gypsum wallboard on wood or metal studs install in accordance with TCNA (HB) Method W243, thin-set with dry-set or latex-Portland cement bond coat, unless otherwise indicated.

END OF SECTION
SECTION 09 51 00
ACOUSTICAL CEILINGS

PART 1 GENERAL

1.01 REFERENCE STANDARDS

1.02 SUBMITTALS

A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
B. Product Data: Provide data on suspension system components.
C. Samples: Submit {CH#61647} samples illustrating material and finish of acoustical units.

1.03 QUALITY ASSURANCE

A. Fire-Resistive Assemblies: Complete assembly listed and classified by UL (FRD) for the fire resistance indicated.

1.04 FIELD CONDITIONS

A. Maintain uniform temperature of minimum 60 degrees F, and maximum humidity of 40 percent prior to, during, and after acoustical unit installation.

PART 2 PRODUCTS

2.01 ACOUSTICAL UNITS

A. Acoustical Units - General: ASTM E1264, Class A.
 1. Units for Installation in Fire-Rated Suspension System: Listed and classified for the fire-resistive assembly as part of suspension system.
B. Acoustical Tile: Painted mineral fiber, ASTM E1264 Type III, with the following characteristics:
 1. Size: 24 by 48 inches
 2. Thickness: 5/8 inches.
 4. Surface Color: To be selected by Architect from manufacturer's standard line.
 5. Surface Pattern: to be selected by architect from manufacturer's standard line.

2.02 SUSPENSION SYSTEM(S)

A. Metal Suspension Systems - General: Complying with ASTM C635/C635M; die cut and interlocking components, with stabilizer bars, clips, splices, perimeter moldings and hold down clips as required.
B. Concealed Suspension System: Formed steel, commercial quality cold rolled; light-duty.
 1. Profile: Tongue and groove.
 2. Construction: Double web.

2.03 ACCESSORIES
A. Support Channels and Hangers: Galvanized steel; size and type to suit application, seismic requirements, and ceiling system flatness requirement specified.
B. Perimeter Moldings: Same material and finish as grid.
 1. At Concealed Grid: Provide exposed L-shaped molding.
C. Acoustical Insulation: ASTM C665 friction fit type, unfaced batts.
D. Gypsum Board: Fire rated type; 5/8 inch thick, ends and edges square, paper faced.
E. Acoustical Sealant For Perimeter Moldings: Non-hardening, non-skinning, for use in conjunction with suspended ceiling system.

PART 3 EXECUTION

3.01 INSTALLATION - SUSPENSION SYSTEM
A. Install suspension system in accordance with ASTM C636/C636M, ASTM E580/E580M and manufacturer's instructions and as supplemented in this section.
B. Rigidly secure system, including integral mechanical and electrical components, for maximum deflection of 1:360.
C. Lay out system to a balanced grid design with edge units no less than 50 percent of acoustical unit size.
D. Install after major above-ceiling work is complete. Coordinate the location of hangers with other work.
E. Hang suspension system independent of walls, columns, ducts, pipes and conduit. Where carrying members are spliced, avoid visible displacement of face plane of adjacent members.
F. Where ducts or other equipment prevent the regular spacing of hangers, reinforce the nearest affected hangers and related carrying channels to span the extra distance.
G. Do not support components on main runners or cross runners if weight causes total dead load to exceed deflection capability.
H. Support fixture loads using supplementary hangers located within 6 inches of each corner, or support components independently.
I. Do not eccentrically load system or induce rotation of runners.
J. Perimeter Molding: Install at intersection of ceiling and vertical surfaces and at junctions with other interruptions.
 1. Use longest practical lengths.
 2. Overlap and rivet corners.
K. Install light fixture boxes constructed of gypsum board above light fixtures in accordance with fire rated assembly requirements and light fixture ventilation requirements.

3.02 INSTALLATION - ACOUSTICAL UNITS
A. Install acoustical units in accordance with manufacturer's instructions.
B. Fit acoustical units in place, free from damaged edges or other defects detrimental to appearance and function.
C. Lay directional patterned units with pattern parallel to longest room axis.
D. Fit border trim neatly against abutting surfaces.
E. Install units after above-ceiling work is complete.
F. Install acoustical units level, in uniform plane, and free from twist, warp, and dents.
G. Cutting Acoustical Units:
 1. Make field cut edges of same profile as factory edges.
H. Install hold-down clips on each panel to retain panels tight to grid system; comply with fire rating requirements.

END OF SECTION
SECTION 09 65 00
RESILIENT FLOORING

PART 1 GENERAL

1.01 RELATED REQUIREMENTS
A. Section 01 61 16 - Volatile Organic Compound (VOC) Content Restrictions.

1.02 REFERENCE STANDARDS

1.03 SUBMITTALS
A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
B. Product Data: Provide data on specified products, describing physical and performance characteristics; including sizes, patterns and colors available; and installation instructions.
C. Selection Samples: Submit manufacturer's complete set of color samples for Architect's initial selection.
D. Sustainable Design Submittal: Submit VOC content documentation for flooring and adhesives.

PART 2 PRODUCTS

2.01 TILE FLOORING
A. Vinyl Composition Tile: Homogeneous, with color extending throughout thickness.
 1. Minimum Requirements: Comply with ASTM F1066, of Class corresponding to type specified.
 2. Critical Radiant Flux (CRF): Minimum 0.45 watt per square centimeter, when tested in accordance with ASTM E648 or NFPA 253.
 3. Size: 12 by 12 inch.
 4. VOC Content Limits: As specified in Section 01 61 16.
 5. Thickness: 0.125 inch.
 6. Pattern: as shown on drawings.
 7. Color: To be selected by Architect from manufacturer's full range.

2.02 STAIR COVERING
A. Stair Treads: Rubber; full width and depth of stair tread in one piece; tapered thickness.
 1. Minimum Requirements: Comply with ASTM F2169, Type TS, rubber, vulcanized thermoset.
 2. Critical Radiant Flux (CRF): Minimum 0.45 watt per square centimeter, when tested in accordance with ASTM E648 or NFPA 253.
3. Nominal Thickness: 0.1875 inch.
5. Striping: 2 inch wide contrasting color abrasive strips.
6. Texture: Raised.
7. Color: To be selected by Architect from manufacturer's full range.

B. Stair Stringers: Full height in one piece and in maximum available lengths, matching treads in material and color.
1. Nominal Thickness: 0.080 inch.

2.03 RESILIENT BASE
A. Resilient Base: ASTM F1861, Type TS rubber, vulcanized thermoset; top set Style B, Cove.
1. Critical Radiant Flux (CRF): Minimum 0.45 watt per square centimeter, when tested in accordance with ASTM E648 or NFPA 253.
2. Height: \{CH#64411\}.
3. Thickness: 0.125 inch.
5. Length: Roll.
6. Color: To be selected by Architect from manufacturer's full range.
7. Accessories: Premolded external corners and internal corners.

2.04 ACCESSORIES
A. Subfloor Filler: White premix latex; type recommended by adhesive material manufacturer.
B. Primers, Adhesives and Seam Sealer: Waterproof; types recommended by flooring manufacturer.
1. VOC Content Limits: As specified in Section 01 61 16.
C. Moldings, Transition and Edge Strips: Same material as flooring.

PART 3 EXECUTION
3.01 INSTALLATION - GENERAL
A. Starting installation constitutes acceptance of sub-floor conditions.
B. Install in accordance with manufacturer's written instructions.
C. Adhesive-Applied Installation:
1. Spread only enough adhesive to permit installation of materials before initial set.
2. Place copper grounding strip in conductive adhesive and apply additional adhesive to top side of strip before installing static control flooring. Allow strip to extend beyond flooring in accordance with static control flooring manufacturer's instructions. Refer to Section 26 05 26 for grounding and bonding to building grounding system.
3. Fit joints and butt seams tightly.
4. Set flooring in place, press with heavy roller to attain full adhesion.

3.02 INSTALLATION - TILE FLOORING
A. Mix tile from container to ensure shade variations are consistent when tile is placed, unless otherwise indicated in manufacturer's installation instructions.
B. Lay flooring with joints and seams parallel to building lines to produce symmetrical pattern.

3.03 INSTALLATION - RESILIENT BASE

A. Fit joints tightly and make vertical. Maintain minimum dimension of 18 inches between joints.

B. Install base on solid backing. Bond tightly to wall and floor surfaces.

3.04 INSTALLATION - STAIR COVERINGS

A. Install stair coverings in one piece for full width and depth of tread.

B. Install stringers configured tightly to stair profile.

C. Adhere over entire surface. Fit accurately and securely.

END OF SECTION
SECTION 09 68 13
TILE CARPETING

PART 1 GENERAL

1.01 RELATED REQUIREMENTS
 A. Section 01 61 16 - Volatile Organic Compound (VOC) Content Restrictions.

1.02 REFERENCE STANDARDS

1.03 SUBMITTALS
 A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
 B. Product Data: Provide data on specified products, describing physical and performance characteristics; sizes, patterns, colors available, and method of installation.

PART 2 PRODUCTS

2.01 MATERIALS
 A. Tile Carpeting {CH#65580}, manufactured in one color dye lot.
 1. Tile Size: 18 by 18 inch, nominal.
 2. Critical Radiant Flux: Minimum of 0.22 watts/sq cm, when tested in accordance with ASTM E648 or NFPA 253.
 3. Surface Flammability Ignition: Pass ASTM D2859 (the "pill test").

2.02 ACCESSORIES
 A. Sub-Floor Filler: White premix latex; type recommended by flooring material manufacturer.
 B. Edge Strips: Embossed aluminum.
 C. Adhesives:
 1. Compatible with materials being adhered; maximum VOC content as specified in Section 01 61 16.

PART 3 EXECUTION

3.01 INSTALLATION
 A. Starting installation constitutes acceptance of sub-floor conditions.
 B. Install carpet tile in accordance with manufacturer's instructions.
 C. Blend carpet from different cartons to ensure minimal variation in color match.
 D. Cut carpet tile clean. Fit carpet tight to intersection with vertical surfaces without gaps.
 E. Lay carpet tile in square pattern, with pile direction parallel to next unit, set parallel to building lines.
 F. Trim carpet tile neatly at walls and around interruptions.
 G. Complete installation of edge strips, concealing exposed edges.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES

A. Surface preparation.
B. Field application of paints.
C. Scope: Finish exterior surfaces exposed to view, unless fully factory-finished and unless otherwise indicated.
D. Do Not Paint or Finish the Following Items:
 1. Items factory-finished unless otherwise indicated; materials and products having factory-applied primers are not considered factory finished.
 2. Items indicated to receive other finishes.
 3. Items indicated to remain unfinished.
 4. Fire rating labels, equipment serial number and capacity labels, and operating parts of equipment.
 5. Floors, unless specifically indicated.
 6. Ceramic and other types of tiles.
 7. Brick, glass unit masonry, architectural concrete, cast stone, integrally colored plaster and stucco.
 8. Glass.
 9. Concrete masonry units in utility, mechanical and electrical spaces.
 10. Concealed pipes, ducts, and conduits.

1.02 REFERENCE STANDARDS

1.03 SUBMITTALS

A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
B. Product Data: Provide complete list of products to be used, with the following information for each:
 1. Manufacturer's name, product name and/or catalog number, and general product category (e.g. "alkyd enamel").
 2. MPI product number (e.g. MPI #47).
 3. Cross-reference to specified paint system(s) product is to be used in; include description of each system.

PART 2 PRODUCTS

2.01 MANUFACTURERS

A. Provide paints and finishes from the same manufacturer to the greatest extent possible.

2.02 PAINTS AND FINISHES - GENERAL

A. Paints and Finishes: Ready mixed, unless required to be a field-catalyzed paint.
 1. Provide paints and finishes of a soft paste consistency, capable of being readily and uniformly dispersed to a homogeneous coating, with good flow and brushing
properties, and capable of drying or curing free of streaks or sags.

2. Provide materials that are compatible with one another and the substrates indicated under conditions of service and application, as demonstrated by manufacturer based on testing and field experience.

3. For opaque finishes, tint each coat including primer coat and intermediate coats, one-half shade lighter than succeeding coat, with final finish coat as base color.

4. Supply each paint material in quantity required to complete entire project's work from a single production run.

5. Do not reduce, thin, or dilute paint or finishes or add materials unless such procedure is specifically described in manufacturer's product instructions.

B. Colors: To be selected from manufacturer's full range of available colors.

1. Selection to be made by Architect after award of contract.

2. Allow for minimum of three colors for each system, unless otherwise indicated, without additional cost to Owner.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that surfaces are ready to receive work as instructed by the product manufacturer.

B. Examine surfaces scheduled to be finished prior to commencement of work. Report any condition that may potentially effect proper application.

C. Test shop-applied primer for compatibility with subsequent cover materials.

D. Measure moisture content of surfaces using an electronic moisture meter. Do not apply finishes unless moisture content of surfaces are below the following maximums:

 1. Masonry, Concrete, and Concrete Masonry Units: 12 percent.
 2. Concrete Floors and Traffic Surfaces: 8 percent.

3.02 PREPARATION

A. Clean surfaces thoroughly and correct defects prior to application.

B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.

C. Remove or mask surface appurtenances, including electrical plates, hardware, light fixture trim, escutcheons, and fittings, prior to preparing surfaces for finishing.

D. Seal surfaces that might cause bleed through or staining of topcoat.

E. Remove mildew from impervious surfaces by scrubbing with solution of tetra-sodium phosphate and bleach. Rinse with clean water and allow surface to dry.

3.03 APPLICATION

A. Apply products in accordance with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual".

B. Do not apply finishes to surfaces that are not dry. Allow applied coats to dry before next coat is applied.

C. Apply each coat to uniform appearance.

D. Vacuum clean surfaces of loose particles. Use tack cloth to remove dust and particles just prior to applying next coat.
E. Reinstall electrical cover plates, hardware, light fixture trim, escutcheons, and fittings removed prior to finishing.

END OF SECTION
PART 1 GENERAL

1.01 SECTION INCLUDES

A. Surface preparation.
B. Field application of paints.
C. Scope: Finish interior surfaces exposed to view, unless fully factory-finished and unless otherwise indicated.
 1. Both sides and edges of plywood backboards for electrical and telecom equipment before installing equipment.
 2. Prime surfaces to receive wall coverings.
D. Do Not Paint or Finish the Following Items:
 1. Items factory-finished unless otherwise indicated; materials and products having factory-applied primers are not considered factory finished.
 2. Items indicated to receive other finishes.
 3. Items indicated to remain unfinished.
 4. Fire rating labels, equipment serial number and capacity labels, bar code labels, and operating parts of equipment.
 5. Stainless steel, anodized aluminum, bronze, terne coated stainless steel, and lead items.
 6. Marble, granite, slate, and other natural stones.
 7. Floors, unless specifically indicated.
 8. Ceramic and other tiles.
 9. Glass.
 10. Acoustical materials, unless specifically indicated.
 11. Concealed pipes, ducts, and conduits.

1.02 REFERENCE STANDARDS

B. ASTM D4259 - Standard Practice for Preparation of Concrete by Abrasion Prior to Coating Application 2018.
E. SSPC V1 (PM1) - Good Painting Practice: Painting Manual, Volume 1 2016.
F. SSPC-SP 1 - Solvent Cleaning 2015, with Editorial Revision (2016).
G. SSPC-SP 6 - Commercial Blast Cleaning 2007.

1.03 SUBMITTALS

A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
B. Product Data: Provide complete list of products to be used, with the following information for each:

1. Manufacturer's name, product name and/or catalog number, and general product category (e.g. "alkyd enamel").
2. MPI product number (e.g. MPI #47).
3. Cross-reference to specified paint system(s) product is to be used in; include description of each system.

PART 2 PRODUCTS

2.01 MANUFACTURERS

A. Provide paints and finishes from the same manufacturer to the greatest extent possible.

2.02 PAINTS AND FINISHES - GENERAL

A. Paints and Finishes: Ready mixed, unless intended to be a field-catalyzed paint.

1. Provide paints and finishes of a soft paste consistency, capable of being readily and uniformly dispersed to a homogeneous coating, with good flow and brushing properties, and capable of drying or curing free of streaks or sags.
2. For opaque finishes, tint each coat including primer coat and intermediate coats, one-half shade lighter than succeeding coat, with final finish coat as base color.
3. Supply each paint material in quantity required to complete entire project's work from a single production run.
4. Do not reduce, thin, or dilute paint or finishes or add materials unless such procedure is specifically described in manufacturer's product instructions.

2.03 PAINT SYSTEMS - INTERIOR

A. Paint I-OP - Interior Surfaces to be Painted, Unless Otherwise Indicated: Including gypsum board, concrete, concrete masonry units, wood, uncoated steel, shop primed steel, galvanized steel and aluminum.

1. Two top coats and one coat primer.
2. Top Coat(s): High Performance Architectural Interior Latex.
3. Top Coat(s): Interior Latex.

B. Paint I-OP-MD-DT - Medium Duty Door/Trim: For surfaces subject to frequent contact by occupants, including metals and wood:

1. Medium duty applications include doors, door frames, railings, handrails, guardrails, balustrades and guards.
2. Two top coats and one coat primer.
3. Primer: As recommended by top coat manufacturer for specific substrate.

1. Two top coats and one coat primer.
2. Top Coat(s): Interior Light Industrial Coating, Water Based.

D. Dry Fall: Metals; exposed structure and overhead-mounted services in utilitarian spaces, including shop primed (CH#191816).

1. Shop primer by others.
2. One top coat.
3. Top Coat: Latex Dry Fall.
4. Top Coat Sheen:
 a. Flat: MPI gloss level 1; use this sheen at all locations.

E. Paint I-OP-FL - Concrete Floors to be Painted.
 1. Two top coats and one coat primer.
 2. Top Coat(s): Alkyd Floor Enamel, Gloss.

F. Paint I-TR-C - Transparent Finish on Concrete Floors.
 1. 1 coat stain.
 2. Stain: Solid Color Stain for Concrete.
 3. Sealer: Water Based Sealer for Concrete Floors; MPI #99.

G. Paint CI-OP-3A - Concrete/Masonry, Opaque, Alkyd, 3 Coat:
 1. One coat of block filler.

H. Paint MI-OP-3A - Ferrous Metals, Unprimed, Alkyd, 3 Coat:
 1. One coat of alkyd primer.

I. Paint MI-OP-3L - Ferrous Metals, Unprimed, Latex, 3 Coat:
 1. One coat of latex primer.
 2. Semi-gloss: Two coats of latex enamel.

J. Paint MI-OP-2A - Ferrous Metals, Primed, Alkyd, 2 Coat:
 1. Touch-up with alkyd primer.

K. Paint MgI-OP-3A - Galvanized Metals, Alkyd, 3 Coat:
 1. One coat galvanize primer.

L. Paint Mal-OP-3A - Aluminum, Unprimed, Alkyd, 3 Coat:
 1. One coat etching primer.

M. Paint CI-OP-3Af - Concrete/Masonry, Alkyd Floor Enamel, 3 Coat:
 1. One coat of alkali resistant primer.
 2. Gloss: Two coats of alkyd floor enamel.

N. Paint GI-OP-2L - Gypsum Board/Plaster, Latex, 2 Coat:
 1. One coat of alkyd primer sealer.
 2. Semi-gloss: One coat of latex enamel.
 3. Flat: One coat of latex enamel.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that surfaces are ready to receive work as instructed by the product manufacturer.
B. Examine surfaces scheduled to be finished prior to commencement of work. Report any condition that may potentially effect proper application.

C. Test shop-applied primer for compatibility with subsequent cover materials.

D. Measure moisture content of surfaces using an electronic moisture meter. Do not apply finishes unless moisture content of surfaces are below the following maximums:
 1. Gypsum Wallboard: 12 percent.
 2. Plaster and Stucco: 12 percent.
 3. Masonry, Concrete, and Concrete Masonry Units: 12 percent.
 4. Interior Wood: 15 percent, measured in accordance with ASTM D4442.
 5. Concrete Floors and Traffic Surfaces: 8 percent.

3.02 PREPARATION
 A. Clean surfaces thoroughly and correct defects prior to application.
 B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.
 C. Remove or mask surface appurtenances, including electrical plates, hardware, light fixture trim, escutcheons, and fittings, prior to preparing surfaces or finishing.
 D. Seal surfaces that might cause bleed through or staining of topcoat.
 E. Concrete:
 F. Masonry:
 G. Concrete Floors and Traffic Surfaces: Remove contamination, acid etch, and rinse floors with clear water. Verify required acid-alkali balance is achieved. Allow to dry.
 H. Gypsum Board: Fill minor defects with filler compound. Spot prime defects after repair.
 I. Plaster: Fill hairline cracks, small holes, and imperfections with latex patching plaster. Make smooth and flush with adjacent surfaces. Wash and neutralize high alkali surfaces.
 J. Aluminum: Remove surface contamination and oils and wash with solvent according to SSPC-SP 1.
 K. Galvanized Surfaces:
 L. Ferrous Metal:
 1. Solvent clean according to SSPC-SP 1.
 3. Remove rust, loose mill scale, and other foreign substances using using methods recommended in writing by paint manufacturer and blast cleaning according to SSPC-SP 6 "Commercial Blast Cleaning". Protect from corrosion until coated.
 M. Wood Doors to be Field-Finished: Seal wood door top and bottom edge surfaces with clear sealer.

3.03 APPLICATION
 A. Apply products in accordance with manufacturer’s written instructions and recommendations in “MPI Architectural Painting Specification Manual”.
 B. Do not apply finishes to surfaces that are not dry. Allow applied coats to dry before next coat is applied.
C. Apply each coat to uniform appearance in thicknesses specified by manufacturer.

D. Vacuum clean surfaces of loose particles. Use tack cloth to remove dust and particles just prior to applying next coat.

E. Reinstall electrical cover plates, hardware, light fixture trim, escutcheons, and fittings removed prior to finishing.

END OF SECTION
SECTION 10 14 00
SIGNAGE

PART 1 GENERAL
1.01 REFERENCE STANDARDS

1.02 SUBMITTALS
 A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
 B. Product Data: Manufacturer's printed product literature for each type of sign, indicating sign styles, font, foreground and background colors, locations, overall dimensions of each sign.
 C. Signage Schedule: Provide information sufficient to completely define each sign for fabrication, including room number, room name, other text to be applied, sign and letter sizes, fonts, and colors.
 1. When room numbers to appear on signs differ from those on drawings, include the drawing room number on schedule.
 2. When content of signs is indicated to be determined later, request such information from Owner through Architect at least 2 months prior to start of fabrication; upon request, submit preliminary schedule.
 3. Submit for approval by Owner through Architect prior to fabrication.
 D. Samples: Submit two samples of each type of sign, of size similar to that required for project, illustrating sign style, font, and method of attachment.
 E. Selection Samples: Where colors are not specified, submit two sets of color selection charts or chips.
 F. Verification Samples: Submit samples showing colors specified.

1.03 FIELD CONDITIONS
 A. Do not install tape adhesive when ambient temperature is lower than recommended by manufacturer.
 B. Maintain this minimum temperature during and after installation of signs.

PART 2 PRODUCTS
2.01 SIGNAGE APPLICATIONS
 A. Accessibility Compliance: Signs are required to comply with ADA Standards and ICC A117.1, unless otherwise indicated; in the event of conflicting requirements, comply with the most comprehensive and specific requirements.

2.02 SIGN TYPES
 A. Flat Signs: Signage media without frame.
 1. Edges: Square.
 2. Corners: Square.
 3. Frame Finish: Natural (clear) anodized.
B. Color and Font: Unless otherwise indicated:
 1. Character Font: Helvetica, Arial, or other sans serif font.
 2. Character Case: Upper case only.

PART 3 EXECUTION

3.01 **INSTALLATION**

A. Install in accordance with manufacturer's instructions.

B. Install neatly, with horizontal edges level.

C. Protect from damage until Substantial Completion; repair or replace damaged items.

END OF SECTION
SECTION 10 21 13.13
METAL TOILET COMPARTMENTS

PART 1 GENERAL
1.01 REFERENCE STANDARDS

1.02 SUBMITTALS
 A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
 B. Shop Drawings: Indicate partition plan, elevation views, dimensions, details of wall, floor and ceiling supports, door swings.
 C. Product Data: Provide data on panel construction, hardware, and accessories.

PART 2 PRODUCTS
2.01 MATERIALS
 A. Steel Sheet: Hot-dipped galvanized steel sheet, ASTM A653/A653M, with G90/Z275 coating.
 B. Steel Sheet: ASTM A424/A424M, Type I, Commercial Steel.

2.02 COMPONENTS
 A. Toilet Compartments: Powder coated steel, floor-mounted unbraced.
 B. Doors, Panels, and Pilasters: Sheet steel faces, pressure bonded to sound deadening core, formed and closed edges; corners made with corner clips or mitered, welded, and ground smooth.
 C. Pilasters: 1-1/4 inch thick, of sizes required to suit compartment width and spacing.
 D. Urinal Screens: Wall mounted with two panel brackets. See construction drawings for heights.

2.03 ACCESSORIES
 A. Brackets: Polished chrome-plated non-ferrous cast metal.
 B. Hardware: Polished chrome plated non-ferrous cast metal:
 1. Pivot hinges, gravity type, adjustable for door close positioning; two per door.
 2. Thumb turn or sliding door latch with exterior emergency access feature.
 3. Door strike and keeper with rubber bumper; mounted on pilaster in alignment with door latch.
 4. Coat hook with rubber bumper; one per compartment, mounted on door.
 5. Provide door pull for outswinging doors.

PART 3 EXECUTION
3.01 INSTALLATION
 A. Install partitions secure, rigid, plumb, and level in accordance with manufacturer’s instructions.
 B. Maintain 3/8 to 1/2 inch space between wall and panels and between wall and end pilasters.
C. Attach panel brackets securely to walls using anchor devices.
D. Attach panels and pilasters to brackets. Locate head rail joints at pilaster center lines.

3.02 TOLERANCES
A. Maximum Variation From True Position: 1/4 inch.
B. Maximum Variation From Plumb: 1/8 inch.

END OF SECTION
SECTION 10 28 00
TOILET, BATH, AND LAUNDRY ACCESSORIES

PART 1 GENERAL

1.01 REFERENCE STANDARDS

1.02 SUBMITTALS
A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
B. Product Data: Submit data on accessories describing size, finish, details of function, and attachment methods.

PART 2 PRODUCTS

2.01 MANUFACTURERS
A. Provide products of each category type by single manufacturer.

2.02 MATERIALS
A. Accessories - General: Shop assembled, free of dents and scratches and packaged complete with anchors and fittings, steel anchor plates, adapters, and anchor components for installation.
B. Mirror Glass: Annealed float glass, ASTM C1036 Type I, Class 1, Quality Q2, with silvering, protective and physical characteristics complying with ASTM C1503.

2.03 COMMERCIAL TOILET ACCESSORIES
A. Toilet Paper Dispenser: 10" Jumbo Roll roll, Basis of design is Tork 554028A.
B. Paper Towel Dispenser: Surface mounted, 8" roll. Basis of Design is Tork 772728 (H71 System)
C. Waste Receptacle: freestanding style.
D. Soap Dispenser: Liquid soap dispenser, wall-mounted, Basis of design is Tork 570028A
E. Air Freshener Dispenser: Wall-mounted, battery operated. Basis of design is Tork 562000 (A1)
F. Mirrors: Stainless steel framed, 1/4 inch thick annealed float glass; ASTM C1036. Basis of design is Bobrick B165 24x36
G. Seat Cover Dispenser: Stainless steel, surface-mounted, Basis of design is Bobrick B5221
H. Grab Bars: Stainless steel, peened surface.
 1. Heavy Duty Grab Bars: Floor supports are acceptable if necessary to achieve load rating.
 a. Push/Pull Point Load: Minimum 1000 pound-force, minimum.
 b. Dimensions: 1-1/2 inch outside diameter, minimum 0.125 inch wall thickness, exposed flange mounting, 1-1/2 inch clearance between wall and inside of grab bar.
 c. Length and Configuration: As indicated on drawings.
I. Sanitary Napkin Disposal Unit: {CH#71171}, {CH#71172}, self-closing door, locking bottom panel with full-length stainless steel piano-type hinge, removable receptacle, Basis of design is Bobrick B5270

PART 3 EXECUTION
3.01 INSTALLATION

A. Install accessories in accordance with manufacturers' instructions in locations indicated on drawings.

B. Install plumb and level, securely and rigidly anchored to substrate.

C. Mounting Heights: As required by accessibility regulations, unless otherwise indicated.

END OF SECTION
SECTION 10 44 00
FIRE PROTECTION SPECIALTIES

PART 1 GENERAL

1.01 REFERENCE STANDARDS

1.02 SUBMITTALS
 A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
 B. Product Data: Provide extinguisher operational features.

1.03 FIELD CONDITIONS
 A. Do not install extinguishers when ambient temperature may cause freezing of extinguisher ingredients.

PART 2 PRODUCTS

2.01 FIRE EXTINGUISHERS
 A. Fire Extinguishers - General: Comply with product requirements of NFPA 10 and applicable codes, whichever is more stringent.
 1. Provide extinguishers labeled by UL (DIR) or FM (AG) for purpose specified and as indicated.
 B. Multipurpose Dry Chemical Type Fire Extinguishers: Carbon steel tank, with pressure gauge.
 1. Cartridge Operated: Spun shell.
 5. Size and classification as scheduled.
 6. Finish: Baked polyester powder coat, color as selected.
 7. Temperature range: Minus 65 degrees F to 120 degrees F.

2.02 FIRE EXTINGUISHER CABINETS
 A. Fire Rating: Listed and labeled in accordance with ASTM E814 requirements for fire resistance rating of walls where being installed.
 B. Cabinet Construction: Non-fire rated.
 1. Formed primed steel sheet; 0.036 inch thick base metal.
 2. Formed aluminum
 C. Fire Rated Cabinet Construction: One-hour fire rated.
 1. Steel; double wall or outer and inner boxes with 5/8 inch thick fire barrier material.
 D. Door: 0.036 inch metal thickness, reinforced for flatness and rigidity with nylon catch. Hinge doors for 180 degree opening with two butt hinge.
E. Door Glazing: Float glass, clear, 1/8 inch thick, and set in resilient channel glazing gasket.

F. Cabinet Mounting Hardware: Appropriate to cabinet, with pre-drilled holes for placement of anchors.

G. Finish of Cabinet Exterior Trim and Door: No. 4 - Brushed stainless steel.

H. Finish of Cabinet Interior: White colored enamel.

2.03 ACCESSORIES

A. Extinguisher Brackets: Formed steel, chrome-plated.

PART 3 EXECUTION

3.01 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. Secure rigidly in place.

C. Place extinguishers in cabinets.

END OF SECTION
SECTION 10 51 13
METAL LOCKERS

PART 1 GENERAL

1.01 REFERENCE STANDARDS

1.02 SUBMITTALS
A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
B. Product Data: Manufacturer's published data on locker construction, sizes and accessories.
C. Shop Drawings: Indicate locker plan layout, numbering plan and combination lock code.
D. Samples: Submit two samples 3 by 6 inches in size showing color and finish of metal locker material.

PART 2 PRODUCTS

2.01 LOCKER APPLICATIONS
A. Wardrobe Lockers: Metal lockers, wall mounted with matching closed base.
 2. Fittings: Size and configuration as indicated on drawings.
 3. Ventilation: Louvers at top and bottom of door panel.
B. Locker Benches: Stationary type; bench top of laminated birch; painted steel pedestals.
 1. Accessibility: Comply with ICC A117.1 and ADA Standards.

2.02 METAL LOCKERS
A. Accessibility: Comply with ICC A117.1 and ADA Standards.
B. Lockers: Factory assembled, made of formed sheet steel, ASTM A653/A653M SS Grade 33/230, with G60/Z180 coating, stretcher leveled; metal edges finished smooth without burrs; baked enamel finished inside and out.
 1. Color: To be selected by Architect.
C. Locks: Locker manufacturer's standard type indicated above.

PART 3 EXECUTION

3.01 INSTALLATION
A. Install in accordance with manufacturer's instructions.
B. Place and secure on prepared base.
C. Install lockers plumb and square.
D. Install fittings if not factory installed.
E. Replace components that do not operate smoothly.

END OF SECTION
PART 1 GENERAL

1.01 REFERENCE STANDARDS

1.02 SUBMITTALS
 A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
 B. Product Data: Submit product data sheets, including material descriptions and finishes, and preparation instructions and recommendations.
 C. Shop Drawings: Prior to commencement of fabrication, submit detailed shop drawings, showing profiles, sections of components, finishes, and fastening details.
 D. Design Data: Submit comprehensive structural analysis of design for the specified loads. Stamp and sign calculations by professional engineer.
 E. Manufacturer's Qualification Statement.
 F. Erector's Qualification Statement.
 G. Warranty Documentation: Submit manufacturer warranty and ensure that forms have been completed in Owner's name and registered with manufacturer.

1.03 QUALITY ASSURANCE
 A. Perform work in accordance with AISC 303.

1.04 WARRANTY
 A. See Section 01 78 00 - Closeout Submittals, for additional warranty requirements.
 B. Metal Canopies: Correct defective work within a two year period after Date of Substantial Completion.
 C. Finish Warranty: Provide manufacturer's one year warranty on factory finish against cracking, peeling, and blistering.

PART 2 PRODUCTS

2.01 METAL CANOPIES
 A. Shop Fabricated Metal Canopy
 1. Pre-engineered system complying with ASTM E2950.
 2. Design and fabricate metal canopy system to resist wind, snow, live and seismic loads without failure, damage, or permanent deflection in accordance with ASCE 7:

2.02 COMPONENTS
 A. Covering:
1. Sheet Metal Decking: Interlocking metal panels.
 a. Panel Size: 16 inches wide by 3 inches deep; 20 gauge, 0.0359 inch thickness.
 b. Provide canopy manufacturer's standard clip type fasteners for attaching covering to structural beams.
B. Fascia: Manufacturer's standard flat profile.
 1. Material: Galvanized steel panel laminated to 2 inch polystyrene foam core.
C. Concrete Footings: Refer to Section 03 30 00 for additional requirements.

2.03 SHOP FABRICATION
A. Provide a complete system ready for erection at project site.
B. Shop fabricate to the greatest extent possible; disassemble if necessary for shipping.
C. Perform welding in accordance with AWS D1.1/D1.1M.
D. Fabricate connections for bolt, nut, and washer connectors.

2.04 FINISHES
A. Structural Steel Framing:
B. Steel Decking: Polyester baked enamel finish; color as selected from manufacturer's standard range.
C. Fascia: Polyester baked enamel finish; color as selected from manufacturer's standard range.

2.05 ACCESSORIES
A. Structural Bolts: ASTM F3125/F3125M, Grade A325, minimum 3/4 inch diameter.

PART 3 EXECUTION
3.01 EXAMINATION
A. Examine substrates and site area for conditions that might prevent satisfactory installation.
B. Verify that foundation, electrical utilities, and placed anchors are in correct position.
C. Verify that bearing surfaces are ready to receive this work.
D. Do not proceed with installation until all conditions are satisfactory.

3.02 INSTALLATION - FRAMING
A. Erect framing in accordance with AISC 303.
B. Provide for erection and wind loads. Provide temporary bracing to maintain structure plumb and in alignment until completion of erection and installation.
C. Set column base plates with non-shrink grout to achieve full plate bearing.
D. Fasten columns to anchor bolts.
E. Do not field cut or alter structural members without approval.
F. After erection, prime welds, abrasions, and surfaces not shop primed.

3.03 INSTALLATION - CANOPY COVERING
A. Install in accordance with manufacturer's instructions.
B. Fasten metal decking to steel support members, aligned level and plumb.
C. Install fascia panels, trim and flashing.
D. Separate dissimilar metals using concealed bituminous paint.

E. Touch-up damaged finish coating using material provided by manufacturer to match original coating.

END OF SECTION
SECTION 11 13 13
LOADING DOCK BUMPERS

PART 1 GENERAL
1.01 SUBMITTALS
 A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
 B. Product Data: Submit data on unit dimensions, method of anchorage, and details of construction.

PART 2 PRODUCTS
2.01 COMPONENTS
 A. Loading Dock Bumpers: Fabric reinforced rubber pads, ozone resistant, laminated and compressed in position per manufacturer's drawings and standards.

PART 3 EXECUTION
3.01 INSTALLATION
 A. Install dock bumpers in accordance with manufacturer's instructions.
 B. Set plumb and level.

END OF SECTION
SECTION 11 13 16
LOADING DOCK SEALS AND SHELTERS

PART 1 GENERAL

1.01 SUBMITTALS

A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.

B. Shop Drawings: Indicate framed wall opening, dimensions and tolerances, adjacent construction and fittings required for anchorages, and anchor points.

C. Samples: Submit two cuts of seal covering material, illustrating color and finish.

PART 2 PRODUCTS

2.01 COMPONENTS

A. Door Seal: Per manufacturer's specifications

B. Stationary Dock Shelter: Per manufacturer's specifications

1. Top Covering Material: Per manufacturer's specifications

PART 3 EXECUTION

3.01 INSTALLATION

A. Install seal and shelter components in accordance with manufacturer's instructions.

B. Set plumb and level.

END OF SECTION
SECTION 11 13 19.13
LOADING DOCK LEVELERS

PART 1 GENERAL
1.01 SUBMITTALS
A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
B. Product Data: Provide materials and finish, installation details, roughing-in measurements, and operation of unit and safety lock device.
C. Shop Drawings: Indicate required opening dimensions and tolerances, placement dimensions of safety lock device, and perimeter conditions of construction.
D. Manufacturer's Qualification Statement.
E. Installer's Qualification Statement.

1.02 QUALITY ASSURANCE

1.03 WARRANTY
A. See Section 01 78 00 - Closeout Submittals, for additional warranty requirements.
B. Manufacturer agrees to correct defective work within two year period after Date of Substantial Completion.

PART 2 PRODUCTS
2.01 COMPONENTS
A. Loading Dock Leveler: Per manufacturer's specifications
 2. Capacity: Determined by Total Gross Load & Load Frequency

2.02 FINISHES
A. Leveler Platform: Per manufacturer's specifications
B. Leveler Frame: Per manufacturer's specifications
C. Guard Railing: Per manufacturer's specifications
D. Pit Frame: Per manufacturer's specifications
E. Vehicle Restraint: Per manufacturer's specifications
F. Provide galvanized finish at minimum as specified by manufacturer

PART 3 EXECUTION
3.01 INSTALLATION
A. Install dock leveler and vehicle restraint unit in prepared opening in accordance with manufacturer's instructions.
B. Set square and level.
C. Anchor unit securely, flush with dock; weld back of leveling dock to pit frame, and touch-up welds with primer.

END OF SECTION
SECTION 11 13 19
STATIONARY LOADING DOCK EQUIPMENT

PART 1 GENERAL

1.01 REFERENCE STANDARDS

1.02 SUBMITTALS
A. See Section 01 30 00 - Administrative Requirements, for submittal procedures.
B. Product Data: Provide materials and finish, installation details, roughing-in measurements, and operation of unit and safety lock device.
C. Shop Drawings: Indicate required opening dimensions and tolerances, perimeter conditions of construction, placement dimensions of safety lock devices, and diagrams for power, signal and control wiring.
D. Manufacturer's Qualification Statement.
E. Installer's Qualification Statement.
F. Welder's Qualification Statement.
G. Maintenance Data: Provide unit maintenance information, lubrication cycles, and spare parts manual.

1.03 QUALITY ASSURANCE

1.04 FIELD CONDITIONS
A. Existing Conditions: Field verify dimensions of construction related to stationary loading dock equipment prior to fabrication, including recessed pit dimensions, slope of inclined dock approach, dock height and height and width of dock door openings.

1.05 WARRANTY
A. See Section 01 78 00 - Closeout Submittals, for additional warranty requirements.
B. Manufacturer agrees to correct defective work within two year period from Date of Substantial Completion.

PART 2 PRODUCTS

2.01 VERTICAL STORING DOCK LEVELERS
A. Vertical Storing Dock Levelers: Hinged-edge type, vertical storing dock levelers, in compliance with ANSI MH30.1, and permanently installed in shallow concrete pit along edge of loading dock platform and set back from face of loading dock allowing overhead doors to close.
1. Hydraulic Operating System: Activated with electric control by operator from remote control station; fully hydraulic system for raising and lowering ramp.
 a. Provide packaged unit with unitized, totally enclosed, non-ventilated electric motor, pump, manifold reservoir, and valve assembly of proper size, type, and operation for capacity indicated.
b. Provide hydraulic velocity fuse connected to main hydraulic cylinder to limit loaded ramp's free fall to less than 3 inches.

2. Independent Dock Edge Operation: Provide electric-powered hydraulic raising and lowering of dock edge, controlled independently of raising and lowering of ramp.

3. Rated Capacity: Capable of supporting 20,000 lbs without permanent deflection or distortion.

4. Width of Platform: 60 inch wide, and at least 1/2 inch thick, nonskid steel plate.

5. Length of Platform: 72 inch long.

6. Hinged Dock Edge Thickness: At least 1/2 inch thick, nonskid steel plate.
 a. Hinge: Provide full width, steel piano hinge with heavy-wall hinge tube and grease fittings with support gussets on edge and ramp.

7. Ramp Edge Extension Length: 16 inches long.

8. Vertical storing dock leveler to compensate for differences in height between truck bed and loading dock platform, with operating range above platform level to enable edge to extend and clear truck bed prior to contact within the following working range:
 a. Vertical Travel: Provide for at least 6 inches above and 6 inches below adjoining platform.

9. Ramp Edge Operation: Manufacturer's standard mechanism that automatically extends and supports hinged ramp edge and rests on truck bed over leveler's working range, allows edge to yield under incoming truck impact and automatically retracts edge when truck departs.

B. Construction: Fabricate vertical storing dock leveler frame, edge and platform supports from structural and formed steel shapes, with platform and hinged edge welded to supports, chamfer edge to minimize obstructing material-handling vehicles, and ensure entire assembly is fabricated to withstand deformation during operation and storage phases of service.

1. Runoff Guards: Provide 4 inch nominal height, heavy gage metal runoff guards along each side of platform.

C. Vertical Storing Dock Leveler Finish: Manufacturer's standard finish.

2.02 VEHICLE RESTRAINTS

A. Vehicle Restraints: Complies with ANSI MH30.3, with metal restraining arm and mechanical lock and adaptable to work with rear of trailer ICC (Interstate Commerce Commission) bars being used at loading docks.

1. Type of Restraint: Mounted to exterior face of loading dock.

2.03 COMMUNICATION LIGHTS SYSTEMS

A. Communication Lights Systems: Provide system consisting of interior control panel, surface mounted two-way communication using interior and exterior signal light sets and signage for both dock attendant and truck driver, exterior regular and mirror viewable written instruction signage to inform truck driver to move on green light only.

1. Signal Light Sets: Red and green lights, with each lens 4 inch in diameter, nominal, enclosed in steel or plastic housing, and exterior set with sunshade.

2. Interior Signs: Provide wall mounted sign adjacent to light sets, readable by dock personnel regarding access to trailer.
 a. Text: CAUTION - Enter on Green Only.
3. Exterior Signs: Provide two wall mounted signs adjacent to light sets, one readable from truck mirror and other from standard view regarding movement of trailer.

2.04 MATERIALS
A. Structural Steel Sections: ASTM A36/A36M.
B. Checkered Steel Plate: ASTM A786/A786M, rolled steel floor plate; manufacturer's standard pattern.

2.05 FINISHES
A. Galvanizing: Per manufacturer's specifications.
 1. Touch up abraded areas after fabrication using specified touch-up primer for galvanized surfaces.
B. Metal Plate Platform: Per manufacturer's specifications.
C. Frame: Per manufacturer's specifications.
D. Railing: Per manufacturer's specifications.
E. Pit Frame: Per manufacturer's specifications.
F. Vehicle Restraint: Per manufacturer's specifications

PART 3 EXECUTION
3.01 INSTALLATION
A. Install loading dock leveler unit in prepared opening in accordance with manufacturer's written instructions.
 1. Set square and level.
 2. Anchor unit securely, flush with dock, and weld back of leveling dock to pit frame; touch-up welds with primer.
 3. Install electrical connections as required for fully operational system.
B. Truck Restraints: Anchor truck restraints in compliance with requirements for location and height to properly engage with vehicle rear impact guard (RIG).
C. Communication Lights System: Install in accordance with manufacturer's written instructions and in compliance with specified requirements.

END OF SECTION
SECTION 210513 - COMMON MOTOR REQUIREMENTS FOR FIRE SUPPRESSION EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on alternating-current power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:

1. Motor controllers.
2. Torque, speed, and horsepower requirements of the load.
3. Ratings and characteristics of supply circuit and required control sequence.
4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with requirements in this Section except when stricter requirements are specified in equipment schedules or Sections.

B. Comply with NEMA MG 1 unless otherwise indicated.

C. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Premium efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 ADDITIONAL REQUIREMENTS FOR POLYPHASE MOTORS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable-Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width-modulated inverters.
 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 210513
SECTION 210517 - SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Sleeves.
2. Stack-sleeve fittings.
3. Sleeve-seal systems.
4. Sleeve-seal fittings.
5. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. Metraflex Company (The).

B. Cast-Iron Pipe Sleeves: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop.
C. Steel Pipe Sleeves: ASTM A53/A53M, Type E, Grade B, Schedule 40, anticorrosion coated or galvanized, with plain ends and integral welded waterstop collar.

D. Galvanized-Steel Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

E. PVC Pipe Sleeves: ASTM D1785, Schedule 40.

F. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

G. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

2.2 STACK-SLEEVE FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Zurn Industries, LLC.

B. Description: Manufactured, Dura-coated or galvanized cast-iron sleeve with integral clamping flange for use in waterproof floors and roofs. Include clamping ring, bolts, and nuts for membrane flashing.

 1. Underdeck Clamp: Clamping ring with setscrews.

2.3 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. Metraflex Company (The).

B. Description:

 1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 2. Designed to form a hydrostatic seal of 20 psig minimum.
 3. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size.
 4. Pressure Plates: Carbon steel, with corrosion-resistant coating
 5. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, ASTM B633 of length required to secure pressure plates to sealing elements.
2.4 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Advance Products & Systems, Inc.
 2. CALPICO, Inc.
 3. Metraflex Company (The).

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall.

C. Plastic or rubber waterstop collar with center opening to match piping OD.

2.5 GROUT

A. Description: Nonshrink, for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.6 SILICONE SEALANTS

A. Silicone, S, NS, 25, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant, ASTM C920, Type S, Grade NS, Class 25, Use NT.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. GE Construction Sealants; Momentive Performance Materials Inc.
 b. Permathane®/Acryl-R®; ITW Polymers Sealants North America.
 c. Polymeric Systems, Inc.
 d. The Dow Chemical Company.

B. Silicone, S, P, 25, T, NT: Single-component, pourable, plus 25 percent and minus 25 percent movement capability, traffic- and nontraffic-use, neutral-curing silicone joint sealant; ASTM C920, Type S, Grade P, Class 25, Uses T and NT. Grade P Pourable (self-leveling) formulation is for opening in floors and other horizontal surfaces that are not fire rated.

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:

C. Silicone Foam: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. 3M.
 b. Smooth-On.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls for piping less than 4-inch in diameter and 2-inch annular clear for piping 4-inch and larger diameter piping.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.

1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
3. Using grout, seal space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.
2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint.

E. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping and fill materials specified in Section 078413 "Penetration Firestopping."
3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.
 1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing. Comply with requirements for flashing specified in Section 076200 "Sheet Metal Flashing and Trim."
 3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
 4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 5. Use silicone sealant to seal around the outside of stack-sleeve fittings.

B. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of floors at pipe penetrations. Seal pipe penetrations with fire- or smoke-stop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Use grout, to seal the space around outside of sleeve-seal fittings.

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
1. Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.

B. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.6 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Corrosion resistant coated-steel pipe sleeves with sleeve-seal system.
 b. Piping NPS 6 and Larger: Corrosion resistant coated-steel pipe sleeves with sleeve-seal system.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Corrosion resistant coated-steel pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Corrosion resistant coated-steel pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Corrosion resistant coated-steel pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Corrosion resistant coated-steel pipe sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
5. Interior Partitions:
 a. Piping Smaller Than NPS 6: Galvanized-steel pipe sleeves with sleeve-seal system.
 b. Piping NPS 6 and Larger: Galvanized-steel pipe sleeves with sleeve-seal system.
SECTION 210518 - ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. BrassCraft Manufacturing Co.; a Masco company.
 2. Dearborn Brass.
 4. Keeney Manufacturing Company (The).
 5. Mid-America Fittings, Inc.
 6. ProFlo; a Ferguson Enterprises, Inc. brand.

2.2 ESCUTCHEONS

A. One-Piece, Steel Type: With polished, chrome-plated finish and setscrew fastener.
B. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
C. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped steel with polished, chrome-plated finish and spring-clip fasteners.
D. One-Piece, Stamped-Steel Type: With polished, chrome-plated finish and spring-clip fasteners.
E. Split-Plate, Stamped-Steel Type: With polished, chrome-plated finish; concealed hinge; and spring-clip fasteners.

2.3 FLOOR PLATES

A. Split Floor Plates: Steel with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep pattern.
 b. Chrome-Plated Piping: One-piece steel or split-plate steel with polished, chrome-plated finish.
 c. Insulated Piping: One-piece steel with polished, chrome-plated finish.
 d. Insulated Piping: One-piece stainless steel with polished stainless-steel finish.
 e. Insulated Piping: One-piece cast brass with polished, chrome-plated finish.
 f. Insulated Piping: One-piece stamped steel or split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.
 g. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece steel with polished, chrome-plated finish.
 h. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece stainless steel with polished stainless-steel finish.
 i. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece cast brass with polished, chrome-plated finish.
 j. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece stamped steel or split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.
 k. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece steel with polished, chrome-plated finish.
 l. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece stainless steel with polished stainless-steel finish.
 m. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece cast brass with polished, chrome-plated finish.
 n. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece stamped steel or split-plate, stamped steel with concealed hinge with polished, chrome-plated finish.
 o. Bare Piping in Unfinished Service Spaces: One-piece steel with polished, chrome-plated finish.
 p. Bare Piping in Unfinished Service Spaces: One-piece cast brass with polished, chrome-plated finish.
C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor plate.
2. Existing Piping: Split floor plate.

3.2 FIELD QUALITY CONTROL

A. Using new materials, replace broken and damaged escutcheons and floor plates.

END OF SECTION 210518
SECTION 210523 - GENERAL-DUTY VALVES FOR FIRE PROTECTION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Two-piece ball valves with indicators.
2. Bronze butterfly valves with indicators.
3. Iron butterfly valves with indicators.
4. Check valves.
5. Bronze OS&Y gate valves.
7. NRS gate valves.
8. Indicator posts.
9. Trim and drain valves.

1.3 DEFINITIONS

A. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
B. NRS: Nonrising stem.
C. OS&Y: Outside screw and yoke.
D. SBR: Styrene-butadiene rubber.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:

1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, and weld ends.
B. Use the following precautions during storage:

1. Maintain valve end protection.
2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.

D. Protect flanges and specialties from moisture and dirt.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. UL Listed: Valves shall be listed in UL's "Online Certifications Directory" under the headings listed below and shall bear UL mark:

1. Main Level: HAMV - Fire Main Equipment.
 a. Level 1: HCBZ - Indicator Posts, Gate Valve.
 b. Level 1: HLOT - Valves.
 1) Level 3: HLUG - Ball Valves, System Control.
 2) Level 3: HLXS - Butterfly Valves.
 3) Level 3: HMER - Check Valves.
 4) Level 3: HMRZ - Gate Valves.

 a. Level 1: VQGU - Valves, Trim and Drain.

B. FM Global Approved: Valves shall be listed in its "Approval Guide," under the headings listed below:

1. Automated Sprinkler Systems:
 a. Indicator posts.
 b. Valves.
 1) Gate valves.
 2) Check valves.
 a) Single check valves.
 3) Miscellaneous valves.

C. Source Limitations for Valves: Obtain valves for each valve type from single manufacturer.
D. ASME Compliance:
 1. ASME B16.1 for flanges on iron valves.
 2. ASME B1.20.1 for threads for threaded-end valves.
 3. ASME B31.9 for building services piping valves.

E. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

F. NFPA Compliance: Comply with NFPA 24 for valves.

G. Valve Pressure Ratings: Not less than the minimum pressure rating indicated or higher as required by system pressures.

H. Valve Sizes: Same as upstream piping unless otherwise indicated.

I. Valve Actuator Types:
 1. Worm-gear actuator with handwheel for quarter-turn valves, except for trim and drain valves.
 2. Handwheel: For other than quarter-turn trim and drain valves.
 3. Handlever: For quarter-turn trim and drain valves NPS 2 and smaller.

2.2 TWO-PIECE BALL VALVES WITH INDICATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ames Fire & Waterworks; A WATTS Brand.
 2. NIBCO INC.
 3. Victaulic Company.

B. Description:
 1. UL 1091, except with ball instead of disc and FM Global standard for indicating valves (butterfly or ball type), Class Number 1112.
 4. Body Material: Forged brass or bronze.
 5. Port Size: Full or standard.
 6. Seats: PTFE.
 7. Stem: Bronze or stainless steel.
 8. Ball: Chrome-plated brass.
 9. Actuator: Worm gear or traveling nut.
 10. Supervisory Switch: Internal or external.
 11. End Connections for Valves NPS 1 through NPS 2: Threaded ends.
2.3 BRONZE BUTTERFLY VALVES WITH INDICATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Fivalco Inc.

B. Description:

1. Standard: UL 1091 and FM Global standard for indicating valves, (butterfly or ball type), Class Number 1112.
4. Seat Material: EPDM.
5. Stem Material: Bronze or stainless steel.
7. Actuator: Worm gear or traveling nut.
8. Supervisory Switch: Internal or external.

2.4 IRON BUTTERFLY VALVES WITH INDICATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Anvil International.
3. Kennedy Valve Company; a division of McWane, Inc.
4. NIBCO INC.
5. Tyco by Johnson Controls Company.
7. Zurn Industries, LLC.

B. Description:

1. Standard: UL 1091 and FM Global standard for indicating valves, (butterfly or ball type), Class Number 112.
3. Body Material: Cast or ductile iron with nylon, EPDM, epoxy, or polyamide coating.
4. Seat Material: EPDM.
5. Stem: Stainless steel.
6. Disc: Ductile iron, and EPDM or SBR coated.
7. Actuator: Worm gear or traveling nut.
8. Supervisory Switch: Internal or external.
2.5 CHECK VALVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Anvil International.
3. Kennedy Valve Company; a division of McWane, Inc.
4. NIBCO INC.
5. Victaulic Company.

B. Description:

3. Type: Single swing check.
4. Body Material: Cast iron, ductile iron, or bronze.
5. Clapper: Bronze, ductile iron, or stainless steel with elastomeric seal.
6. Clapper Seat: Brass, bronze, or stainless steel.
7. Hinge Shaft: Bronze or stainless steel.

2.6 BRONZE OS&Y GATE VALVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Milwaukee Valve Company.
2. NIBCO INC.
3. United Brass Works, Inc.
4. Zurn Industries, LLC.

B. Description:

3. Body and Bonnet Material: Bronze or brass.
4. Wedge: One-piece bronze or brass.
5. Wedge Seat: Bronze.
6. Stem: Bronze or brass.
7. Packing: Non-asbestos PTFE.
8. Supervisory Switch: External.
2.7 IRON OS&Y GATE VALVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Mueller Co.
3. NIBCO INC.
4. Victaulic Company.
5. WATTS.
6. Zurn Industries, LLC.

B. Description:

3. Body and Bonnet Material: Cast or ductile iron.
4. Wedge: Cast or ductile iron, or bronze with elastomeric coating.
5. Wedge Seat: Cast or ductile iron, or bronze with elastomeric coating.
6. Stem: Brass or bronze.
7. Packing: Non-asbestos PTFE.
8. Supervisory Switch: External.

2.8 NRS GATE VALVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Kennedy Valve Company; a division of McWane, Inc.
3. Mueller Co.

B. Description:

3. Body and Bonnet Material: Cast or ductile iron.
4. Wedge: Cast or ductile iron with elastomeric coating.
5. Wedge Seat: Cast or ductile iron, or bronze with elastomeric coating.
6. Stem: Brass or bronze.
7. Packing: Non-asbestos PTFE.
8. Supervisory Switch: External.
2.9 INDICATOR POSTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Kennedy Valve Company; a division of McWane, Inc.
3. Mueller Co.

B. Description:

2. Type: Underground.
3. Base Barrel Material: Cast or ductile iron.
4. Extension Barrel: Cast or ductile iron.
5. Cap: Cast or ductile iron.

2.10 TRIM AND DRAIN VALVES

A. Ball Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. NIBCO INC.
 b. Potter Roemer LLC; a Division of Morris Group International.
 c. Tyco by Johnson Controls Company.
 d. Victaulic Company.

2. Description:

 b. Body Design: Two piece.
 c. Body Material: Forged brass or bronze.
 d. Port size: Full or standard.
 e. Seats: PTFE.
 f. Stem: Bronze or stainless steel.
 g. Ball: Chrome-plated brass.
 h. Actuator: Handlever.
 i. End Connections for Valves NPS 1 through NPS 2-1/2: Threaded ends.
 j. End Connections for Valves NPS 1-1/4 and NPS 2-1/2: Grooved ends.

B. Angle Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Fire Protection Products, Inc.
b. NIBCO INC.
c. United Brass Works, Inc.

2. Description:
 b. Body Material: Brass or bronze.
 c. Ends: Threaded.
 d. Stem: Bronze.
 e. Disc: Bronze.
 f. Packing: Asbestos free.
 g. Handwheel: Malleable iron, bronze, or aluminum.

C. Globe Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire Protection Products, Inc.
 b. NIBCO INC.
 c. United Brass Works, Inc.
 2. Description:
 c. Ends: Threaded.
 d. Stem: Bronze.
 e. Disc Holder and Nut: Bronze.
 f. Disc Seat: Nitrile.
 g. Packing: Asbestos free.
 h. Handwheel: Malleable iron, bronze, or aluminum.

D. Ball Drip Valve
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Fire Protection Products, Inc.
 b. Viking Group, Inc.
 c. Reliable Automatic Sprinkler Co., Inc.
 2. Description:
 b. Body Material: Brass
 c. Ball Material: Stainless Steel
 d. Spring: Phosphor Bronze
 e. Retaining Ring: Stainless Steel
 f. Ends: Threaded.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 GENERAL REQUIREMENTS FOR VALVE INSTALLATION

A. Comply with requirements in the following Sections for specific valve installation requirements and applications:

1. Section 211100 "Facility Fire-Suppression Water-Service Piping" for application of valves in fire-suppression water-service piping outside the building.
2. Section 211313 "Wet-Pipe Sprinkler Systems" for application of valves in wet-pipe, fire-suppression sprinkler systems.
3. Section 211316 "Dry-Pipe Sprinkler Systems" for application of valves in dry-pipe, fire-suppression sprinkler systems.

B. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Install valves having threaded connections with unions at each piece of equipment arranged to allow easy access, service, maintenance, and equipment removal without system shutdown. Provide separate support where necessary.

E. Install valves in horizontal piping with stem at or above the pipe center.

F. Install valves in position to allow full stem movement.

G. Install valve tags. Comply with requirements in Section 210553 "Identification for Fire-Suppression Piping and Equipment" for valve tags and schedules and signs on surfaces.
concealing valves; and the NFPA standard applying to the piping system in which valves are installed. Install permanent identification signs indicating the portion of system controlled by each valve.

H. Install listed fire-protection shutoff valves supervised-open, located to control sources of water supply except from fire-department connections.

I. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

END OF SECTION 210523
SECTION 210529 - HANGERS AND SUPPORTS FOR FIRE SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

 A. Section Includes:

 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Thermal hanger-shield inserts.
 5. Fastener systems.
 6. Equipment supports.

 B. Related Requirements:

 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.

1.3 ACTION SUBMITTALS

 A. Product Data: For each type of product.

 B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:

 1. Trapeze pipe hangers.
 2. Metal framing systems.
 3. Equipment supports.

 C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

 1. Detail fabrication and assembly of trapeze hangers.
 2. Include design calculations for designing trapeze hangers.
1.4 INFORMATIONAL SUBMITTALS
 A. Welding certificates.

1.5 QUALITY ASSURANCE
 A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.
 B. Pipe Welding Qualifications: Qualify procedures and operators according to 2015 ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design trapeze pipe hangers and equipment supports.
 B. Structural Performance: Hangers and supports for fire-suppression piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 D. UL Compliance: Comply with UL 203.

2.2 METAL PIPE HANGERS AND SUPPORTS
 A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: Factory-fabricated components, NFPA approved, UL listed, or FM approved for fire-suppression piping support.
 2. Galvanized Metallic Coatings: Pregalvanized or hot-dip galvanized.

2.3 TRAPEZE PIPE HANGERS
 A. Description: MSS SP-58, Type 59, shop- or field-fabricated pipe-support assembly, made from structural-carbon-steel shapes, with NFPA-approved, UL-listed, or FM-approved carbon-steel hanger rods, nuts, saddles, and U-bolts.
2.4 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. B-line, an Eaton business.
 b. Flex-Strut Inc.
 c. G-Strut.
 d. Thomas & Betts Corporation; A Member of the ABB Group.
 e. Unistrut; Part of Atkore International.

2. Description: Shop- or field-fabricated pipe-support assembly, made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.

4. Channels: Continuous slotted carbon-steel channel with inturned lips.

5. Channel Width: Selected for applicable load criteria.

6. Channel Nuts: Formed or stamped nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

9. Paint Coating: Green epoxy, acrylic, or urethane.

B. Non-MFMA Manufacturer Metal Framing Systems:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. CADDY; a brand of nVent.
 c. Carpenter & Paterson, Inc.
 d. Empire Industries, Inc.

2. Description: Shop- or field-fabricated pipe-support assembly, made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.

4. Channels: Continuous slotted carbon-steel channel with inturned lips.

5. Channel Width: Select for applicable load criteria.

6. Channel Nuts: Formed or stamped nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

9. Paint Coating: Green epoxy, acrylic, or urethane.

2.5 THERMAL HANGER-SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. CADDY; a brand of nVent.
2. Carpenter & Paterson, Inc.
4. Pipe Shields Inc.
5. Piping Technology & Products, Inc.

B. Insulation-Insert Material: ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psi minimum compressive strength.

C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: NFPA-approved, UL-listed, or FM-approved threaded-steel stud, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hilti, Inc.
 b. ITW Ramset/Red Head; Illinois Tool Works, Inc.
 c. MKT Fastening, LLC.
 d. Simpson Strong-Tie Co., Inc.

B. Mechanical-Expansion Anchors: NFPA-approved, UL-listed, or FM-approved, insert-wedge-type anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. B-line, an Eaton business.
 b. Empire Tool and Manufacturing Co., Inc.
 c. Hilti, Inc.
 d. ITW Ramset/Red Head; Illinois Tool Works, Inc.
 e. MKT Fastening, LLC.

2. Indoor Applications: Zinc-coated steel.
2.7 EQUIPMENT SUPPORTS
 A. Description: NFPA-approved, UL-listed, or FM-approved, welded, shop- or field-fabricated equipment support, made from structural-carbon-steel shapes.

2.8 MATERIALS
 A. Aluminum: ASTM B221.
 B. Carbon Steel: ASTM A1011/A1011M.
 C. Structural Steel: ASTM A36/A36M, carbon-steel plates, shapes, and bars; black and galvanized.
 D. Stainless Steel: ASTM A240/A240M.
 E. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout, suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 APPLICATION
 A. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation, for penetrations through fire-rated walls, ceilings, and assemblies.
 B. Strength of Support Assemblies: Where not indicated, select sizes of components, so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 250 lb.

3.2 HANGER AND SUPPORT INSTALLATION
 A. Metal Pipe-Hanger Installation: Comply with installation requirements of approvals and listings. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
 B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-58. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size, or install intermediate supports for smaller-diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A36/A36M carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal strut systems.

D. Thermal Hanger-Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:

1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete, after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual. Install in accordance with approvals and listings.
2. Install mechanical-expansion anchors in concrete, after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions. Install in accordance with approvals and listings.

F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.

J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms, and install reinforcing bars through openings at top of inserts.

K. Load Distribution: Install hangers and supports, so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

M. Insulated Piping:

1. Attach clamps and spacers to piping.
 a. Piping Operating Above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating Below Ambient Air Temperature: Use thermal hanger-shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
2. Install MSS SP-58, Type 39 protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal hanger-shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40 protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal hanger-shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

6. Thermal Hanger Shields: Install with insulation of same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment, and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections, so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

A. Touchup: Clean field welds and abraded, shop-painted areas. Paint exposed areas immediately after erecting hangers and supports. Use same materials as those used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded, shop-painted areas on miscellaneous metal are specified in Section 099123 “Interior Painting.”

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas, and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.7 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with NFPA requirements for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finishes.

D. Use carbon-steel pipe hangers and supports and metal framing systems and attachments for general service applications.

E. Use stainless-steel pipe hangers and stainless-steel attachments for hostile environment applications.

F. Use thermal hanger-shield inserts for insulated piping and tubing.

G. Horizontal-Piping Hangers and Supports: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Steel Pipe Clamps (MSS Type 4): For suspension of NPS 1/2 to NPS 24 if little or no insulation is required.
3. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
4. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
5. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
6. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
7. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
8. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
9. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.

H. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

I. Hanger-Rod Attachments: Comply with NFPA requirements.

J. Building Attachments: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable-Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. C-Clamps (MSS Type 23): For structural shapes.
3. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.

K. Saddles and Shields: Comply with NFPA requirements. Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal Hanger-Shield Inserts: For supporting insulated pipe.

L. Comply with NFPA requirements for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
M. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 210529
SECTION 210553 - IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Stencils.
 5. Valve tags.
 6. Warning tags.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Samples: For color, letter style, and graphic representation required for each identification material and device.
 C. Equipment-Label Schedule: Include a listing of all equipment to be labeled and the proposed content for each label.
 D. Valve Schedules: Valve numbering scheme.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS
 A. Metal Labels for Equipment:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Brimar Industries, Inc.
 c. Carlton Industries, LP.
Identification for Fire-Suppression Piping and Equipment

d. Champion America.
e. Craftmark Pipe Markers.

2. Material and Thickness: anodized aluminum, 0.032 inch thick, with predrilled holes for attachment hardware.
4. Background Color: Red.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Brimar Industries, Inc.
 c. Carlton Industries, LP.
 d. Champion America.
 e. Craftmark Pipe Markers.

2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, with predrilled holes for attachment hardware.
4. Background Color: Red.
5. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
6. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
7. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
9. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

D. Equipment-Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.
2.2 WARNING SIGNS AND LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Carlton Industries, LP.
5. Craftmark Pipe Markers.

B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, with predrilled holes for attachment hardware.

D. Background Color: Red.

E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

H. Fasteners: Stainless-steel rivets or self-tapping screws.

I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

J. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Carlton Industries, LP.
5. Craftmark Pipe Markers.

B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service and showing flow direction according to ASME A13.1.
C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

D. Self-adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

E. Pipe-Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 2. Lettering Size: Size letters according to ASME A13.1 for piping.

F. Pipe-Label Colors:
 1. Background Color: Safety Red.

2.4 VALVE TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Brady Corporation.
 2. Brimar Industries, Inc.
 3. Carlton Industries, LP.
 5. Craftmark Pipe Markers.

B. Description: Stamped or engraved with 1/4-inch letters for piping-system abbreviation and 1/2-inch numbers.
 1. Tag Material: anodized aluminum, 0.032 inch thick, with predrilled holes for attachment hardware.
 2. Fasteners: Brass wire-link chain.

C. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-tag schedule shall be included in operation and maintenance data.

2.5 WARNING TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Brady Corporation.
2. Brimar Industries, Inc.
3. Carlton Industries, LP.
5. Craftmark Pipe Markers.

B. Description: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

1. Size: Approximately 4 by 7 inches.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of incompatible primers, paints, and encapsulants, as well as dirt, oil, grease, release agents, and other substances that could impair bond of identification devices.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be installed.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Piping: Painting of piping is specified in Section 099600 "High-Performance Coatings."

B. Stenciled Pipe-Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, with painted, color-coded bands or rectangles on each piping system.
1. Identification Paint: Use for contrasting background.

C. Pipe-Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection excluding short takeoffs. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit a view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

D. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes including pipes where flow is allowed in both directions.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in fire-suppression piping systems. List tagged valves in a valve-tag schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and with captions similar to those indicated in "Valve-Tag Size and Shape" Subparagraph below:

1. Valve-Tag Size and Shape:
 a. Wet-Pipe Sprinkler System: 2 inches, square.
 b. Dry-Pipe Sprinkler System: 2 inches, square.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 210553
SECTION 210700 - FIRE-SUPPRESSION SYSTEMS INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following fire protection piping services:
 1. Engine exhaust piping and silencer.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).

B. Shop Drawings:
 1. Include plans, elevations, sections, and attachment details.
 2. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 3. Detail attachment and covering of heat tracing inside insulation.
 4. Detail insulation application at pipe expansion joints for each type of insulation.
 5. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 6. Detail removable insulation at piping specialties and equipment connections.
 7. Detail application of field-applied jackets.
 8. Detail application at linkages of control devices.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.
1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials. Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 210529 "Hangers and Supports for Fire-Suppression Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application and with equipment Installer for equipment insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in "Diesel Engine Exhaust Insulation Schedule"; "Equipment Insulation Schedule"; "Piping Insulation Schedule, General"; "Indoor Piping Insulation
Schedule"; and "Outdoor, Aboveground Piping Insulation Schedule" articles for where insulating materials shall be applied.

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested in accordance with ASTM C871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable in accordance with ASTM C795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Calcium Silicate: Flat-, curved-, and grooved-block sections of noncombustible, inorganic, hydrous calcium silicate with a non-asbestos fibrous reinforcement. Comply with ASTM C533, Type I or Type II.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Johns Manville; a Berkshire Hathaway company.

2. Prefabricated Fitting Covers: Comply with ASTM C450 and ASTM C585 for dimensions used in preforming insulation to cover valves, elbows, tees, and flanges.

G. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Comply with ASTM C552.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Pittsburgh Corning Corporation.

2. Block Insulation: Type I.
3. Preformed Pipe Insulation: Type II, Class 1 without jacket.
4. Preformed Pipe Insulation: Type II, Class 2 with factory-applied ASJ-SSL.
5. Special-Shaped Insulation: Type III.
6. Board Insulation: Type IV.
7. Factory fabricate shapes in accordance with ASTM C450 and ASTM C585.

H. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C534/C534M, Type I for tubular materials and Type II for sheet materials.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
I. Mineral-Fiber, Preformed Pipe: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C547.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. Knauf Insulation.
 c. Manson Insulation Inc.
 d. Owens Corning.

2. Preformed Pipe Insulation: Type I, Grade A with factory-applied ASJ.
3. 850 deg F.
4. Factory fabricate shapes in accordance with ASTM C450 and ASTM C585.
5. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. ITW Insulation Systems; Illinois Tool Works, Inc.
 b. Kingspan Tarec Industrial Insulation NV.
 c. Resolco Inc.

2. Preformed Pipe Insulation: Type III with factory-applied ASJ.
3. Factory fabricate shapes in accordance with ASTM C450 and ASTM C585.

2.2 INSULATING CEMENTS

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Ramco Insulation, Inc.

B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C196.
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. Ramco Insulation, Inc.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. Ramco Insulation, Inc.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Calcium Silicate Adhesive: Fibrous, sodium-silicate-based adhesive with a service temperature range of 50 to 800 deg F.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.
 e. Vimasco Corporation.

C. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. Foster Brand; H. B. Fuller Construction Products.

D. Flexible Elastomeric and Polyolefin Adhesive: Solvent-based adhesive.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. Aeroflex USA, Inc.
 b. Armacell LLC.
 c. Foster Brand; H. B. Fuller Construction Products.
d. K-Flex USA.

2. Flame-spread index shall be 25 or less and smoke-developed index shall be 50 or less as tested in accordance with ASTM E84.

3. Wet Flash Point: Below 0 deg F.

4. Service Temperature Range: 40 to 200 deg F.

5. Color: Black.

E. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Mon-Eco Industries, Inc.

F. Phenolic and Polyisocyanurate Adhesive: Solvent-based resin adhesive, with a service temperature range of minus 75 to plus 300 deg F.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Mon-Eco Industries, Inc.

2.4 MASTICS AND COATINGS

A. Materials shall be compatible with insulation materials, jackets, and substrates.

2.5 LAGGING ADHESIVES

A. Adhesives shall comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Vimasco Corporation.

2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over equipment and pipe insulation.

3. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. Materials shall be as recommended by insulation manufacturer and shall be compatible with insulation materials, jackets, and substrates.

B. Joint Sealants:
 1. Permanently flexible, elastomeric sealant.
 2. Service Temperature Range: Minus 100 to plus 300 deg F.
 3. Color: White or gray.

C. FSK and Metal Jacket Flashing Sealants:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Mon-Eco Industries, Inc.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C1136, Type II.

2.8 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Glass-Fiber Fabric for Pipe Insulation: Approximately 4 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. for covering pipe and pipe fittings.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Childers Brand; H. B. Fuller Construction Products.

B. Woven Glass-Fiber Fabric for Equipment Insulation: Approximately 6 oz./sq. yd. with a thread count of 5 strands by 5 strands/sq. in. for covering equipment.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Childers Brand; H. B. Fuller Construction Products.

C. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Foster Brand; H. B. Fuller Construction Products.
 b. Vimasco Corporation.

2.9 FIELD-APPLIED CLOTHS

A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd..

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

2.10 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C1136, Type I unless otherwise indicated.

B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
C. Metal Jacket:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. ITW Insulation Systems; Illinois Tool Works, Inc.
 b. RPR Products, Inc.

2. Aluminum Jacket: Comply with ASTM B209; Alloy 3003, 3005, 3105, or 5005; Temper H-14.
 a. Sheet and roll stock ready for shop or field sizing.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 d. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed two-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are unavailable.

3. Stainless Steel Jacket: ASTM A240/A240M.
 a. Sheet and roll stock ready for shop or field sizing.
 b. Material, finish, and thickness are indicated in field-applied jacket schedules.
 d. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed two-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are unavailable.
2.11 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. 3M Industrial Adhesives and Tapes Division.
 b. Avery Dennison Corporation, Specialty Tapes Division.
 c. Ideal Tape Co., Inc., an American Biltrite Company.
 d. Knauf Insulation.
 e. Venture Tape.

2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C1136.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. 3M Industrial Adhesives and Tapes Division.
 b. Avery Dennison Corporation, Specialty Tapes Division.
 c. Ideal Tape Co., Inc., an American Biltrite Company.
 d. Knauf Insulation.
 e. Venture Tape.

2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Avery Dennison Corporation, Specialty Tapes Division.
c. Knauf Insulation.
d. Venture Tape.

2. Width: 2 inches.
3. Thickness: 3.7 mils.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch in width.

2.12 SECUREMENTS

A. Bands:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. ITW Insulation Systems; Illinois Tool Works, Inc.
 b. RPR Products, Inc.

2. Stainless Steel: ASTM A240/A240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal.

3. Aluminum: ASTM B209; Alloy 3003, 3005, 3105, or 5005; Temper H-14; 0.020 inch thick, 1/2 inch wide with wing seal.

B. Insulation Pins and Hangers:

1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.

 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 1) AGM Industries, Inc.
 2) Gemco.
 3) Midwest Fasteners, Inc.

 b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.

 c. Spindle: Copper- or zinc-coated, low carbon steel, fully annealed, 0.106-inch-diameter shank; length to suit depth of insulation indicated.

 d. Adhesive: Recommended by hanger manufacturer. Use product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

2. Self-Sticking-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place.
a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1) AGM Industries, Inc.
2) Gemco.
3) Midwest Fasteners, Inc.

b. Baseplate: Galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.

c. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inch-diameter shank; length to suit depth of insulation indicated.

d. Adhesive-backed base with a peel-off protective cover.

3. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place, but not less than 1-1/2 inches in diameter.

a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1) AGM Industries, Inc.
2) Gemco.
3) Midwest Fasteners, Inc.

b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

D. Wire: 0.062-inch soft-annealed, stainless steel.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems and equipment to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:

1. Stainless Steel: Coat 300 series stainless steel with epoxy primer 5 mils thick and epoxy finish 5 mils thick if operating in a temperature range of between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Coordinate insulation installation with the tradesman installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment and piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and of thicknesses required for each item of equipment and pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during storage, application, and finishing. Replace insulation materials that get wet.
H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended in writing by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends attached to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended in writing by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, in accordance with insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 25 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches in similar fashion to butt joints.

P. For above-ambient services, do not install insulation to the following:
1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.
5. Handholes.
6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Below-Grade Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistant joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 INSTALLATION OF EQUIPMENT AND TANK INSULATION

A. Mineral-Fiber Pipe and Tank Insulation Installation for Tanks: Secure insulation with adhesive, anchor pins, and speed washers.

1. Apply adhesives in accordance with manufacturer's recommended coverage rates per unit area, for 100 percent coverage of surfaces.
2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
3. Protect exposed corners with secured corner angles.
4. Install adhesively attached or self-sticking insulation hangers and speed washers as follows:
 a. Do not weld anchor pins to ASME-labeled pressure vessels.
 b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 c. Maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
 d. Do not overcompress insulation during installation.
 e. Cut and miter insulation segments to fit curved sides and domed heads of tanks.
 f. Impale insulation over anchor pins and attach speed washers.
 g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
5. Secure each layer of insulation with stainless steel or aluminum bands. Select band material compatible with insulation materials.
6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.
7. Stagger joints between insulation layers at least 3 inches.
8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.
B. Flexible Elastomeric Thermal Insulation Installation for Tanks: Install insulation over entire surface of tanks.

1. Apply 100 percent coverage of adhesive to surface with manufacturer’s recommended adhesive.
2. Seal longitudinal seams and end joints.

3.6 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
8. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
C. Insulate instrument connections for pressure gauges, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

3.7 INSTALLATION OF CALCIUM SILICATE INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure single-layer insulation with stainless steel bands at 12-inch intervals and tighten bands without deforming insulation materials.
2. Install two-layer insulation with joints tightly butted and staggered at least 3 inches. Secure inner layer with wire spaced at 12-inch intervals. Secure outer layer with stainless steel bands at 12-inch intervals.
3. Apply a skim coat of mineral-fiber, hydraulic-setting cement to insulation surface. When cement is dry, apply flood coat of lagging adhesive and press on one layer of glass cloth or tape. Overlap edges at least 1 inch. Apply finish coat of lagging adhesive over glass cloth or tape. Thin finish coat to achieve smooth, uniform finish.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of same material and thickness as pipe insulation.
4. Finish flange insulation same as pipe insulation.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation sections of insulation are unavailable, install mitered sections of calcium silicate insulation. Secure insulation materials with wire or bands.
3. Finish fittings insulation same as pipe insulation.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install mitered segments of calcium silicate insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
2. Install insulation to flanges as specified for flange insulation application.
3. Finish valve and specialty insulation same as pipe insulation.

3.8 INSTALLATION OF CELLULAR-GLASS INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and applicable insulation joint sealant.
3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections of insulation are unavailable, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of cellular-glass insulation to valve body.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.9 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are unavailable, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.10 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and applicable insulation joint sealant.
 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:
 1. Install preformed pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are unavailable, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed sections are unavailable, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.11 INSTALLATION OF PHENOLIC INSULATION

A. General Installation Requirements:

1. Secure single-layer insulation with stainless steel bands at 12-inch intervals and tighten bands without deforming insulation materials.
2. Install two-layer insulation with joints tightly butted and staggered at least 3 inches. Secure inner layer with 0.062-inch wire spaced at 12-inch intervals. Secure outer layer with stainless steel bands at 12-inch intervals.

B. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and applicable insulation joint sealant.
3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets with vapor retarders on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

C. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of block insulation of same material and thickness as pipe insulation.

D. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed insulation sections of same material as straight segments of pipe insulation.

E. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed insulation sections of same material as straight segments of pipe insulation.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.12 INSTALLATION OF POLYISOCYANurate INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of insulation to pipe with tape or bands and tighten without deforming insulation materials. Orient longitudinal joints between half sections in 3- and 9-o'clock positions on the pipe.
2. For insulation with factory-applied jackets with vapor barriers, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive or tape as recommended by insulation material manufacturer and seal with vapor-barrier mastic.
3. All insulation shall be tightly butted and free of voids and gaps at all joints. Vapor barrier must be continuous. Before installing jacket material, install vapor-barrier system.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, same thickness of adjacent pipe insulation, not to exceed 1-1/2-inch thickness.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of polyisocyanurate block insulation of same thickness as pipe insulation.

C. Insulation Installation on Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of polyisocyanurate insulation to valve body.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.13 INSTALLATION OF POLYOLEFIN INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
1. Seal split-tube longitudinal seams and end joints with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
 1. Install pipe insulation to outer diameter of pipe flange.
 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of polyolefin sheet insulation of same thickness as pipe insulation.
 4. Secure insulation to flanges and seal seams with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:
 1. Install mitered sections of polyolefin pipe insulation.
 2. Secure insulation materials and seal seams with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install cut sections of polyolefin pipe and sheet insulation to valve body.
 2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties, and seal seams with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.14 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
 3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:
 1. Draw jacket material smooth and tight.
 2. Install lap or joint strips with same material as jacket.
 3. Secure jacket to insulation with manufacturer’s recommended adhesive.
 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

D. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless steel bands 12 inches o.c. and at end joints.

3.15 FINISHES

A. Equipment and Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless steel jackets.

3.16 FIELD QUALITY CONTROL

A. Perform tests and inspections with the assistance of a factory-authorized service representative.

B. Tests and Inspections:

1. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.

2. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
C. All insulation applications will be considered defective if they do not pass tests and inspections.
D. Prepare test and inspection reports.

3.17 DIESEL ENGINE EXHAUST INSULATION SCHEDULE
A. Indoor and Outdoor, Exposed, Rigid, Engine Exhaust Pipe and Silencer:
 1. Calcium Silicate: 4 inches thick.

3.18 EQUIPMENT INSULATION SCHEDULE
A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.
B. Insulate indoor and outdoor equipment that is not factory insulated.

3.19 PIPING INSULATION SCHEDULE, GENERAL
A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Indoor fire-suppression piping.
 2. Underground piping.

3.20 INDOOR PIPING INSULATION SCHEDULE
A. Indoor Engine Exhaust Piping and Silencer:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Calcium Silicate: 4 inches thick.

3.21 INDOOR, FIELD-APPLIED JACKET SCHEDULE
A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
B. If more than one material is listed, selection from materials listed is Contractor's option.
C. Piping, Concealed:
 1. None.
D. Piping, Exposed:

1. None.

END OF SECTION 210700
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes fire-suppression water-service piping and related components outside the building and service entrance piping through floor into the building and the following:

1. Pipes, fittings, and specialties.
2. Fire-suppression specialty valves.
3. Concrete vaults.
4. Protective enclosures.
5. Alarm devices.

B. Utility-furnished products include water meters that are furnished to the site, ready for installation.

C. Related Requirements:

1. Section 211119 "Fire-Department Connections" for exposed-type, fire-department connection.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings:

1. Detail precast concrete vault assemblies and indicate dimensions, method of field assembly, and components.
2. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: For piping and specialties including relation to other services in same area, drawn to scale. Show piping and specialty sizes and valves, meter and specialty locations, and elevations.

B. Field quality-control reports.
1.5 QUALITY ASSURANCE

A. Regulatory Requirements:
 1. Comply with requirements of utility company supplying the water. Include tapping of water mains and backflow prevention.
 2. Comply with standards of authorities having jurisdiction for fire-suppression water-service piping, including materials, hose threads, installation, and testing.

B. Piping materials shall bear label, stamp, or other markings of specified testing agency.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-suppression water-service piping.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Preparation for Transport: Prepare valves, including fire hydrants, according to the following:
 1. Ensure that valves are dry and internally protected against rust and corrosion.
 2. Protect valves against damage to threaded ends and flange faces.
 3. Set valves in best position for handling. Set valves closed to prevent rattling.

B. During Storage: Use precautions for valves, including fire hydrants, according to the following:
 1. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
 2. Protect from weather. Store indoors and maintain temperature higher than ambient dew point temperature. Support off the ground or pavement in watertight enclosures when outdoor storage is necessary.

C. Handling: Use sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

D. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.

E. Protect stored piping from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor when storing inside.

F. Protect flanges, fittings, and specialties from moisture and dirt.

G. Store plastic piping protected from direct sunlight. Support to prevent sagging and bending.
1.7 PROJECT CONDITIONS

A. Interruption of Existing Fire-Suppression Water-Service Piping: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water-distribution service according to requirements indicated:

1. Notify Construction Manager and Owner no fewer than two days in advance of proposed interruption of service.
2. Do not proceed with interruption of service without Construction Manager's and Owner's written permission.

PART 2 - PRODUCTS

2.1 DUCTILE-IRON PIPE AND FITTINGS

A. Grooved-Joint, Ductile-Iron Pipe: AWWA C151, with cut, rounded-grooved ends.

B. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end.

C. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end.

D. Grooved-End, Ductile-Iron Pipe Appurtenances:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Anvil International.
 b. CPS Products, Inc.
 c. Shurjoint-Apollo Piping Products USA Inc.
 d. Smith-Cooper International.
 e. Star Pipe Products.

3. Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductile-iron-pipe dimensions. Include ferrous housing sections, gasket suitable for water, and bolts and nuts.

E. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.

1. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

G. Flanges: ASME B16.1, Class 125, cast iron.

2.2 PE PIPE AND FITTINGS

A. PE, Fire-Service Pipe: FM Global approved, with minimum thickness equivalent to Class 150 and Class 200.

B. Molded PE Fittings: FM Global approved; PE butt-fusion type, made to match PE pipe dimensions and class.

2.3 SPECIAL PIPE FITTINGS

A. Ductile-Iron Flexible Expansion Joints:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. EBAA Iron, Inc.
 b. Romac Industries, Inc.
 c. Star Pipe Products.

 2. Description: Compound, ductile-iron fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections. Assemble components for offset and expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.

B. Ductile-Iron Deflection Fittings:

 1. Manufacturers: Subject to compliance with requirements, provide products by the following:

 a. EBAA Iron, Inc.

 2. Description: Compound, ductile-iron coupling fitting with sleeve and one or two flexing sections for up to 15-degree deflection, gaskets, and restrained-joint ends complying with AWWA C110 or AWWA C153. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.

2.4 ENCASEMENT FOR PIPING

A. Standard: ASTM A674 or AWWA C105.
B. Material: Linear low-density PE film of 0.008-inch minimum thickness or high-density, cross-laminated PE film of 0.004-inch minimum thickness.

C. Form: Sheet or tube.

D. Color: Black or natural.

2.5 JOINING MATERIALS

A. Gaskets for Ferrous Piping and Copper-Alloy Tubing: ASME B16.21, asbestos free.

B. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series.

C. Bonding Adhesive for Fiberglass Piping: As recommended by fiberglass piping manufacturer.

2.6 PIPING SPECIALTIES

A. Transition Fittings: Manufactured fitting or coupling same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

B. Tubular-Sleeve Pipe Couplings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Dresser, Inc.
 c. Ford Meter Box Company, Inc. (The).
 d. Jay R. Smith Mfg Co; a division of Morris Group International.
 e. JCM Industries, Inc.

2. Description: Metal, bolted, sleeve-type, reducing or transition coupling, with center sleeve, gaskets, end rings, and bolt fasteners, and with ends of same sizes as piping to be joined.

5. Gasket Material: Natural or synthetic rubber.

7. Metal Component Finish: Corrosion-resistant coating or material.

2.7 CORPORATION VALVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. A.Y. McDonald Mfg. Co.

2. Ford Meter Box Company, Inc. (The).
4. Master Meter, Inc.
5. Mueller Co.

B. Corporation Valves: Comply with AWWA C800. Include saddle and valve compatible with tapping machine and manifold.

1. Service Saddle: Copper alloy with seal and AWWA C800, threaded outlet for corporation valve.
2. Corporation Valve: Bronze body and ground-key plug, with AWWA C800, threaded inlet and outlet matching service piping material.
3. Manifold: Copper fitting with two to four inlets as required, with ends matching corporation valves and outlet matching service piping material.

C. Meter Valves: Comply with AWWA C800 for high-pressure, service-line valves. Include angle-or straight-through-pattern bronze body, ground-key plug or ball, and wide tee head, with inlet and outlet matching service piping material.

2.8 CURB VALVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. A.Y. McDonald Mfg. Co.
2. Ford Meter Box Company, Inc. (The).
4. Master Meter, Inc.
5. Mueller Co.

B. Curb Valves: Comply with AWWA C800 for high-pressure, service-line valves. Valve has bronze body, ground-key plug or ball, wide tee head, and inlet and outlet matching service piping material.

C. Service Boxes for Curb Valves: Similar to AWWA M44 requirements for cast-iron valve boxes. Include cast-iron telescoping top section of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over curb valve and with a barrel approximately 3 inches in diameter.

1. Shutoff Rods: Steel; with tee-handle with one pointed end, stem of length to operate deepest buried valve, and slotted end matching curb valve.

D. Meter Valves: Comply with AWWA C800 for high-pressure, service-line valves. Include angle-or straight-through-pattern bronze body, ground-key plug or ball, and wide tee head, with inlet and outlet matching service piping material.
2.9 DETECTOR CHECK VALVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ames Fire & Waterworks; A WATTS Brand.
2. Badger Meter, Inc.
3. Flomatic Corporation.
4. Kennedy Valve Company; a division of McWane, Inc.
5. Mueller Co.
6. WATTS.
7. Zurn Industries, LLC.

B. Description: Galvanized cast-iron body, bolted cover with air-bleed device for access to internal parts, and flanged ends. Include one-piece bronze disc with bronze bushings, pivot, and replaceable seat. Include threaded bypass taps in inlet and outlet for bypass meter connection. Set valve to allow minimal water flow through bypass meter when major water flow is required.

D. Pressure Rating: 175 psig.

E. Water Meter: AWWA C700, disc type, at least one-fourth size of detector check valve. Include meter, bypass piping, gate valves, check valve, and connections to detector check valve.

2.10 PROTECTIVE ENCLOSURES

A. Freeze-Protection Enclosures:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. BF Products Inc.
 b. Dunco Manufacturing, Inc.
 c. G&C Enclosures.
 d. Hot Box: Hubbell Power Systems, Inc.
 e. HydroCowl, Inc.
 f. Piedmont Well Covers, Inc.

2. Description: Insulated enclosure designed to protect aboveground water piping, equipment, or specialties from freezing and damage, with heat source to maintain minimum internal temperature of 40 deg F when external temperatures reach as low as minus 34 deg F.

4. Class I: For equipment or devices other than pressure or atmospheric vacuum breakers.

5. Class I-V: For pressure or atmospheric vacuum breaker equipment or devices. Include drain opening in housing.

 a. Housing: Reinforced-aluminum or-fiberglass construction.
1) Size: Of dimensions indicated, but not less than those required for access and service of protected unit.
2) Drain opening for units with drain connection.
3) Access doors with locking devices.
4) Insulation inside housing.
5) Anchoring devices for attaching housing to concrete base.

b. Electric heating cable or heater with self-limiting temperature control.

2.11 ALARM DEVICES

A. General: UL 753 and FM Global's "Approval Guide" listing, of types and sizes to mate and match piping and equipment.

B. Water-Flow Indicators: Vane-type water-flow detector, rated for 250-psig working pressure; designed for horizontal or vertical installation; with two single-pole, double-throw circuit switches to provide isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal when cover is removed.

C. Supervisory Switches: Single pole, double throw; designed to signal valve in other than fully open position.

D. Pressure Switches: Single pole, double throw; designed to signal increase in pressure.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with excavating, trenching, and backfilling requirements in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

A. Water-Main Connection: Arrange with water utility company for tap of size and in location indicated in water main.

B. Water-Main Connection: Tap water main according to requirements of water utility company and of size and in location indicated.

C. Make connections larger than NPS 2 with tapping machine according to the following:
 1. Install tapping sleeve and tapping valve according to MSS SP-60.
 2. Install tapping sleeve on pipe to be tapped. Position flanged outlet for gate valve.
 3. Use tapping machine compatible with valve and tapping sleeve; cut hole in main.
 Remove tapping machine and connect water-service piping.
4. Install gate valve onto tapping sleeve. Comply with MSS SP-60. Install valve with stem pointing up and with valve box.

D. Comply with NFPA 24 for fire-service-main piping materials and installation.

E. Install ductile-iron, water-service piping according to AWWA C600 and AWWA M41.
 1. Install encasement for piping according to ASTM A674 or AWWA C105.

F. Install fiberglass AWWA pipe according to AWWA M45.

G. Bury piping with depth of cover over top at least 30 inches, with top at least 12 inches below level of maximum frost penetration, and according to the following:
 1. Under Driveways: With at least 36 inches of cover over top.
 2. Under Railroad Tracks: With at least 48 inches of cover over top.
 3. In Loose Gravelly Soil and Rock: With at least 12 inches of additional cover.

H. Install piping by tunneling or jacking, or combination of both, under streets and other obstructions that cannot be disturbed.

I. Extend fire-suppression water-service piping and connect to water-supply source and building fire-suppression water-service piping systems at locations and pipe sizes indicated.
 1. Terminate fire-suppression water-service piping within the building at the floor slab until building-water-piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building's fire-suppression water-service piping systems when those systems are installed.

J. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.

K. Comply with requirements for fire-suppression water-service piping inside the building in the following Sections:
 1. Section 211313 "Wet-Pipe Sprinkler Systems"

L. Comply with requirements in Section 221116 "Domestic Water Piping" for potable-water piping inside the building.

M. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

N. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."
3.3 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure rating same as or higher than systems pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in tubing NPS 2 and smaller.

C. Install flanges, flange adaptors, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of tubes and remove burrs.

E. Remove scale, slag, dirt, and debris from outside and inside of pipes, tubes, and fittings before assembly.

H. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with bolts according to ASME B31.9.

I. Dissimilar Materials Piping Joints: Use adapters compatible with both piping materials, with OD, and with system working pressure.

J. Do not use flanges or unions for underground piping.

3.4 ANCHORAGE INSTALLATION

A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:

1. Concrete thrust blocks.
2. Locking mechanical joints.
4. Bolted flanged joints.
5. Heat-fused joints.
6. Pipe clamps and tie rods.

B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches in fire-suppression water-service piping according to NFPA 24 and the following:

2. Gasketed-Joint, PVC Water-Service Piping: According to AWWA M23.
C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.5 VALVE INSTALLATION

A. AWWA Gate Valves: Comply with AWWA C600 and AWWA M44. Install each underground valve with stem pointing up and with valve box.

B. AWWA Valves Other Than Gate Valves: Comply with AWWA C600 and AWWA M44.

C. UL-Listed or FM Global-Approved Gate Valves: Comply with NFPA 24. Install each underground valve and valves in vaults with stem pointing up and with vertical cast-iron indicator post.

D. UL-Listed or FM Global-Approved Valves Other Than Gate Valves: Comply with NFPA 24.

E. MSS Valves: Install as component of connected piping system.

F. Corporation Valves and Curb Valves: Install each underground curb valve with head pointed up and with service box.

G. Support valves and piping, not direct buried, on concrete piers. Comply with requirements for concrete piers in Section 033000 "Cast-in-Place Concrete."

3.6 DETECTOR CHECK VALVE INSTALLATION

A. Install in vault or aboveground.

B. Install for proper direction of flow. Install bypass with water meter, gate valves on each side of meter, and check valve downstream from meter.

C. Support detector check valves and piping on concrete piers. Comply with requirements for concrete piers in Section 033000 "Cast-in-Place Concrete."

3.7 FIRE-DEPARTMENT CONNECTION INSTALLATION

A. Install ball drip valves at each check valve for fire-department connection to mains.

3.8 ALARM DEVICE INSTALLATION

A. General: Comply with NFPA 24 for devices and methods of valve supervision. Underground valves with valve box do not require supervision.

B. Supervisory Switches: Supervise valves in open position.

1. Valves: Grind away portion of exposed valve stem. Bolt switch, with plunger in stem depression, to OS&Y gate-valve yoke.
2. Indicator Posts: Drill and thread hole in upper-barrel section at target plate. Install switch, with toggle against target plate, on barrel of indicator post.

C. Locking and Sealing: Secure unsupervised valves as follows:

2. Post Indicators: Install padlock on wrench on indicator post.

D. Pressure Switches: Drill and thread hole in exposed barrel of fire hydrant. Install switch.

E. Water-Flow Indicators: Install in water-service piping in vault. Select indicator with saddle and vane matching pipe size. Drill hole in pipe, insert vane, and bolt saddle to pipe.

F. Connect alarm devices to building's fire-alarm system. Wiring and fire-alarm devices are specified in Section 284621.11 "Addressable Fire-Alarm Systems."

3.9 CONNECTIONS

A. Connect fire-suppression water-service piping to existing water main.

B. Connect fire-suppression water-service piping to interior fire-suppression piping.

3.10 FIELD QUALITY CONTROL

A. Use test procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described below.

B. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.

C. Hydrostatic Tests: Test at not less than one-and-one-half times the working pressure for two hours.

1. Increase pressure in 50-psig increments and inspect each joint between increments. Hold at test pressure for one hour; decrease to zero psig. Slowly increase again to test pressure and hold for one more hour. Maximum allowable leakage is 2 quarts per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.

D. Prepare test and inspection reports.

3.11 IDENTIFICATION

A. Install continuous underground detectable warning tape during backfilling of trench for underground fire-suppression water-service piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Section 312000 "Earth Moving."
B. Permanently attach equipment nameplate or marker indicating plastic fire-suppression water-service piping or fire-suppression water-service piping with electrically insulated fittings, on main electrical meter panel. Comply with requirements for identifying devices in Section 220553 "Identification for Plumbing Piping and Equipment."

3.12 CLEANING

A. Clean and disinfect fire-suppression water-service piping as follows:

1. Purge new piping systems and parts of existing systems that have been altered, extended, or repaired before use.
2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.
3. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:
 a. Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow it to stand for 24 hours.
 b. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow it to stand for three hours.
 c. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.

B. Prepare reports of purging and disinfecting activities.

3.13 PIPING SCHEDULE

A. Underground fire-suppression water-service piping NPS 6 to NPS 12 shall be one of the following:

1. Grooved-end, ductile-iron pipe; grooved-end, ductile-iron pipe appurtenances; and grooved joints.
2. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile- or gray-iron, standard-pattern or ductile-iron, compact-pattern fittings; glands, gaskets, and bolts; and gasketed joints.
3. Push-on-joint, ductile-iron pipe; push-on-joint, ductile-iron compact-pattern fittings; and gasketed joints.
4. PE, Class 200, fire-service pipe; molded PE fittings; and heat-fusion joints.

B. Aboveground and vault fire-suppression water-service piping NPS 5 to NPS 12 shall be grooved-end, ductile-iron pipe; grooved-end, ductile-iron pipe appurtenances; and grooved joints.
C. Underslab fire-suppression water-service piping NPS 6 to NPS 12 shall be one of the following:

1. Grooved-end, ductile-iron pipe; grooved-end, ductile-iron pipe appurtenances; and grooved joints.
2. Mechanical-joint, ductile-iron pipe; mechanical-joint, ductile- or gray-iron, standard-pattern or ductile-iron, compact-pattern fittings; glands, gaskets, and bolts; and restrained, gasketed joints.
3. Push-on-joint, ductile-iron pipe; push-on-joint, ductile-iron compact-pattern fittings; and restrained, gasketed joints.

3.14 VALVE SCHEDULE

A. Underground fire-suppression water-service shutoff valves NPS 2 and smaller shall be corporation valves or curb valves with ends compatible with piping.

B. Meter box fire-suppression water-service shutoff valves NPS 2 and smaller shall be meter valves.

C. Indicator-post underground fire-suppression water-service valves NPS 3 and larger shall be 175-psig, UL-listed or FM Global-approved, iron, nonrising-stem gate valves with indicator-post flange.

D. Standard-pressure, aboveground and vault fire-suppression water-service shutoff valves NPS 3 and larger shall be the following:

1. 175-psig, UL-listed or FM Global-approved, iron, OS&Y gate valves.

E. Fire-suppression water-service check valves NPS 3 and larger shall be one of the following:

1. UL-listed or FM Global-approved check valves.
2. UL-listed or FM Global-approved detector check valves.
SECTION 211119 – FIRE DEPARTMENT CONNECTIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Exposed-type fire-department connections.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each fire-department connection.

PART 2 - PRODUCTS

2.1 EXPOSED-TYPE FIRE-DEPARTMENT CONNECTION

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Fire Hose & Cabinet.
2. Elkhart Brass Mfg. Co., Inc.
3. Fire Protection Products, Inc.

B. Standard: UL 405.

C. Type: Exposed, projecting, for wall mounting.

D. Pressure Rating: 175 psig minimum.

E. Body Material: Corrosion-resistant metal.
F. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.

G. Caps: Brass, lugged type, with gasket and chain.

H. Escutcheon Plate: Round, brass, wall type.

I. Outlet: Back, with pipe threads.

J. Number of Inlets: Three.

K. Escutcheon Plate Marking: Similar to "AUTO SPKR."

L. Finish: Rough brass or bronze.

M. Outlet Size: NPS 6.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of fire-department connections.

B. Examine roughing-in for fire-suppression standpipe system to verify actual locations of piping connections before fire-department connection installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-type fire-department connections.

B. Install automatic (ball-drip) drain valve at each check valve for fire-department connection.

END OF SECTION 211119
SECTION 211313 - WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pipes, fittings, and specialties.
2. Cover system for sprinkler piping.
4. Sprinklers.
5. Alarm devices.
7. Control panels.
8. Pressure gages.

B. Related Requirements:

1. Section 211119 "Fire Department Connections" for exposed-type fire department connections.
2. Section 230523 "General-Duty Valves for Water-Based Fire-Suppression Piping" for ball, butterfly, check, gate, post-indicator, and trim and drain valves.

1.3 DEFINITIONS

A. High-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure higher than standard 175 psig, but not higher than 250 psig.

B. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175-psig maximum.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For wet-pipe sprinkler systems.
1. Include plans, elevations, sections, and attachment details.
2. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For wet-pipe sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Domestic water piping.
 2. Compressed air piping.
 3. HVAC hydronic piping.
 4. Items penetrating finished ceiling include the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 5. Structural steel elements.

B. Qualification Data: For qualified Installer and professional engineer.

C. Design Data:
 1. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations if applicable.

D. Welding certificates.

E. Field Test Reports:
 1. Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."
 2. Fire-hydrant flow test report.

F. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wet-pipe sprinkler systems and specialties to include in emergency, operation, and maintenance manuals.
1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

1.8 QUALITY ASSURANCE

A. Installer Qualifications:

1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.

 a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.

B. Welding Qualifications: Qualify procedures and operators according to 2010 ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:

B. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

C. High-Pressure Piping System Component: Listed for 250-psig minimum working pressure.

D. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design wet-pipe sprinkler systems.

 1. Available fire-hydrant flow test records indicate the following conditions (Flow Test #1):

 a. Date: May 8, 2019.
 b. Time: 10:35 a.m.
 c. Performed by: David Specht of City of Philadelphia Water Department.
 d. Location of Residual Fire Hydrant: Hydrant located along the west side of 3rd Street, 487 feet south of the south curb line of Packer Avenue.
e. Location of Flow Fire Hydrant #1: Located along the east side of 3rd Street, 244 feet south of the south curb line of Packer Avenue.

f. Location of Flow Fire Hydrant #2: Located along the east side of 3rd Street, 725 feet south of the south curb line of Packer Avenue.

g. Static Pressure at Residual Fire Hydrant R: 52 psig.

h. Measured Flow at Flow Fire Hydrant #1: 1,820 gpm.

i. Measured Flow at Flow Fire Hydrant #2: 2,060 gpm.

j. Residual Pressure at Residual Fire Hydrant: 46 psig.

2. Available fire-hydrant flow test records indicate the following conditions (Flow Test #2):

a. Date: May 8, 2019.

b. Time: 10:50 a.m.

c. Performed by: David Specht of City of Philadelphia Water Department.

d. Location of Residual Fire Hydrant: Hydrant located along the east side of Lawrence Street, 734 feet north of the north curb line of Pattison Avenue.

e. Location of Flow Fire Hydrant #1: Located along the west side of Lawrence Street, 490 feet north of the north curb line of Pattison Avenue.

f. Location of Flow Fire Hydrant #2: Located along the east side of 3rd Street, 970 feet north of the north curb line of Pattison Avenue.

g. Static Pressure at Residual Fire Hydrant R: 52 psig.

h. Measured Flow at Flow Fire Hydrant #1: 1,720 gpm.

i. Measured Flow at Flow Fire Hydrant #2: 1,920 gpm.

j. Residual Pressure at Residual Fire Hydrant: 46 psig.

3. Sprinkler system design shall be approved by authorities having jurisdiction.

a. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.

b. Sprinkler Occupancy Hazard Classifications (Non-storage):

 1) Building Service Areas: Ordinary Hazard, Group 1.
 2) Electrical Equipment Rooms: Ordinary Hazard, Group 1.
 3) General Storage Areas: Ordinary Hazard, Group 1.
 4) Mechanical Equipment Rooms: Ordinary Hazard, Group 1.
 5) Office Areas: Light Hazard.
 6) Fire Pump Room: Extra Hazard, Group 2.

4. Minimum Density for Automatic-Sprinkler Piping Design:

a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.

b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft. area.

5. Maximum Protection Area per Sprinkler:

a. Office Spaces: 225 sq. ft.

b. Mechanical Equipment Rooms: 130 sq. ft.

c. Electrical Equipment Rooms: 130 sq. ft.

d. Storage Areas: 100 sq.ft.

6. Occupancy Hazard Classifications for storage areas:

a. Sprinkler system zones 1 through 8 are designed to the following criteria:
1) NFPA 13 (2016) Table 17.3.31, ESFR Protection of rack storage of Group A plastic commodities stored over 25 ft. in height.
 a) Cartoned, Unexpanded Group A Plastic in open racks.
 b) (12) 22.4K Pendent Sprinklers at 40 psi.
 c) Ceiling height maximum 45’-0” with a maximum storage height of 40’-0”

2) NFPA 13 (2016) Table 19.1.2.3
 a) Open array heavy-weight rolled paper
 b) (12) 22.4K Pendent sprinklers at 50 psi.
 c) Ceiling height maximum 45’-0” with a maximum storage height of 30’-0”

E. Seismic Performance: Sprinkler piping shall withstand the effects of earthquake motions determined according to NFPA 13 and ASCE/SEI 7.

2.2 STEEL PIPE AND FITTINGS

A. Standard-Weight, Black-Steel Pipe: ASTM A53/A53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.

C. Galvanized- and Uncoated-Steel Couplings: ASTM A865/A865M, threaded.

E. Malleable- or Ductile-Iron Unions: UL 860.

F. Cast-Iron Flanges: ASME 16.1, Class 125.

G. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.

 1. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick.
 b. Class 150 and Class 300, Ductile-Iron or -Steel, Raised-Face Flanges: Ring-type gaskets.

 2. Metal, Pipe-Flange Bolts and Nuts: Carbon steel unless otherwise indicated.

I. Grooved-Joint, Steel-Pipe Appurtenances:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Anvil International.
 b. National Fittings, Inc.
 c. Shurjoint-Apollo Piping Products USA Inc.
 d. Tyco by Johnson Controls Company.
 e. Victaulic Company.

4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213 rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 SPECIALTY VALVES

A. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."

B. Pressure Rating:
 2. High-Pressure Piping Specialty Valves: 250-psig minimum.

C. Body Material: Cast or ductile iron.

D. Size: Same as connected piping.

E. End Connections: Flanged or grooved.

F. Alarm Valves:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 b. Reliable Automatic Sprinkler Co., Inc. (The).
 c. Tyco by Johnson Controls Company.
 d. Victaulic Company.
 e. Viking Corporation.
 3. Design: For horizontal or vertical installation.
 4. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gages, and fill-line attachment with strainer.
 5. Drip Cup Assembly: Pipe drain with check valve to main drain piping.
6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

G. Automatic (Ball Drip) Drain Valves:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Reliable Automatic Sprinkler Co., Inc. (The).
 b. Tyco by Johnson Controls Company.

4. Type: Automatic draining, ball check.

2.4 SPRINKLER PIPING SPECIALTIES

A. Branch Outlet Fittings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AGF Manufacturing, Inc.
 b. Anvil International.
 c. National Fittings, Inc.
 d. Tyco by Johnson Controls Company.
 e. Victaulic Company.

5. Type: Mechanical-tee and -cross fittings.
6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AGF Manufacturing, Inc.
 b. Reliable Automatic Sprinkler Co., Inc. (The).
 c. Tyco by Johnson Controls Company.
d. Victaulic Company.

4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded or grooved.

C. Branch Line Testers:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. AGF Manufacturing, Inc.
 c. Fire-End & Croker Corporation.
 d. Potter Electric Signal Company, LLC.

2. Standard: UL 199.
5. Size: Same as connected piping.
6. Inlet: Threaded.
7. Drain Outlet: Threaded and capped.
8. Branch Outlet: Threaded, for sprinkler.

D. Sprinkler Inspector's Test Fittings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. AGF Manufacturing, Inc.
 b. Tyco by Johnson Controls Company.
 c. Victaulic Company.
 d. Viking Corporation.

4. Body Material: Cast- or ductile-iron housing with sight glass.
5. Size: Same as connected piping.
6. Inlet and Outlet: Threaded.

2.5 SPRINKLERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
1. Reliable Automatic Sprinkler Co., Inc. (The).
2. Tyco by Johnson Controls Company.
3. Victaulic Company.

B. Listed in UL's "Fire Protection Equipment Directory" or FM Global's "Approval Guide."

C. Pressure Rating for Residential Sprinklers: 175-psig maximum.

D. Pressure Rating for Automatic Sprinklers: 175-psig minimum.

E. Automatic Sprinklers with Heat-Responsive Element:
 2. Nonresidential Applications: UL 199.
 3. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.
 4. Nominal Orifice: 1/2 inch, with discharge coefficient K between 5.3 and 5.8.
 5. Nominal Orifice: 1 inch, with discharge coefficient K 22.4.

F. Sprinkler Finishes: bronze.

G. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 1. Ceiling Mounting: Chrome-plated steel, two piece, with 1-inch vertical adjustment.

H. Sprinkler Guards:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Reliable Automatic Sprinkler Co., Inc. (The).
 b. Tyco by Johnson Controls Company.
 c. Victaulic Company.
 d. Viking Corporation.
 2. Standard: UL 199.
 3. Type: Wire cage with fastening device for attaching to sprinkler.

2.6 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Electrically Operated Alarm Bell:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Edwards Signaling.
 b. Potter Signal.
 c. System Sensor.

3. Type: Vibrating, metal alarm bell.
4. Size: 8-inch minimum diameter.
5. Finish: Red-enamel factory finish, suitable for outdoor use.
6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Water-Flow Indicators:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 b. Potter Electric Signal Company, LLC.
 c. System Sensor.
 d. Viking Corporation.

4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
5. Type: Paddle operated.
7. Design Installation: Horizontal or vertical.

D. Pressure Switches:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Potter Electric Signal Company, LLC.
 b. System Sensor.
 c. Tyco by Johnson Controls Company.
 d. United Electric Controls Co.
 e. Viking Corporation.

3. Type: Electrically supervised water-flow switch with retard feature.
5. Design Operation: Rising pressure signals water flow.

E. Valve Supervisory Switches:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Fire-Lite Alarms, Inc.; a Honeywell International company.
 b. Kennedy Valve Company; a division of McWane, Inc.
 c. Potter Electric Signal Company, LLC.
 d. System Sensor.

3. Type: Electrically supervised.
5. Design: Signals that controlled valve is in other than fully open position.
6. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.7 PRESSURE GAGES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. AGF Manufacturing, Inc.
2. AMETEK, Inc.
3. Ashcroft Inc.
5. WIKA Instrument Corporation.

B. Standard: UL 393.

C. Dial Size: 3-1/2- to 4-1/2-inch diameter.

D. Pressure Gage Range: 0- to 250-psig minimum.

E. Label: Include "WATER" label on dial face.
PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated on approved working plans.

1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

2. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

B. Piping Standard: Comply with NFPA 13 requirements for installation of sprinkler piping.

C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

D. Install unions adjacent to each valve in pipes NPS 2 and smaller.

E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

F. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

G. Install sprinkler piping with drains for complete system drainage.

H. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

I. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain or to outside building.

J. Install alarm devices in piping systems.

K. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.

L. Install pressure gages on riser or feed main, at each sprinkler test connection, and at top of each standpipe. Include pressure gages with connection not less than NPS 1/4 and with soft-metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they are not subject to freezing.

M. Fill sprinkler system piping with water.

N. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."
O. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."

P. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 210518 "Escutcheons for Fire-Suppression Piping."

3.2 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Twist-Locked Joints: Insert plain end of steel pipe into plain-end-pipe fitting. Rotate retainer lugs one-quarter turn or tighten retainer pin.

I. Steel-Piping, Pressure-Sealed Joints: Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

J. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.
K. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.

L. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.

M. Steel-Piping, Pressure-Sealed Joints: Join Schedule 5 steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

N. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.3 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection. Install backflow preventers instead of check valves in potable-water-supply sources.

D. Specialty Valves:
 1. Install valves in vertical position for proper direction of flow, in main supply to system.
 2. Install alarm valves with bypass check valve and retarding chamber drain-line connection.
 3. Install deluge valves in vertical position, in proper direction of flow, and in main supply to deluge system. Install trim sets for drain, priming level, alarm connections, ball drip valves, pressure gages, priming chamber attachment, and fill-line attachment.

3.4 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of narrow dimension of acoustical ceiling panels.

3.5 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
3.6 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
4. Energize circuits to electrical equipment and devices.
5. Coordinate with fire-alarm tests. Operate as required.
6. Coordinate with fire-pump tests. Operate as required.
7. Verify that equipment hose threads are same as local fire department equipment.

B. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.7 CLEANING

A. Clean dirt and debris from sprinklers.

B. Only sprinklers with their original factory finish are acceptable. Remove and replace any sprinklers that are painted or have any other finish than their original factory finish.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain specialty valves and pressure-maintenance pumps.

3.9 PIPING SCHEDULE

A. Piping between Fire Department Connections and Check Valves: Galvanized, standard-weight steel pipe with grooved ends, grooved-end fittings, grooved-end-pipe couplings, and grooved joints.

B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.

C. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be the following:

1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.

D. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 4, shall be the following:
1. Standard-weight, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

E. Standard-pressure, wet-pipe sprinkler system, NPS 5 and larger, shall be the following:
 1. Standard-weight, black-steel pipe with roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.

3.10 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagaphs below for the following applications:
 1. Rooms without Ceilings: Upright sprinklers.
 2. Rooms with Suspended Ceilings: Pendent, recessed, flush, and concealed sprinklers as indicated.
 3. Special Applications: ESFR.

B. Provide sprinkler types in subparagraphs below with finishes indicated.
 1. Concealed Sprinklers: Rough brass, with factory-painted white cover plate.
 2. Recessed Sprinklers: Bright chrome, with bright chrome escutcheon.
 3. ESFR Sprinklers: Rough brass

END OF SECTION 211313
SECTION 213116 - DIESEL-DRIVE, CENTRIFUGAL FIRE PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Single-stage, split-case fire pumps with diesel-engine drive.
 2. Fire-pump accessories and specialties.
 3. Flowmeter systems.

B. Related Requirements:
 1. Section 262933 "Controllers for Fire-Pump Drivers" for fire pump controllers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for fire pump.
 2. Include rated capacities, operating characteristics, certified performance test curves, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For fire pump.
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Detail fabrication and assembly of fire pumps.
 4. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 5. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For fire pumps.
 1. Include design calculations for selecting vibration isolators and for designing vibration isolation bases.
1.4 INFORMATIONAL SUBMITTALS
 A. Product Certificates: For fire pump.
 B. Source quality-control reports.
 C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For fire pumps to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified."

 B. Environmental Conditions:
 1. Ambient Temperature: 40 deg F to 105 deg F.
 2. Relative Humidity: Zero to 95 percent.
 3. Altitude: Sea level to 1000 feet (300 m).

 C. Pump Equipment, Accessory, and Specialty Pressure Rating: 175 psig (1200 kPa) minimum unless higher pressure rating is indicated.

 D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 ASSEMBLY DESCRIPTION
 A. Description: Factory-assembled and -tested fire-pump and driver unit.
 B. Finish: Red paint applied to factory-assembled and -tested unit before shipping.

2.3 SINGLE-STAGE, SPLIT-CASE FIRE PUMPS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. A-C Fire Pump; a Xylem brand.
2. Aurora Pump; Pentair Ltd.
3. Patterson Pump Company; a Gorman-Rupp company.
5. Ruhrpumpen, Inc.

B. Pump:

1. Standard: UL 448, for split-case pumps for fire service.
3. Impeller: Double suction, cast bronze, statically and dynamically balanced, and keyed to shaft.
5. Shaft and Sleeve: Alloy-steel shaft with bronze sleeve.

 a. Shaft Bearings: Grease-lubricated ball bearings in cast-iron housing.
 b. Seals: Stuffing box with minimum of four rings of graphite-impregnated braided yarn and bronze packing gland.

6. Mounting: Pump and driver shafts are horizontal, with pump and driver on same base.

C. Coupling: Flexible and capable of absorbing torsional vibration and shaft misalignment. Include metal coupling guard.

D. Capacities and Characteristics:

1. Rated Capacity: 2,500 gpm.
2. Total Rated Head: 100 psig.
3. Inlet Flange: Class 250.
4. Outlet Flange: Class 250.
5. Suction Head Available at Pump: 34 psi.
7. Engine Speed: 1,760 rpm.
10. Rotation: Clockwise.

2.4 DIESEL ENGINE

B. Horse Power Rating: Not less than 110 percent of maximum brake horsepower (after derating for temperature and elevation according to NFPA 20).

C. Emergency Manual Operator: Factory wired for starting and operating standby engine in case of malfunction in main controller or wiring.

D. Controls:

 1. Adjustable governor.
2. Over-speed shutdown.
4. Instrument panel with tachometer, oil pressure gage, water temperature gage, and hour meter.

E. Fuel System:

3. Relief-Bypass Valve: Automatically regulates pressure in fuel line and returns excess fuel to source.
4. Flexible metallic fuel lines.
5. Inline fuel filter.
6. Oil pressure safety switch.
7. Air cleaner.
8. Engine-driven oil pump.
9. Enclosed control wiring electric starter with voltage regulator.
10. Double-Wall Storage Tank: Size indicated, but not less than required by NFPA 20; with floor legs, direct-reading level gage.
11. Fill and vent line piping:
 a. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 2) Wrought-Steel Welding Fittings: ASTM A 234/A 234M, for butt and socket welding.
 3) Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.
 4) Joint Compound and Tape for Threaded Joints: Suitable for fuel oil.

F. Exhaust System:

1. Piping: ASTM A53/A53M, Type E or S, Schedule 40 black steel pipe; ASME B16.9 weld-type pipe fittings; ASME B16.5 steel flanges; and ASME B16.21 nonmetallic gaskets.
2. Fabricate double-wall, ventilated thimble from steel pipe.
3. Flexible exhaust connector.
4. Residential exhaust silencer with spark arrestor.

G. Rated Engine Speed: 1760 rpm.

H. Maximum Piston Speed for Four-Cycle Engines: 2250 fpm.

I. Engine- or Skid-Mounted Lubrication System:

1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.
2. Thermostatic Control Valve: Controls flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.

3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.

J. Cooling System:

1. Factory installed, closed loop, liquid cooled, with heat exchanger factory mounted on fire-pump mounting frame and integral engine-driven coolant pump.

2. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.

3. Expansion Tank: Constructed of welded-steel plate and rated to withstand maximum closed-loop coolant system pressure for engine used. Equip with gage glass and petcock.

4. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.

 a. Rating: 60-psig maximum working pressure, with coolant at 180 deg F, and noncollapsible under vacuum.

 b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.

K. Muffler/Silencer: Residential type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.

1. Minimum sound attenuation of 18 dB at 500 Hz.

2. Sound level measured at a distance of 10 feet from exhaust discharge after installation is complete shall be 95 dBA or less.

L. Air-Intake Filter: Standard-duty, engine-mounted air cleaner with replaceable dry-filter element and "blocked filter" indicator.

M. Starting System: 12-V dc, with negative ground.

1. Components: Sized so they will not be damaged during a full engine-cranking cycle with ambient temperature at maximum specified in "Performance Requirements" Article.

2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.

4. Battery: Adequate capacity within ambient temperature range specified in "Performance Requirements" Article to provide specified cranking cycle at least three times without recharging.

5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.

2.5 FIRE-PUMP ACCESSORIES AND SPECIALTIES

A. Automatic Air-Release Valves: Comply with NFPA 20 for installation in fire-pump casing.

B. Inlet Fitting: Eccentric tapered reducer at pump suction inlet.

C. Outlet Fitting: Concentric tapered reducer at pump-discharge outlet.

D. Discharge Cone: Open type.

E. Hose Valve Manifold Assembly:
 4. Automatic Drain Valve: Complying with UL 1726.
 5. Manifold:
 a. Test Connections: Comply with UL 405, except provide outlets without clappers instead of inlets.
 b. Body: Exposed-type, brass or ductile iron, with number of outlets required by NFPA 20.
 c. Escutcheon Plate: Brass or bronze; rectangular.
 d. Hose Valves: UL 668, bronze, with outlet threaded according to NFPA 1963 and matching local fire-department threads.
 e. Exposed Parts Finish: Rough brass.
 f. Escutcheon Plate Marking: Equivalent to "FIRE PUMP TEST."

2.6 FLOWMETER SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Fire Research Corp.
 2. Hydro Flow Products, Inc.
 5. Victaulic Company.

B. Description: UL-listed or FM-Approved, fire-pump flowmeter system with capability to indicate flow to not less than 175 percent of fire-pump rated capacity.

C. Pressure Rating: 175 psig (1200 kPa) minimum.

D. Sensor: Annubar probe, orifice plate, or venturi unless otherwise indicated. Sensor size shall match pipe, tubing, flowmeter, and fittings.
E. Permanently Mounted Flowmeter: Compatible with flow sensor, with dial not less than 4-1/2 inches (115 mm) in diameter. Include bracket or device for wall mounting.

1. Tubing Package: NPS 1/8 or NPS 1/4 (DN 6 or DN 10) soft copper tubing with copper or brass fittings and valves.

2.7 FUEL OIL STORAGE

A. Comply with NFPA 30.

B. Day Tank: UL 142, freestanding, factory-fabricated fuel tank assembly, with integral, float-controlled transfer pump and the following features:

1. Containment: Integral rupture basin, with a capacity of 150 percent of nominal capacity of day tank.
 a. Leak Detector: Locate in rupture basin and connect to provide audible and visual alarm in the event of day-tank leak.

2. Tank Capacity: As recommended by engine manufacturer.
3. Pump Capacity: Exceeds maximum flow of fuel drawn by engine-mounted fuel supply pump at 110 percent of rated capacity, including fuel returned from engine.
4. Low-Level Alarm Sensor: Liquid-level device operates alarm contacts at 25 percent of normal fuel level.
5. Piping Connections: Factory-installed fuel supply and return lines from tank to engine; local fuel fill, vent line, overflow line; and tank drain line with shutoff valve.

C. Base-Mounted Fuel Oil Tank: Factory installed and piped, complying with UL 142 fuel oil tank. Features include the following:

1. Tank level indicator.
2. Capacity: Fuel for eight hours' continuous operation at 100 percent rated power output.
3. Vandal-resistant fill cap.

2.8 GROUT

B. Characteristics: Nonshrink and recommended for interior and exterior applications.

C. Design Mix: 5000-psi (34-MPa), 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
2.9 SOURCE QUALITY CONTROL

A. Testing: Test and inspect fire pumps according to UL 448 requirements for "Operation Test" and "Manufacturing and Production Tests."

 1. Verification of Performance: Rate fire pumps according to UL 448.

B. Fire pumps will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine equipment bases and anchorage provisions, with Installer present, for compliance with requirements and for conditions affecting performance of fire pumps.

B. Examine roughing-in for fire-suppression piping systems to verify actual locations of piping connections before fire-pump installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Fire-Pump Installation Standard: Comply with NFPA 20 for installation of fire pumps, relief valves, and related components.

B. Equipment Mounting:

 1. Attach pumps to equipment base using anchor bolts.

C. Install fire-pump suction and discharge piping equal to or larger than sizes required by NFPA 20.

D. Support piping and pumps separately, so weight of piping does not rest on pumps.

E. Install valves that are same size as connecting piping. Comply with requirements for fire-protection valves specified in Section 211313 "Wet-Pipe Sprinkler Systems."

F. Install pressure gages on fire-pump suction and discharge flange pressure-gage tappings. Comply with requirements for pressure gages specified in Section 211313 "Wet-Pipe Sprinkler Systems."

G. Install piping hangers and supports, anchors, valves, gages, and equipment supports according to NFPA 20.

H. Install fuel system according to NFPA 20.
I. Install water supply and drain piping for diesel-engine heat exchangers. Extend drain piping from heat exchangers to point of disposal.

J. Install exhaust-system piping for diesel engines. Extend to point of termination outside structure through roof of pump room. Install pipe and fittings with welded joints; install components having flanged connections with gasketed joints.

K. Install flowmeters and sensors. Install flowmeter-system components and make connections according to NFPA 20 and manufacturer's written instructions.

L. Electrical Wiring: Install electrical devices furnished by equipment manufacturers that are not factory mounted. Furnish copies of manufacturers' wiring diagram submittals to electrical Installer.

M. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

3.3 ALIGNMENT

A. Align split-case pump and driver shafts after complete unit has been leveled on concrete base, grout has set, and anchor bolts have been tightened.

B. After alignment is correct, tighten anchor bolts evenly. Fill baseplate completely with grout, with metal blocks and shims or wedges in place. Tighten anchor bolts after grout has hardened. Check alignment and make required corrections.

C. Align piping connections.

D. Align pump and driver shafts for angular and parallel alignment according to HI 1.4 and to tolerances specified by manufacturer.

3.4 CONNECTIONS

A. Comply with requirements for piping and valves specified in Section 211313 "Wet-Pipe Sprinkler Systems." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to pumps and equipment to allow service and maintenance.

C. Connect relief-valve discharge to drainage piping or point of discharge.

D. Connect flowmeter-system meters, sensors, and valves to tubing.

E. Connect fire pumps to their controllers.

3.5 IDENTIFICATION

A. Identify system components. Comply with requirements for fire-pump marking according to NFPA 20.
3.6 FIELD QUALITY CONTROL

A. Test each fire pump with its controller as a unit. Comply with requirements for diesel-engine-driver fire-pump controllers specified in Section 262933 "Controllers for Fire-Pump Drivers."

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. After installing components, assemblies, and equipment, including controller, test for compliance with requirements.
2. Test according to NFPA 20 for acceptance and performance testing.
3. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
4. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
5. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

E. Components, assemblies, and equipment will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports.

G. Furnish fire hoses in number, size, and length required to reach storm drain or other acceptable location to dispose of fire-pump test water. Hoses are for tests only and do not convey to Owner.

3.7 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire pumps.

END OF SECTION 213116
SECTION 213413 - PRESSURE-MAINTENANCE PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Vertical, multistage, pressure-maintenance pumps.
B. Related Requirements:
 1. Section 262933 "Controllers for Fire-Pump Drivers" for pressure-maintenance-pump controllers.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product. Include rated capacities, operating characteristics, performance curves, electrical characteristics, and furnished specialties and accessories.
B. Shop Drawings: For pumps, accessories, and specialties.
 1. Include plans, elevations, sections, and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS
A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For pumps to include in operation and maintenance manuals.
PART 2 - PRODUCTS

2.1 VERTICAL, MULTISTAGE, PRESSURE-MAINTENANCE PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. A-C Fire Pump; a Xylem brand.
2. Aquarius Fluid Products, Inc.
3. Grundfos Management A/S.
4. PACO Pumps; Grundfos Pumps Corporation, USA.
5. TACO Comfort Solutions, Inc.

B. Description: Factory-assembled and -tested, multistage, barrel-type vertical pump as defined in HI 2.1-2.2 and HI 2.3; designed for surface installation with pump and motor direct coupled and mounted vertically.

C. Pump Construction:

2. Suction and Discharge Chamber: Cast iron with flanged inlet and outlet.
3. Pump Head/Motor Mount: Cast iron.
4. Impellers: Stainless steel, balanced, and keyed to shaft.
6. Seal: Mechanical type with carbon rotating face and silicon-carbide stationary seat.
7. Wear Rings: Teflon.
8. Intermediate Chamber Bearings: Aluminum-oxide ceramic or bronze.
10. O-Rings: EPDM.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Motor: Single speed with permanently lubricated ball bearings and rigidly mounted to pump head. Comply with requirements in Section 210513 "Common Motor Requirements for Fire Suppression Equipment."

F. Power Cord: Factory-connected to motor for field connection to controller and at least 10 feet long.

G. Nameplate: Permanently attached to pump and indicating capacity and characteristics.

H. Capacities and Characteristics:

2. Total Dynamic Head: 120 psig.
5. Discharge and Suction Flanges: Class 250.
6. Suction Head Available at Pump: 52 psig.
9. Electrical Characteristics:
 c. Hertz: 60.

2.2 MOTORS

 A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 210513 "Common Motor Requirements for Fire Suppression Equipment."

 1. Motor Sizes: Minimum size as indicated; if not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

 A. NFPA Standard: Comply with NFPA 20 for installation of pressure-maintenance pumps.

 B. Equipment Mounting:

 1. Install multistage and regenerative-turbine, pressure-maintenance pumps according to HI 1.4.
 2. Install base-mounted pumps on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."

 a. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 b. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 c. Install anchor bolts to elevations required for proper attachment to supported equipment.
 d. Attach pumps to equipment base using anchor bolts.
 e. Shim pumps as needed to make them level.

 3. Install isolation valves in both inlet and outlet pipes near the pump. Comply with requirements for valves specified in Section 211313 "Wet-Pipe Sprinkler Systems."
3.2 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
3. Pressure-maintenance pumps will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.3 ADJUSTING

A. Lubricate pumps as recommended by manufacturer.

B. Set field-adjustable pressure-switch ranges as indicated.

END OF SECTION 213413
SECTION 220513 - COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on alternating-current power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:

 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

 a. Fire Pump Room sump pump shall be rated for 200 °F.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with NEMA MG 1 unless otherwise indicated.

B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 220513
SECTION 220516 - EXPANSION FITTINGS AND LOOPS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Flexible-hose packless expansion joints.
 2. Grooved-joint expansion joints.
 3. Alignment guides and anchors.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Delegated-Design Submittal: For each anchor and alignment guide, including analysis data, signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and swing connections.
 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
 3. Alignment Guide Details: Detail field assembly and attachment to building structure.
 4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For expansion joints to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.

B. Capability: Products to absorb 200 percent of maximum axial movement between anchors.
2.2 PACKLESS EXPANSION JOINTS

A. Flexible-Hose Packless Expansion Joints:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Flex-Hose Co., Inc.
 b. Flexicraft Industries.
 c. Mason Industries, Inc.
 d. Metraflex Company (The).
 e. Unisource Manufacturing, Inc.

2. Description: Manufactured assembly with inlet and outlet elbow fittings and two flexible-metal-hose legs joined by long-radius, 180-degree return bend or center section of flexible hose.

3. Flexible Hose: Corrugated-metal inner hoses and braided outer sheaths.

4. Expansion Joints for Copper Tubing NPS 2 and Smaller: Copper-alloy fittings with solder-joint end connections.

5. Expansion Joints for Copper Tubing NPS 2-1/2 to NPS 4: Copper-alloy fittings with threaded end connections.

2.3 ALIGNMENT GUIDES AND ANCHORS

A. Alignment Guides:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Flex-Hose Co., Inc.
 b. Flexicraft Industries.
 c. Mason Industries, Inc.
 d. Metraflex Company (The).
 e. Unisource Manufacturing, Inc.

2. Description: Steel, factory-fabricated alignment guide, with bolted two-section outer cylinder and base for attaching to structure; with two-section guiding slider for bolting to pipe.

B. Anchor Materials:

1. Steel Shapes and Plates: ASTM A36/A36M.
2. Bolts and Nuts: ASME B18.10 or ASTM A183, steel hex head.
4. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, with tension and shear capacities appropriate for application.

PART 3 - EXECUTION

3.1 EXPANSION JOINT INSTALLATION
A. Install expansion joints of sizes matching sizes of piping in which they are installed.

3.2 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION
A. Install alignment guides to guide expansion and to avoid end-loading and torsional stress.
B. Install two guides on each side of pipe expansion fittings and loops. Install guides nearest to expansion joint not more than four pipe diameters from expansion joint.
C. Attach guides to pipe, and secure guides to building structure.
D. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.
E. Anchor Attachments:
 1. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24; U bolts bolted to anchor.
F. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1/D1.1M.
 1. Anchor Attachment to Steel Structural Members: Attach by welding.
 2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer's written instructions.
G. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.

END OF SECTION 22016
SECTION 220517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Sleeves.
2. Stack sleeve fittings
3. Sleeve-seal systems.
4. Sleeve-seal fittings.
5. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. GPT; an EnPro Industries company.

B. Cast-Iron Pipe Sleeves: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop collar.

2.2 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. GPT; an EnPro Industries company.
4. Metraflex Company (The).

B. Description:

1. Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
2. Designed to form a hydrostatic seal of 20 psig minimum.
3. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
4. Pressure Plates: Stainless steel.
5. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Advance Products & Systems, Inc.
2. CALPICO, Inc.
3. GPT; an EnPro Industries company.
4. Metraflex Company (The).

B. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall.

C. Plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Nonshrink, for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
2.5 SILICONE SEALANTS

A. Silicone, S, NS, 25, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant, ASTM C920, Type S, Grade NS, Class 25, Use NT.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. GE Construction Sealants; Momentive Performance Materials Inc.
 b. Polymeric Systems, Inc.
 c. Sherwin-Williams Company (The).
 d. The Dow Chemical Company.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.

B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.

1. Sleeves are not required for core-drilled holes.

C. Install sleeves in concrete floors and concrete walls as new slabs and walls are constructed.

1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
3. Using grout or silicone sealant, seal the space outside of sleeves in slabs and walls without sleeve-seal system.

D. Install sleeves for pipes passing through interior partitions.

1. Cut sleeves to length for mounting flush with both surfaces.
2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint.

E. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with
requirements for firestopping and fill materials specified in Section 078413 "Penetration Firestopping."

3.2 STACK-SLEEVE-FITTING INSTALLATION

A. Install stack-sleeve fittings in new slabs as slabs are constructed.

1. Install fittings that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
2. Secure flashing between clamping flanges for pipes penetrating floors with membrane waterproofing.
3. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level.
4. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
5. Use silicone sealant to seal the space around outside of stack-sleeve fittings.

B. Fire-Resistance-Rated Penetrations, Horizontal Assembly Penetrations, and Smoke Barrier Penetrations: Maintain indicated fire or smoke rating of floors at pipe penetrations. Seal pipe penetrations with fire- and smoke-stop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.3 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.4 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Use grout or silicone sealant to seal the space around outside of sleeve-seal fittings.
3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Leak Test: After allowing for a full cure, test sleeves and sleeve seals for leaks. Repair leaks and retest until no leaks exist.

B. Sleeves and sleeve seals will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.6 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls above Grade:
 a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves or Sleeve-seal fittings.
 b. Piping NPS 6 and Larger: Cast-iron pipe sleeves or Sleeve-seal fittings.

2. Exterior Concrete Walls below Grade:
 a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves with sleeve-seal system or Sleeve-seal fittings.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron pipe sleeves with sleeve-seal system or Sleeve-seal fittings.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

3. Concrete Slabs-on-Grade:
 a. Piping Smaller Than NPS 6: Cast-iron pipe sleeves with sleeve-seal system or Sleeve-seal fittings.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Cast-iron pipe sleeves with sleeve-seal system or Sleeve-seal fittings.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

4. Concrete Slabs above Grade:
a. Piping Smaller Than NPS 6: Stack-sleeve fittings.
b. Piping NPS 6 and Larger: Stack-sleeve fittings.

5. Interior Partitions:

a. Piping Smaller Than NPS 6: Steel pipe sleeves PVC pipe sleeves.
b. Piping NPS 6 and Larger: Galvanized-steel sheet sleeves.
SECTION 220518 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.3 DEFINITIONS
 A. Existing Piping to Remain: Existing piping that is not to be removed and that is not otherwise indicated to be removed and salvaged, or removed and reinstalled.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. BrassCraft Manufacturing Co.; a Masco company.
 2. Jones Stephens Corp.
 4. Mid-America Fittings, Inc.
 5. ProFlo; a Ferguson Enterprises, Inc. brand.

2.2 ESCUTCHEONS
 A. One-Piece, Steel Type: With polished, chrome-plated finish and setscrew fastener.
 B. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
C. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped steel with polished, chrome-plated finish and spring-clip fasteners.

2.3 FLOOR PLATES

A. Split Floor Plates: Cast brass with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.

B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.

1. Escutcheons for New Piping:

 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep pattern.
 b. Chrome-Plated Piping: One-piece steel with polished, chrome-plated finish.
 c. Insulated Piping: One-piece cast brass with polished, chrome-plated finish.
 d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece stainless steel with polished stainless-steel finish.
 e. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece stainless steel with polished stainless-steel finish.
 f. Bare Piping in Unfinished Service Spaces: One-piece cast brass with rough-brass finish.
 g. Bare Piping in Equipment Rooms: One-piece cast brass with rough-brass finish.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.

1. New Piping: One-piece, floor plate.
2. Existing Piping: Split floor plate.

3.2 FIELD QUALITY CONTROL

A. Using new materials, replace broken and damaged escutcheons and floor plates.

END OF SECTION 220518
SECTION 220519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Dial-type pressure gages.
 2. Gage attachments.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS
A. Product Certificates: For each type of meter and gage.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 PRESSURE GAGES
A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flo Fab Inc.
 b. Miljoco Corporation.
 d. Trrice, H. O. Co.
 e. Weiss Instruments, Inc.
3. Case: Sealed type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
8. Window: Glass or plastic.
10. Accuracy: Grade B, plus or minus 2 percent of middle half of scale range.

2.2 GAGE ATTACHMENTS

A. Valves: Brass ball, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

B. Install valve and snubber in piping for each pressure gage for fluids.

C. Install pressure gages in the following locations:
 1. Building water service entrance into building
 2. Natural gas service entrance into building.

3.2 CONNECTIONS

A. Install meters and gages to allow service and maintenance of meters, gages, and equipment.

3.3 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.

3.4 PRESSURE-GAGE SCHEDULE

A. Pressure gages at discharge of each service into building shall be the following:
 1. Open-front, pressure-relief, direct-mounted, metal case.
3.5 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Water Piping: 0 to 100 psi.

END OF SECTION 220519
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Brass ball valves.
2. Bronze ball valves.
3. Steel ball valves.

1.3 DEFINITIONS

A. CWP: Cold working pressure.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1. Certification that products comply with NSF 61 and NSF 372.

1.5 STORAGE AND HANDLING

A. Use the following precautions during storage:

1. Maintain valve end protection.
2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

B. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.5 for flanges on steel valves.
 4. ASME B31.9 for building services piping valves.

C. NSF Compliance: NSF 61 and NSF 372 for valve materials for potable-water service.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Actuator Types:
 1. Gear Actuator: For quarter-turn valves NPS 4 and larger.
 2. Handlever: For quarter-turn valves smaller than NPS 4.

H. Valves in Insulated Piping:
 1. Include 2-inch stem extensions.
 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRASS BALL VALVES

A. Brass Ball Valves, Two-Piece with Full Port and Brass Trim, Threaded or Soldered Ends:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. FNW; Ferguson Enterprises, Inc.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
2. Description:
 a. Standard: MSS SP-110 or MSS SP-145.
 b. CWP Rating: 600 psig.
 c. Body Design: Two piece.
 d. Body Material: Forged brass.
 e. Ends: Threaded and soldered.
 f. Seats: PTFE.
 g. Stem: Brass.
 h. Ball: Chrome-plated brass.
 i. Port: Full.

B. Brass Ball Valves, Two-Piece with Full Port and Brass Trim, Press Ends:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. Hammond Valve.
 c. Milwaukee Valve Company.
 d. NIBCO INC.

2. Description:
 a. Standard: MSS SP-110 or MSS SP-145.
 b. CWP Rating: Minimum 200 psig.
 c. Body Design: Two piece.
 d. Body Material: Forged brass.
 e. Ends: Press.
 g. Seats: PTFE or RPTFE.
 h. Stem: Brass.
 i. Ball: Chrome-plated brass.
 j. Port: Full.
 k. O-Ring Seal: Buna-N or EPDM.

C. Brass Ball Valves, Two-Piece with Full Port and Stainless-Steel Trim, Threaded or Soldered Ends:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. Hammond Valve.
 c. Milwaukee Valve Company.
 d. NIBCO INC.

2. Description:
 a. Standard: MSS SP-110 or MSS SP-145.
b. CWP Rating: 600 psig.
c. Body Design: Two piece.
d. Body Material: Forged brass.
e. Ends: Threaded and soldered.
f. Seats: PTFE.
g. Stem: Stainless steel.
h. Ball: Stainless steel, vented.
i. Port: Full.

D. Brass Ball Valves, Two-Piece with Full Port and Stainless-Steel Trim, Press Ends:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. Hammond Valve.
 c. Milwaukee Valve Company.
 d. NIBCO INC.

2. Description:

 a. Standard: MSS SP-110 or MSS SP-145.
 b. CWP Rating: Minimum 200 psig.
 c. Body Design: Two piece.
 d. Body Material: Forged brass.
 e. Ends: Press.
 g. Seats: PTFE or RPTFE.
 h. Stem: Stainless steel.
 i. Ball: Stainless steel, vented.
 j. Port: Full.
 k. O-Ring Seal: Buna-N or EPDM.

2.3 BRONZE BALL VALVES

A. Bronze Ball Valves, Two-Piece with Full Port, and Bronze or Brass Trim, Threaded or Soldered Ends:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. FNW; Ferguson Enterprises, Inc.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.

2. Description:
a. Standard: MSS SP-110 or MSS-145.
b. CWP Rating: 600 psig.
c. Body Design: Two piece.
d. Body Material: Bronze.
e. Ends: Threaded and soldered.
f. Seats: PTFE.
g. Stem: Bronze or brass.
h. Ball: Chrome-plated brass.
i. Port: Full.

B. Bronze Ball Valves, Two-Piece with Full Port, and Bronze or Brass Trim, Press Ends:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. Hammond Valve.
 c. Milwaukee Valve Company.
 d. NIBCO INC.

2. Description:

 a. Standard: MSS SP-110 or MSS-145.
 b. CWP Rating: Minimum 200 psig.
 c. Body Design: Two piece.
 d. Body Material: Bronze.
 e. Ends: Press.
 g. Seats: PTFE or RTPFE.
 h. Stem: Bronze or brass.
 i. Ball: Chrome-plated brass.
 j. Port: Full.
 k. O-Ring Seal: EPDM or Buna-N.

C. Bronze Ball Valves, Two-Piece with Full Port and Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. FNW; Ferguson Enterprises, Inc.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.

2. Description:

 a. Standard: MSS SP-110 or MSS-145.
 b. CWP Rating: 600 psig.
 c. Body Design: Two piece.
d. Body Material: Bronze.
e. Ends: Threaded or soldered.
f. Seats: PTFE.
g. Stem: Stainless steel.
h. Ball: Stainless steel, vented.
i. Port: Full.

2.4 STEEL BALL VALVES

A. Steel Ball Valves with Full Port, Class 150:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. FNW; Ferguson Enterprises, Inc.
 c. NIBCO INC.

2. Description:

 d. Body Material: Carbon steel, ASTM A216, Type WCB.
 e. Ends: Flanged or threaded.
 f. Seats: PTFE.
 g. Stem: Stainless steel.
 h. Ball: Stainless steel, vented.
 i. Port: Full.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

B. Select valves with the following end connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option or press-end option is indicated in valve schedules below.
2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.4 LOW-PRESSURE, NATURAL GAS VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
2. Brass ball valves, two-piece with full port and brass stainless steel trim.
3. Bronze ball valves, two-piece with full port and bronze, brass OR stainless steel trim.

B. Pipe NPS 2-1/2 and Larger:

1. Steel Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
2. Steel ball valves, Class 150 with full port.
3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:
 1. Brass ball valves, two-piece with full port and brass or stainless steel trim. Provide with threaded, solder or press connection-joint ends.
 2. Bronze ball valves, two-piece with full port and bronze, brass or stainless steel trim. Provide with threaded, solder or press connection-joint ends.

B. Pipe NPS 2-1/2 and Larger:
 1. Steel Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
 2. Steel ball valves, Class 150 with full port.

END OF SECTION 220523.12
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Iron, single-flange butterfly valves.
 2. Iron, grooved-end butterfly valves.
 3. Chainwheels.

1.3 DEFINITIONS
A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene-diene terpolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of valve.

1.5 DELIVERY, STORAGE, AND HANDLING
A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set butterfly valves closed or slightly open.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B16.1 for flanges on iron valves.
 2. ASME B16.5 for flanges on steel valves.
 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.

C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Actuator Types:
 1. Handlever: For valves NPS 6 and smaller.
 2. Chainwheel: Device for attachment to gear, handlever, or stem; of size and with chain for mounting height, according to "Valve Installation" Article.

H. Valves in Insulated Piping: With 2-inch stem extensions.

2.2 IRON, SINGLE-FLANGE BUTTERFLY VALVES

A. Iron, Single-Flange Butterfly Valves with Ductile-Iron Disc:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ABZ Valve and Controls.
 b. Flo Fab Inc.
 c. Hammond Valve.
 d. Jenkins Valves; a Crane brand.
 e. NIBCO INC.
 f. Stockham; a Crane brand.
 2. Description:
a. Standard: MSS SP-67, Type I.
b. CWP Rating: 200 psig.
c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
d. Body Material: ASTM A126, cast iron or ASTM A536, ductile iron.
e. Seat: EPDM.
f. Stem: One- or two-piece stainless steel.
g. Disc: Nickel-plated or nickel-coated ductile iron.

B. Iron, Single-Flange Butterfly Valves with Stainless-Steel Disc:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. ABZ Valve and Controls.
 b. Flo Fab Inc.
 c. Hammond Valve.
 d. Jenkins Valves; a Crane brand.
 e. NIBCO INC.
 f. Stockham; a Crane brand.

2. Description:
 a. Standard: MSS SP-67, Type I.
 b. CWP Rating, NPS 12 and Smaller: 200 psig.
 c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 d. Body Material: ASTM A126, cast iron or ASTM A536, ductile iron.
 e. Seat: EPDM.
 f. Stem: One- or two-piece stainless steel.
 g. Disc: Stainless steel.

2.3 CHAINWHEELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Babbitt Steam Specialty Co.
2. Roto Hammer Industries.
3. Trumbull Industries.

B. Description: Valve actuation assembly with sprocket rim, chain guides, chain, and attachment brackets for mounting chainwheels directly to handwheels.

1. Sprocket Rim with Chain Guides: Ductile or cast iron, of type and size required for valve. Include zinc or epoxy coating.
2. Chain: Hot-dip, galvanized steel, of size required to fit sprocket rim.
PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
 B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
 C. Examine mating flange faces for damage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
 D. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION
 A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
 B. Locate valves for easy access and provide separate support where necessary.
 C. Install valves in horizontal piping with stem at or above center of pipe.
 D. Install valves in position to allow full stem movement.
 E. Install chainwheels on operators for butterfly valves NPS 4 and larger and more than 96 inches above floor. Extend chains to 60 inches above finished floor.
 F. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING
 A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE
 A. Pipe NPS 2-1/2 and Larger:
 2. Ductile-Iron, Grooved-End Butterfly Valves: 175 CWP.
END OF SECTION 220523.13
SECTION 220523.14 - CHECK VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Bronze swing check valves.
2. Bronze swing check valves, press ends.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1. Certification that products comply with NSF 61 and NSF 372.

1.4 STORAGE, AND HANDLING

A. Use the following precautions during storage:

1. Maintain valve end protection.
2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

B. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:

1. ASME B1.20.1 for threads for threaded end valves.
2. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
3. ASME B16.18 for solder joint.
4. ASME B31.9 for building services piping valves.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Bypass and Drain Connections: MSS SP-45.

H. Check valves provided specific to the sump pump, for use with high water temperature, shall be per the manufacturer, all metal type check valves.

2.2 BRONZE SWING CHECK VALVES

A. Bronze Swing Check Valves with Bronze Disc, Class 125:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. Jenkins Valves; a Crane brand.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. WATTS.

2. Description:

 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
 f. Disc: Bronze.

B. Bronze Swing Check Valves, Press Ends:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. Milwaukee Valve Company.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Check Valves: Install check valves for proper direction of flow.

1. Swing Check Valves: In horizontal position with hinge pin level.
2. Center-Guided Check Valves: In horizontal or vertical position, between flanges.
F. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:

1. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.

B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

C. End Connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded or soldered or press-ends.
2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged or threaded.
3. For Copper Tubing, NPS 5 and Larger: Flanged.

3.5 LOW-PRESSURE, NATURAL GAS VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

1. Horizontal and Vertical Applications: Bronze swing check valves with bronze disc, Class 125, with soldered or threaded end connections.

3.6 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

1. Bronze swing check valves with bronze disc, Class 125, with end connections.
2. Bronze swing check valves with press-end connections.

END OF SECTION 220523.14
SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Thermal hanger-shield inserts.
3. Fastener systems.
4. Pipe stands.
5. Pipe-positioning systems.
6. Equipment supports.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 QUALITY ASSURANCE

A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.

B. Pipe Welding Qualifications: Qualify procedures and operators according to 2015 ASME Boiler and Pressure Vessel Code, Section IX.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

2.2 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized, hot-dip galvanized, or electro-galvanized.
 3. Nonmetallic Coatings: Plastic coated or epoxy powder coated.

B. Copper Pipe and Tube Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.3 THERMAL HANGER-SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. CADDY; a brand of nVent.
 2. Carpenter & Paterson, Inc.
 4. Pipe Shields Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C552, Type II cellular glass with 100-psig or ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: ASTM C552, Type II cellular glass with 100-psig or ASTM C591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.

D. For Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.
2.4 FASTENER SYSTEMS

A. Mechanical-Expansion Anchors: Insert-wedge-type anchors, for use in hardened portland cement concrete, with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. B-line, an Eaton business.
 b. Empire Tool and Manufacturing Co., Inc.
 c. Hilti, Inc.
 d. MKT Fastening, LLC.

2. Indoor Applications: Zinc-coated or stainless steel.

2.5 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Curb-Mounted-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.6 PIPE-POSITIONING SYSTEMS

A. Description: IAPMO PS 42 positioning system composed of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-carbon-steel shapes.

2.8 MATERIALS

A. Aluminum: ASTM B221.

B. Carbon Steel: ASTM A1011/A1011M.

C. Structural Steel: ASTM A36/A36M carbon-steel plates, shapes, and bars; black and galvanized.

D. Stainless Steel: ASTM A240/A240M.

E. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation, for penetrations through fire-rated walls, ceilings, and assemblies.

B. Strength of Support Assemblies: Where not indicated, select sizes of components, so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

3.2 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-58. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.

B. Thermal Hanger-Shield Installation: Install in pipe hanger or shield for insulated piping.

C. Fastener System Installation:
 1. Install mechanical-expansion anchors in concrete, after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

D. Pipe Stand Installation:
 1. Pipe Stand Types, except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 077200 "Roof Accessories" for curbs.

E. Pipe-Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.
J. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms, and install reinforcing bars through openings at top of inserts.

K. Load Distribution: Install hangers and supports, so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

M. Insulated Piping:

1. Attach clamps and spacers to piping.
 a. Piping Operating Above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating Below Ambient Air Temperature: Use thermal hanger-shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39 protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal hanger-shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40 protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal hanger-shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.

5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

6. Thermal Hanger Shields: Install with insulation of same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
B. Grouting: Place grout under supports for equipment, and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 METAL FABRICATIONS
A. Cut, drill, and fit miscellaneous metal fabrications for equipment supports.
B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
 4. Finish welds at exposed connections, so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.5 ADJUSTING
A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING
A. Touchup: Clean field welds and abraded, shop-painted areas. Paint exposed areas immediately after erecting hangers and supports. Use same materials as those used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
B. Touchup: Clean and touchup field welds, bolted connections, and abraded, shop-painted areas on miscellaneous metal.
C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas, and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.7 HANGER AND SUPPORT SCHEDULE
A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
B. Comply with MSS SP-58 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finishes.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and attachments for general service applications.

F. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.

G. Use thermal hanger-shield inserts for insulated piping and tubing.

H. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
3. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
4. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
5. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
6. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
7. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
8. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
9. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
10. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 10.

I. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 10.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 10 if longer ends are required for riser clamps.

J. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel Turnbuckles (MSS Type 13): For adjustment of up to 6 inches for heavy loads.
2. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11 split pipe rings.

K. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
2. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
3. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
4. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
5. C-Clamps (MSS Type 23): For structural shapes.
6. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
7. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
8. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

L. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal Hanger-Shield Inserts: For supporting insulated pipe.

M. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.

N. Use pipe-positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529
SECTION 220548.13 - VIBRATION CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Pipe-riser resilient supports.
 2. Resilient pipe guides.
 3. Elastomeric hangers.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 PIPE-RISER RESILIENT SUPPORT
 A. Description: All-directional, acoustical pipe anchor consisting of two steel tubes separated by a minimum 1/2-inch-thick neoprene.
 1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
 2. Maximum Load Per Support: 500 psig on isolation material providing equal isolation in all directions.

2.2 RESILIENT PIPE GUIDES
 A. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum 1/2-inch-thick neoprene.
 1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.
2.3 ELASTOMERIC HANGERS

A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. California Dynamics Corporation.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Eliminator Co., Inc.
 e. Vibration Mountings & Controls, Inc.

2. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.

3. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 VIBRATION CONTROL DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

END OF SECTION 220548.13
SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Pipe labels.
 3. Valve tags.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
 B. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Brimar Industries, Inc.
 c. Champion America.
 d. Craftmark Pipe Markers.
 e. Seton Identification Products.
 2. Material and Thickness: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 4. Background Color: Yellow.
 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

7. Fasteners: Stainless-steel rivets or self-tapping screws.

8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Champion America.
5. Seton Identification Products.

B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

D. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

E. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: Size letters according to ASME A13.1 for piping.

2.3 VALVE TAGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Brady Corporation.
2. Brimar Industries, Inc.
3. Champion America.
5. Seton Identification Products.

B. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Fasteners: Brass wire-link chain, beaded chain or S-hook.

C. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION
 A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS
 A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
 B. Coordinate installation of identifying devices with locations of access panels and doors.
 C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION
 A. Install or permanently fasten labels on each major item of mechanical equipment.
 B. Locate equipment labels where accessible and visible.
3.4 **PIPE LABEL INSTALLATION**

A. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve and control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 25 feet along each run. Reduce intervals to 15 feet in areas of congested piping and equipment.

B. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

C. Pipe Label Color Schedule:

1. Domestic Water Piping, including cold water, hot water, and hot water return.
 a. Background: Safety green.
2. Sanitary Waste and Vent Piping:
 a. Background Color: Safety black.
3. Natural Gas Piping:
 a. Background Color: Yellow.
 b. Letter Color: Black.

3.5 **VALVE-TAG INSTALLATION**

A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:
 c. Natural Gas: 1-1/2”

2. Valve-Tag Colors:
 b. Hot Water: Natural.
 c. Natural Gas: Natural

3. Letter Colors:
 b. Hot Water: Black.
 c. Natural Gas: Black.

4. Tag pumps and piping associated with sump and pump used for fire pump operation.

END OF SECTION 220553
SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following plumbing piping services:

1. Domestic cold-water piping.
2. Domestic hot-water piping.
3. Domestic recirculating hot-water piping.
4. Domestic chilled-water piping for drinking fountains.
5. Supplies and drains for handicap-accessible lavatories and sinks.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).

1.4 QUALITY ASSURANCE

A. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and finishes and for space required for maintenance.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule."

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come into contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested in accordance with ASTM C871.

D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

E. Flexible Elastomeric: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C534/C534M, Type I for tubular materials.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aeroflex USA, Inc.
 b. Armacell LLC.
 c. K-Flex USA.

F. Mineral-Fiber, Preformed Pipe: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C547.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. Knauf Insulation.
 2. Preformed Pipe Insulation: Type I, Grade A with factory-applied ASJ.
 3. 850 deg F.
4. Factory fabricate shapes in accordance with ASTM C450 and ASTM C585.
5. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Flexible Elastomeric Adhesive: Solvent-based adhesive.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Aeroflex USA, Inc.
 b. Armacell LLC.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. K-Flex USA.

2. Flame-spread index shall be 25 or less and smoke-developed index shall be 50 or less as tested in accordance with ASTM E84.
3. Wet Flash Point: Below 0 deg F.
4. Service Temperature Range: 40 to 200 deg F.
5. Color: Black.

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.

2.3 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C1136, Type II.
2.4 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C1136.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. 3M Industrial Adhesives and Tapes Division.
 b. Avery Dennison Corporation, Specialty Tapes Division.
 d. Knauf Insulation.

2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C1136.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. 3M Industrial Adhesives and Tapes Division.
 b. Avery Dennison Corporation, Specialty Tapes Division.
 d. Knauf Insulation.

2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. 3M Industrial Adhesives and Tapes Division.
 b. Avery Dennison Corporation, Specialty Tapes Division.
 d. Knauf Insulation.

2. Width: 2 inches.
3. Thickness: 3.7 mils.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch in width.

2.5 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Just Manufacturing.
 b. Plumberex Specialty Products, Inc.
 c. Truebro.
 d. Zurn Industries, LLC.
 2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 1. Carbon Steel: Coat carbon steel operating at a service temperature of between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and of thicknesses required for each item of pipe system, as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during storage, application, and finishing. Replace insulation materials that get wet.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward-clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward-clinching staples along edge at 4 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, in accordance with insulation material manufacturer's written instructions, to maintain vapor seal.

K. Cut insulation in a manner to avoid compressing insulation more than 25 percent of its nominal thickness.

L. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

M. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches in similar fashion to butt joints.
N. Do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

D. Insulation Installation at Floor Penetrations:

1. Pipe: Install insulation continuously through floor penetrations.
2. Seal penetrations through fire-rated assemblies.

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials, except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, Mechanical Couplings, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, mechanical couplings, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as that of adjacent pipe insulation. Each piece shall be butted
tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as that used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as that used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Insulate strainers, so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover.

6. Insulate flanges, mechanical couplings, and unions, using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than 2 times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Stencil or label the outside insulation jacket of each union with the word "union" matching size and color of pipe labels.

C. Insulate instrument connections insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and flashing sealant.

D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as that of adjoining pipe insulation.

2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union at least 2 times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless steel or aluminum bands. Select band material compatible with insulation and jacket.

3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer’s recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as that of pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as that of pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties, and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands, and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive, as recommended by insulation material manufacturer.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as that of straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of same material as that of straight segments of pipe insulation when available.
2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
4. Install insulation to flanges as specified for flange insulation application.

3.8 FINISHES

A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

3.9 FIELD QUALITY CONTROL

A. Owner will engage a qualified testing agency to perform tests and inspections.

B. Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections.

E. All insulation applications will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports.
3.10 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:

1. Underground piping.
2. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:

1. NPS 1 and Smaller: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1/2 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.

2. NPS 1-1/4 and Larger: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Domestic Hot and Recirculated Hot Water:

1. NPS 1-1/4 and Smaller: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

2. NPS 1-1/2 and Larger: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

C. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:

1. All Pipe Sizes: Insulation shall be one of the following:
 a. Flexible Elastomeric: 1/2 inch thick.
 b. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.

END OF SECTION 220719
SECTION 22 11 14 - WATER DISTRIBUTION

PART 1 – GENERAL

1.01 QUALITY ASSURANCE

A. Quality Certification Standards: Precast Concrete Products, Gray Iron Castings, Ready-Mixed Concrete, and Standard Pressure Gate Valves, and Ductile Iron Pipe and Fittings shall conform to QC-1, QC-2, QC-3, QC-4, QC-5, and QC-8 respectively.

B. DI Pipe and Fittings: In addition to the standard acceptance tests, the manufacturer shall perform a special test for ductility (either the ball impression test or the ring test).

C. Water service installation work is subject to the inspection and approval of the Philadelphia Water Department.

1.02 REFERENCES

A. All water main work under this contract shall be governed by, and done in accordance with the most recent revision or amendment to the Standard Specifications and Standard Details of the Philadelphia Water Department, including, but not limited to, the following:

1. Water Main Details & Corrosion Control Specifications.
2. Quality Certification Standard QC-1 for Precast Concrete Products.
5. Quality Certification Standard QC-4 for Welded Steel Inlet Frames and Grates.
6. Quality Certification Standard QC-5 for Standard Pressure Gate Valves (3" Dia. Through 12" Dia.).
8. Quality Certification Standard SIP 86/01 for Lining & Coating of Steel Water Mains.

B. All materials and workmanship shall conform to the most recent revision or amendment to the following standards, except as modified by the Contract Documents:
1. ANSI/AWWA C153/A21.53, American National Standard for Compact Ductile-Iron Fittings, 3 in. Through 24 in. (76 mm Through 610 mm) and 54 in. Through 64 in. (1,400 mm Through 1,600 mm), for Water Service.
5. ANSI/AWWA C151/A21.51, American National Standard for Ductile-Iron Pipe, Centrifugally Cast in Metal Molds or Sand-Lined Molds, for Water or Other Liquids.
10. ASTM B 62, Standard Specification for Composition Bronze or Ounce Metal Castings.

1.03 SUBMITTALS

A. DI Pipe and Fittings: Submit all pipe and fittings to the Construction Manager, Manufacturer's Affidavit that the ANSI/AWWA standard inspection and tests have been made on each casting, and that the results thereof comply with the applicable ANSI/AWWA standards. Certify the following: type of casting; number of pipe or fitting; date of cast; material of composition; weight of pipe or fitting; test bar report; report of hydrostatic test on pipe.

B. Corporation Stops, Curb Boxes, Curb Stops, Valve Boxes, Meters, Meter Pits and accessories and Reduced Pressure Zone facilities: Submit catalog cuts or other documentation establishing conformity to contract requirements.

1.04 SEQUENCING AND SCHEDULING

A. Sequencing and scheduling for this work will be determined by the Construction Manager.

B. Notify the PWD in advance of all connections to be made to existing water mains. The Water Department will cooperate in arranging all necessary water main shutdowns, subject to satisfactory operation of the water distribution system. All shutdowns will be performed by Water Department forces, and without cost to the Contractor. There will be no additional payment for delays in accomplishing shutdowns.

C. Notify the PWD 24 hours in advance of all necessary interruptions to existing water service connections. No service may be interrupted without the PWD’s prior approval.
1.05 SCOPE OF WORK

A. Excavation for water mains shall include:
 1. The following and all appurtenant work and materials: excavation without classification; removal of all materials of whatsoever nature encountered including rock, existing paving, abandoned pipes, masonry, and concrete; furnishing, placing, maintaining, and removing temporary sheathing and shoring; supporting and protecting existing underground structures; removing and disposing of excess and unsuitable materials; furnishing, placing, and compacting Structural Backfill Material, and Sand Backfill; all dewatering, including pumping and disposing of water; filling voids created as a result of the Contractor's operations; clearing and grubbing; maintenance or restoration of existing curbs; protection of trees and shrubs; rodent control; removing, hauling, and delivering existing CI manhole frames and covers to the Water Department Storage Yard, removing existing manhole structure two feet below surface elevation, and backfilling abandoned manhole with Structural Backfill Material up to subgrade elevation.
 2. Excavation limits for water service will be as shown in the Standard Details for Water Mains.
 3. Excavation, backfilling, and compacting in connection with DI pipe, DI fittings, gate valves, concrete anchors and fire hydrants.

B. DI pipe of the various sizes with extruded polyethylene coating as indicated shall include:
 1. The following and all appurtenant work and materials: furnishing and installing DI pipe; cement lining; corrosion control; a three inch layer of cellular glass insulation for mains laid with less than 3’-6” cover; cutting and plugging; making connections; testing; disinfecting; joint restraints.

C. Compact DI fittings with field applied external coating indicated shall include:
 1. The following and all appurtenant work and materials: furnishing and installing fittings; cement lining; corrosion control; making connections; disinfecting; testing; hardware; gaskets; glands and joint materials.

D. Gate valves of the various sizes shall include:
 1. The following and all appurtenant work and materials: furnishing and installing gate valves; valve boxes; corrosion control; making connections; disinfecting; testing.

E. Not used

F. Concrete anchors shall include:
 1. The following and all appurtenant work and materials: furnishing and installing 4000 psi concrete anchors; miscellaneous iron and steel for harnessing; corrosion control work; form work, stripping; tar paper.

G. Paving work in accordance with standard specifications of the Philadelphia Streets Department and of PennDOT shall include:
1. The following and all appurtenant work and materials; furnishing and placing all paving items (e.g., concrete base, bituminous binder, wearing courses, curb, footway and driveway paving).

H. Maintenance and protection of traffic during water main work shall include:

1. The following and all appurtenant work and materials: providing, placing, maintaining, and removing all required signs, barricades, and warning devices; steel plates for decking; bridging; temporary cartway and footway paving; removal and replacement of paving where necessary for decking; excavating, backfilling, and compacting; and cartway, footway, driveway, and curb restoration. Obtain all applicable permits including time restrictions for work, use of City Police, etc.

PART 2 – PRODUCTS

2.01 BACKFILL

A. If required by the Construction Manager, furnish sand backfill for pipe zone in accordance with ASTM C 33 (fine aggregate) and the following:

1. Gradation:
 a. Sieve Number 200 100 50 16 4
 b. Percent Passing 0-5 0-8 5-30 50-98 98-100

2. pH: between 5.5 and 8.5.

3. Electrical Resistivity: 10,000 ohm-centimeters, minimum.

4. Character: clean, free from lumps of clay or other deleterious substances.

B. Structural backfill material shall be used as shown on the drawings. (Refer to Geotechnical Report)

C. The use of slag as structural backfill material is hereby prohibited.

2.02 DI PIPE

A. Furnish ductile iron pipe in accordance with AWWA C151 and C150/A21.50. Furnish gaskets in accordance with AWWA C111. Furnish all pipe with double-thickness cement lining in accordance with AWWA C104. All pipe classes shall be as shown on the plans.

B. Cast into, stamp or paint on each pipe: the manufacturer's mark; casting number; year of cast; "DI"; class of pipe. Markings shall be clear and legible.

2.03 DI FITTINGS
A. Furnish compact DI fittings in accordance with AWWA C153 for Crosses 3” through 16”; and bends, tees, reducers and sleeves 3” through 24”.

B. Furnish DI fittings (rated at least 350 psi) in accordance with AWWA C110 for offsets, caps and plugs 3” through 12”.

C. Furnish DI fittings (rated at least 250 psi) in accordance with AWWA C110 for offsets, caps and plugs 3” through 12”.

D. Furnish DI fittings (rated at least 250 psi) in accordance with AWWA C110 for offsets, caps and plugs 30” through 48”; offsets 14” through 16”; and caps and plugs 14” through 48”.

E. Furnish DI fittings in accordance with AWWA C111. Furnish all fittings with double-thickness cement lining in accordance with AWWA C104. Bolts shall be high-strength, low-alloy steel.

F. Cast into, stamp or paint on each fitting: the manufacturer's mark; casting number; year of cast; "DI"; weight before cement lining; pressure rating. Markings shall be clear and legible.

G. Furnish flange fittings and mechanical joint or push-on fittings as noted on the plans.

H. Furnish approved retainer glands where shown in the Standard Details for Water Mains, and as required in the Contract Documents. Retainer glands up to 16” shall be 350 psi rating.

2.04 STANDARD PRESSURE GATE VALVES

A. Furnish standard pressure gate valves in accordance with W-16. Furnish gate valves with vertical stems wherever the stated depth of cover permits, unless otherwise shown on the Plans. Furnish retainer glands for all joints.

B. Furnish standard cast iron valve boxes as shown in the Standard Details for Water Mains.

2.05 Not Used

2.06 CONCRETE ANCHORS

A. Furnish ready-mixed 4000 psi concrete in accordance with ASTM C 94 and QC-3. Use only Type 1 Portland cement of American manufacture. Use maximum one inch coarse aggregate (size 5, 56, 57, 6, or 7).

2.07 COMPOSITION BRONZE CASTINGS

A. Where copper-based component castings are required for fittings, valves, and corporation stop ferrules, furnish castings in accordance with AWWA C 800 and ASTM B 584. Use only Copper Alloy UNS No. C 83600 (Composition Bronze, commercial 85-5-5-5 alloy) in accordance with
ASTM B 62 for this work. This alloy consists, nominally, of 85% copper, 5% tin, 5% lead, and 5% zinc. Do not use alloys containing more than 5% lead for castings which will come into contact with potable water.

2.8 PIPE GASKET LUBRICANT

A. Furnish lubricant for lubricating rubber gaskets used in push-on joint or mechanical joint pipe assemblies. Pipe gasket lubricant shall be odorless and suitable for use in potable water systems. Furnish Blue Lube pipe gasket lubricant as manufactured by Whitlam Chemicals, 200 W. Walnut Street, P.O. Box 71, Wadsworth, Ohio, 44281-0071 (1-800-321-8358) or approved equal. Alternatives to the Blue Lube lubricant must be approved by the Construction Manager.

2.9 PIPE END PLUGS

A. All DI Pipe shall be capped upon delivery. Furnish commercially manufactured plugs for the purpose of plugging the ends of 8” pipe, which awaits installation at the job site. The plugs shall fit tightly so as to be secure in the ends of the pipe. The plug’s design shall prevent over insertion into the pipe.

B. Other sizes of pipe may be capped by securely taping six-millimeter polyethylene plastic over their ends.

PART 3 – EXECUTION

3.01 MAINTENANCE AND PROTECTION OF TRAFFIC DURING CONSTRUCTION

A. Maintain and protect traffic during construction as required elsewhere in these Contract Documents.

3.02 EXCAVATING

A. Excavate in accordance with City Standards, Earthwork. Excavation will not be classified, whether by type of material encountered, or by type of equipment required.

B. Use sheathing and shoring sufficient to avoid damage to or settlement of adjacent paving and underground structures.

C. Use of a Hydro-Hammer or similar equipment for breaking existing paving is hereby prohibited.

3.03 INSTALLING WATER MAINS

A. Install pipe, fittings, valves, hydrants, anchors, and all appurtenances in accordance with the Contract Documents, and in accordance with AWWA C600 and the manufacturer's recommendations as they apply.
3.04 BACKFILLING AND COMPACTING

A. Place and compact backfill in accordance with the City’s Standards, except as herein modified. (Refer to Geotechnical Report)

B. Do not place backfill around any structure requiring time to gain strength (e.g., masonry or concrete), until so directed by the Construction Manager.
C. Placement of sand backfill and structural backfill material for buried water mains:

1. If required by the Construction Manager, place sand backfill as described in the Standard Details for Water Mains (as amended).
2. Unless indicated otherwise on the drawings, place structural backfill material (with all stones and other objectionable material removed) or up to subgrade elevation over all water mains as directed by the Construction Manager.
3. Compact backfill under pipes and fittings by mechanical tamping. Compact backfill around and over pipes and fittings by hand tamping in 8 inch layers. Compact all other backfill in 8 inch layers by mechanical tamping. Puddling is prohibited.

3.05 Not Used

3.06 PIPE STORAGE

A. Pipes shall be inspected and verified to be clean immediately upon delivery and then plugged so soil, trash, and other contaminants cannot easily enter them while they await installation. Pipes brought to the site with debris shall be cleaned and swabbed before plugging. Inspect pipes for missing caps regularly and replace immediately. During installation inspect pipes upon removing plugs in order to ensure no debris is present.

END OF SECTION 22 11 14
SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Copper tube and fittings.
 2. Piping joining materials.
 3. Transition fittings.
 4. Dielectric fittings.

1.3 ACTION SUBMITTALS
 A. Product Data: For transition fittings and dielectric fittings.

1.4 INFORMATIONAL SUBMITTALS
 A. System purging and disinfecting activities report.

1.5 FIELD CONDITIONS
 A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 1. Notify Owner no fewer than two days in advance of proposed interruption of water service.
 2. Do not interrupt water service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS
 A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
B. Potable-water piping and components shall comply with NSF 14, NSF 61, and NSF 372.

2.2 COPPER TUBE AND FITTINGS
A. Hard Copper Tube: ASTM B 88, Type L and ASTM B 88, Type M water tube, drawn temper.
B. Soft Copper Tube: ASTM B 88, Type K and ASTM B 88, Type L water tube, annealed temper.
C. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.
E. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
F. Copper Unions:
 1. MSS SP-123.
 4. Solder-joint or threaded ends.
G. Copper, Brass, or Bronze Pressure-Seal-Joint Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. Elkhart Products Corporation.
 c. Mueller Industries, Inc.
 d. NIBCO INC.
 2. Fittings: Cast-brass, cast-bronze or wrought-copper with EPDM O-ring seal in each end. Sizes NPS 2-1/2 and larger with stainless steel grip ring and EPDM O-ring seal.
 3. Minimum 200-psig working-pressure rating at 250 deg F.
H. Copper Push-on-Joint Fittings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. Elkhart Products Corporation.
 c. NIBCO INC.
 2. Description:
 a. Cast-copper fitting complying with ASME B16.18 or wrought-copper fitting complying with ASME B 16.22.
b. Stainless-steel teeth and EPDM-rubber, O-ring seal in each end instead of solder-joint ends.

2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials:
 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 2. Full-face or ring type unless otherwise indicated.

B. Solder Filler Metals: ASTM B 32, lead-free alloys.

C. Flux: ASTM B 813, water flushable.

D. Plastic, Pipe-Flange Gaskets, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

2.4 TRANSITION FITTINGS

A. General Requirements:
 1. Same size as pipes to be joined.
 2. Pressure rating at least equal to pipes to be joined.
 3. End connections compatible with pipes to be joined.

B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.

2.5 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric-Flange Insulating Kits:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Calpico, Inc.
 b. Central Plastics Company.
 c. Pipeline Seal and Insulator, Inc.
 2. Nonconducting materials for field assembly of companion flanges.
 4. Gasket: Neoprene or phenolic.
 5. Bolt Sleeves: Phenolic or polyethylene.
PART 3 - EXECUTION

3.1 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance.

D. Install shutoff valve immediately upstream of each dielectric fitting.

E. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Section 221119 "Domestic Water Piping Specialties."

F. Install domestic water piping level with 0.25 percent slope downward toward drain and plumb.

G. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

H. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

I. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

J. Install piping to permit valve servicing.

K. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.

L. Install piping free of sags and bends.

M. Install fittings for changes in direction and branch connections.

N. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

O. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 221123 "Domestic Water Pumps."

P. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
Q. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.2 JOINT CONSTRUCTION

A. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

B. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

C. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

D. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools and procedure recommended by pressure-seal-fitting manufacturer. Leave insertion marks on pipe after assembly.

E. Push-on Joints for Copper Tubing: Clean end of tube. Measure insertion depth with manufacturer's depth gage. Join copper tube and push-on-joint fittings by inserting tube to measured depth.

F. Joint Construction for Grooved-End Copper Tubing: Make joints according to AWWA C606. Roll groove ends of tubes. Lubricate and install gasket over ends of tubes or tube and fitting. Install coupling housing sections over gasket with keys seated in tubing grooves. Install and tighten housing bolts.

G. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

H. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.3 TRANSITION FITTING INSTALLATION

A. Install transition couplings at joints of dissimilar piping.

B. Transition Fittings in Underground Domestic Water Piping:
1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
2. Fittings for NPS 2 and Larger: Sleeve-type coupling.

C. Transition Fittings in Aboveground Domestic Water Piping NPS 2 and Smaller: Plastic-to-metal transition fittings or unions.

3.4 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples.
C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flange kits.

3.5 INSTALLATION OF HANGERS AND SUPPORTS

A. Comply with requirements for hangers, supports, and anchor devices in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
 1. Vertical Piping: MSS Type 8 or 42, clamps.
 2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 4. Base of Vertical Piping: MSS Type 52, spring hangers.
B. Install hangers for copper tubing and piping, with maximum horizontal spacing and minimum rod diameters, to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.
C. Support horizontal piping within 12 inches of each fitting.
D. Support vertical runs of copper tubing and piping to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.
B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:

1. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
2. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
3. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.7 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Piping Inspections:
 a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 1) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:
 a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.9 ADJUSTING

A. Perform the following adjustments before operation:
 1. Open shutoff valves to fully open position.
 2. Open throttling valves to proper setting.
 3. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 b. Adjust calibrated balancing valves to flows indicated.

4. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
5. Remove filter cartridges (electric water coolers) from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
6. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 CLEANING

A. Clean and disinfect potable domestic water piping as follows:
 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
d. Repeat procedures if biological examination shows contamination.
e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.

C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.11 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Under-building-slab, domestic water, building-service piping, NPS 3 and smaller, shall be the following:

1. Soft copper tube, ASTM B 88, Type K; wrought-copper, solder-joint fittings and joints.

D. Under-building-slab, domestic water, building-service piping, NPS 4 to NPS 8 and larger, shall be the following:

1. Soft copper tube, ASTM B 88, Type K; wrought-copper, solder-joint fittings and joints.

E. Aboveground domestic water piping, NPS 2 and smaller, shall be one of the following:

1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper, solder-joint fittings; and soldered joints.

2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.

F. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be the following:

1. Hard copper tube, ASTM B 88, Type L; cast- or wrought-copper, solder-joint fittings; and soldered joints.

3.12 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:

1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION 221116
SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Vacuum breakers.
 2. Automatic water shutoff valves.
 4. Temperature-actuated, water mixing valves.
 5. Drain valves.
 7. Air vents.
 8. Trap-seal barrier type seal.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES
 A. Potable-water piping and components shall comply with NSF 61 and NSF 14.
 B. Comply with NSF 372 for low lead.
2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

A. Hose-Connection Vacuum Breakers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. Cash Acme, A Division of Reliance Worldwide Corporation.
 c. WATTS.
 d. Zurn Industries, LLC.

5. Finish: Chrome or nickel plated.

2.4 BALANCING VALVES

A. Memory-Stop Balancing Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. Hammond Valve.
 c. Jenkins Valves; a Crane brand.
 d. NIBCO INC.

2. Standard: MSS SP-110 for two-piece, copper-alloy ball valves.
3. Pressure Rating: 400-psig minimum CWP.
4. Size: NPS 2 or smaller.
5. Body: Copper alloy.
6. Port: Standard or full port.
7. Ball: Chrome-plated brass.
8. Seats and Seals: Replaceable.
9. End Connections: Solder joint or threaded.

2.5 TEMPERATURE-ACTUATED, WATER MIXING VALVES

A. Primary, Thermostatic, Water Mixing Valves:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. Lawler Manufacturing Company, Inc.
 c. Leonard Valve Company.
 d. POWERS; A WATTS Brand.

3. Pressure Rating: 125 psig minimum unless otherwise indicated.
4. Type: Exposed-mounted, thermostatically controlled, water mixing valve.
5. Material: Bronze body with corrosion-resistant interior components.
6. Connections: Threaded union inlets and outlet.
7. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
8. Tempered-Water Setting: 120 deg F.
10. Valve Finish: Rough bronze.
11. Piping Finish: Copper.
12. Cabinet: Factory fabricated, stainless steel, for surface mounting and with hinged, stainless-steel door.

2.6 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:
 2. Pressure Rating: 400-psig minimum CWP.
 4. Body: Copper alloy.
 5. Ball: Chrome-plated brass.
 8. Inlet: Threaded or solder joint.

2.7 WATER-HAMMER ARRESTERS

A. Water-Hammer Arresters:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. Sioux Chief Manufacturing Company, Inc.
 d. WATTS.
3. Type: Copper tube with piston.
4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.8 TRAP-SEAL DEVICE

A. Trap-Seal Barrier Device:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MiFab.
 c. Zurn Industries, LLC.
3. Inlet and Outlet Connections: match pipe.

2.9 FLEXIBLE CONNECTORS

A. Bronze-Hose Flexible Connectors: Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded copper pipe or plain-end copper tube.
 3. End Connections NPS 2-1/2 and Larger: Flanged copper alloy.

B. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Backflow Preventers: Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 1. Locate backflow preventers in same room as connected equipment or system.
 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe
3. Do not install bypass piping around backflow preventers.

B. Automatic Water Shutoff Valves: Test for signal strength before valve installation. Install automatic shutoff valve downstream from main domestic water shutoff valve and downstream from fire sprinkler system supply. Install valve controller is an accessible location with sensors in areas where water is likely to accumulate.

C. Balancing Valves: Install in locations where they can easily be adjusted.

D. Temperature-Actuated, Water Mixing Valves: Install with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 1. Install cabinet-type units recessed in or surface mounted on wall as specified.

E. Water-Hammer Arresters: Install in water piping according to PDI-WH 201.

F. Trap-Seal Barrier Device: Install fitting in pipe.

3.2 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping specialties adjacent to equipment and machines, allow space for service and maintenance.

C. Comply with requirements for grounding equipment in Section 260526 "Grounding and Bonding for Electrical Systems."

3.3 IDENTIFICATION

A. Labels for Equipment: Install equipment nameplate or sign on or near each of the following:
 1. Automatic water shutoff valves.
 2. Calibrated balancing valves.
 3. Thermostatic, water mixing valves.

B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.
B. Prepare test and inspection reports.

3.5 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow set points of balancing valves.

C. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION 221119
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Horizontally mounted, in-line, close-coupled centrifugal pumps.
 2. Vertically mounted, in-line, close-coupled centrifugal pumps.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product. Include construction materials, rated capacities, certified performance curves with operating points plotted on curves, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For inline, domestic-water pumps to include in operation and maintenance manuals.

1.5 DELIVERY, STORAGE, AND HANDLING
 A. Retain shipping flange protective covers and protective coatings during storage.
 B. Protect bearings and couplings against damage.
 C. Comply with pump manufacturer’s written instructions for handling.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. UL Compliance: UL 778 for motor-operated water pumps.
2.2 HORIZONTALLY MOUNTED, IN-LINE, CLOSE-COUPLED CENTRIFUGAL PUMPS

A. Description: Factory-assembled and -tested, in-line, single-stage, close-coupled, overhung-impeller centrifugal pumps designed for installation with pump and motor shaft mounted horizontal.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Bell & Gossett; a Xylem brand.
4. TACO Comfort Solutions, Inc.

C. Capacities and Characteristics:

2. Total Dynamic Head: 10 feet maximum.
3. Inlet and Outlet Size: NPS 1” maximum.
4. Pump Control: Timer.
5. Electrical Characteristics:
 a. Volts: 120 V.
 c. Hertz: 60 Hz.

D. Pump Construction:

1. Casing:
 a. Built to permit servicing of pump internals without disturbing the casing or the suction and discharge piping.
 b. Gauge port tappings at suction and discharge nozzles.
2. Impeller: Bronze or brass, statically and dynamically balanced, closed, and keyed to shaft.
3. Shaft and Shaft Sleeve: Steel shaft with deflector, with copper-alloy shaft sleeve. Include water slinger on shaft between motor and seal.
4. Shaft Coupling: Flexible, capable of absorbing torsional vibration and shaft misalignment.
5. Seal: Mechanical, with carbon-steel rotating ring, stainless-steel spring, ceramic seat, and rubber bellows and gasket.
6. Bearings: Grease-lubricated or permanently lubricated ball type.
8. Continuous Operating Temperature: 225 deg F.
E. Motor: Single speed, with grease-lubricated ball bearings; resiliently or rigidly mounted to pump casing.

2.3 VERTICALLY MOUNTED, IN-LINE, CLOSE-COUPLED CENTRIFUGAL PUMPS

A. Description: Factory-assembled and -tested, in-line, single-stage, close-coupled, overhung-impeller centrifugal pumps designed for installation with pump and motor shaft mounted vertical.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Bell & Gossett; a Xylem brand.
2. Grundfos Pumps Corp.
5. TACO Comfort Solutions, Inc.

C. Capacities and Characteristics:

2. Total Dynamic Head: 10 feet maximum.
4. Impeller Material: ASTM B584 cast bronze or stainless steel.
5. Minimum Operating Pressure: 175 psig.
6. Maximum Continuous Operating Temperature: 225 deg F.
7. Inlet and Outlet Size: NPS 1 maximum.
8. Pump Control: Timer.
9. Electrical Characteristics:
 a. Volts: 120 V.
 c. Hertz: 60 Hz.

D. Pump Construction:

1. Impeller: Bronze brass or stainless steel, statically and dynamically balanced, closed, and keyed to shaft.
2. Shaft and Shaft Sleeve: Steel or stainless-steel shaft, with copper-alloy shaft sleeve.
3. Shaft Coupling: Flexible or rigid type if pump is provided with coupling.
4. Seal: Mechanical, with carbon-steel rotating ring, stainless-steel spring, ceramic seat, and rubber bellows and gasket. Include water slinger on shaft between motor and seal.
5. Bearings: Oil-lubricated; bronze-journal or ball type.
7. Continuous Operating Temperature: 225 deg F.

E. Motor: Single speed, with grease-lubricated ball bearings; rigidly mounted to pump casing.
2.4 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.5 CONTROLS

A. Timers: Electric, for control of hot-water circulation pump.

1. Type: Programmable, seven-day clock with manual override on-off switch.
2. Enclosure: NEMA 250, Type 1, suitable for wall mounting.
3. Operation of Pump: On or off.
4. Transformer: Provide if required.
5. Power Requirement: 24 V ac.
6. Programmable Sequence of Operation: Up to two on-off cycles each day for seven days.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for domestic-water-piping system to verify actual locations of piping connections before pump installation.

3.2 PUMP INSTALLATION

A. Comply with HI 1.4.

B. Mount pumps in orientation complying with manufacturer's written instructions.

C. Pump Mounting:

1. Install vertically mounted, in-line, close-coupled centrifugal pumps with cast-iron base mounted on concrete base. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete."
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
D. Install continuous-thread hanger rods and vibration isolation of size required to support pump weight.
 1. Fabricate brackets or supports as required.
 2. Comply with requirements for hangers and supports specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

E. Install timers in accessible area with water heater.

3.3 PIPING CONNECTIONS

A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to inline, domestic-water pumps, allow space for service and maintenance.

C. Connect domestic-water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.
 1. Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:
 a. Horizontally mounted, in-line, close-coupled centrifugal pumps.
 b. Vertically mounted, in-line, close-coupled centrifugal pumps.
 c. Comply with requirements for flexible connectors specified in Section 221116 "Domestic Water Piping."

D. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for valves specified in the following:
 1. Section 220523.12 "Ball Valves for Plumbing Piping."
 2. Section 220523.14 "Check Valves for Plumbing Piping."
 3. Install pressure gauge at suction of each pump and pressure gauge at discharge of each pump. Install at integral pressure-gauge tappings where provided or install pressure-gauge connectors in suction and discharge piping around pumps. Comply with requirements for pressure gauges and snubbers specified in Section 220519 "Meters and Gages for Plumbing Piping."

3.4 CONTROL CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.

B. Connect control wiring between temperature controllers and devices.
3.5 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment" for identification of pumps.

3.6 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

C. Tests and Inspections:

 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Inline, domestic-water pump will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.7 STARTUP SERVICE

A. Perform startup service.

 1. Complete installation and startup checks according to manufacturer's written instructions.
 2. Check piping connections for tightness.
 3. Clean strainers on suction piping.
 4. Set timer for automatic starting and stopping operation of pumps.
 5. Perform the following startup checks for each pump before starting:

 a. Verify bearing lubrication.
 b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 c. Verify that pump is rotating in the correct direction.

 6. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
 7. Start motor.
 8. Open discharge valve slowly.
3.8 ADJUSTING

A. Adjust inline, domestic-water pumps to function smoothly, and lubricate as recommended by manufacturer.

B. Adjust initial temperature set points.

C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION 221123.21
PART 1 – GENERAL

1.01 SUMMARY

A. This Section includes gravity-flow, non-pressure sanitary sewerage outside the building, with the following components:
 1. Cleanouts.

1.02 PERFORMANCE REQUIREMENTS

A. Gravity-Flow, Non-pressure, Drainage-Piping Pressure Rating: 10-foot head of water.

B. All methods, materials and workmanship shall be in conformance with Philadelphia Water Department Standards.

1.03 SUBMITTALS

A. Product Data: Submit Manufacturers technical product data and installation instructions for sanitary sewerage system materials and product.

B. Coordination Drawings: Submit shop drawing for sanitary sewer system lateral connections from building to public connection, showing piping materials, size locations, and inverts in relation to existing and proposed features. Show manholes and other structures, pipe sizes, locations, and elevations. Include details of underground structures, connections, traps, fresh air inlet and manholes.

C. Field quality-control test reports.

D. Record Drawings: At project closeout submit record drawings of installed sanitary sewer and products.

1.04 DELIVERY, STORAGE, AND HANDLING

A. Do not store plastic structures, pipe, and fittings in direct sunlight.

B. Protect pipe, pipe fittings, and seals from dirt and damage.

1.05 PROJECT CONDITIONS

A. Site Information: Perform site survey, research public utility records, and verify existing utility locations.
PART 2 – PRODUCTS

2.01 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.

2.02 PIPING MATERIALS

A. Refer to Part 3 "Piping Applications" Article for applications of pipe, fitting and joining materials.

2.03 DUCTILE-IRON SEWER PIPE: ASTM A 746, FOR PUSH-ON JOINTS

A. Standard-Pattern, Ductile-Iron Fittings: AWWA C110, ductile or gray iron, for push-on joints.

2.04 SPECIAL PIPE COUPLINGS AND FITTINGS

A. Ductile-Iron, Flexible Expansion Joints: Compound fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections, rated for 250-psig minimum working pressure and for offset and expansion indicated. Include PE film, pipe encasement.

2.05 CLEANOUTS

A. Gray-Iron Cleanouts: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.

1. Available Manufacturers:

 b. MIFAB Manufacturing Inc.
 d. Wade Div.; Tyler Pipe.
 e. Watts Industries, Inc.
 g. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.

2. Top-Loading Classification: Heavy duty.
3. Sewer Pipe Fitting and Riser to Cleanout: ASTM A 74, Service class, cast-iron soil pipe and fittings.

PART 3 – EXECUTION

3.01 PIPING APPLICATIONS

A. General: Include watertight joints.

B. Pipe couplings and fittings with pressure ratings at least equal to piping rating may be used in applications below, unless otherwise indicated.

1. Use non-pressure-type flexible couplings where required to join gravity-flow, non-pressure sewer piping, unless otherwise indicated.

 a. Shielded flexible couplings for same or minor difference OD pipes.
 b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
 c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

C. Gravity-Flow, Non-pressure Sewer Piping: Use any of the following pipe materials for each size range:

 1. NPS 6 and NPS 8: Ductile-iron sewer pipe; standard-pattern, ductile-iron fittings; gaskets; and gasketed joints.
 2. NPS 8 and NPS 12: Ductile-iron sewer pipe; standard-pattern, ductile-iron fittings: gaskets; and gasketed joints.

3.02 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground sanitary sewerage piping. Location and arrangement of piping layout take design considerations into account. Install piping as indicated, to extent practical.

B. Where specific installation is not indicated, follow piping manufacturer's written instructions.

C. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.

D. Install manholes for changes in direction, unless fittings are indicated. Use fittings for branch connections, unless direct tap into existing sewer is indicated.

E. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
F. Install gravity-flow, non-pressure, drainage piping according to the following:

1. Install piping pitched down in direction of flow, at minimum slope of 2 percent, unless otherwise indicated.
2. Install piping NPS 6 and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place-concrete supports or anchors.
3. Install piping with 36-inch minimum cover.

G. Install ductile-iron piping according to AWWA C600.

H. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

3.03 PIPE JOINT CONSTRUCTION

A. Basic piping joint construction is specified in Division 2. Where specific joint construction is not indicated, follow piping manufacturer's written instructions.

B. Join gravity-flow, nonpressure, drainage piping according to the following:

 a. Install PE film, pipe encasement over ductile-iron sewer pipe and ductile-iron fittings according to ASTM A 674 or AWWA C105.

C. Ductile-Iron Sewer Pipe with Ductile-Iron Fittings: According to AWWA C600.

 1. Join dissimilar pipe materials with non-pressure-type, flexible couplings.
 2. Install PE film, pipe encasement over ductile-iron sewer pipe and ductile-iron fittings according to ASTM A 674 or AWWA C105.

3.04 CLEANOUT INSTALLATION

A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts and cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.

 1. Use heavy-duty, top-loading classification cleanouts.

B. Set cleanout frames and covers in earth in cast-in-place-concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding grade of landscape areas and flush with hardscapes.

3.05 CONNECTIONS

A. Connect non-pressure, gravity-flow drainage piping to building's sanitary building drains.
B. Make connections to existing piping and underground manholes.

1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe; install wye fitting into existing piping; and encase entire wye fitting, plus 6-inch overlap, with not less than 6 inches of concrete with 28-day compressive strength of 4000 psi.

3.06 FIELD QUALITY CONTROL

A. Clear interior of piping and structures of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed.

1. Place plug in end of incomplete piping at end of day and when work stops.
2. Flush piping between manholes and other structures to remove collected debris, if required by authorities having jurisdiction.

B. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.

1. Submit separate report for each system inspection.
2. Defects requiring correction include the following:
 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 c. Crushed, broken, cracked, or otherwise damaged piping.
 d. Infiltration: Water leakage into piping.
 e. Exfiltration: Water leakage from or around piping.
3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
4. Re-inspect and repeat procedure until results are satisfactory.

C. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.

1. Do not enclose, cover, or put into service before inspection and approval.
2. Test completed piping systems according to requirements of authorities having jurisdiction.
3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
4. Submit separate report for each test.
5. Hydrostatic Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:

a. Allowable leakage is maximum of 50 gal./inch of nominal pipe size per mile of pipe, during 24-hour period.

b. Close openings in system and fill with water.

c. Purge air and refill with water.

d. Disconnect water supply.

e. Test and inspect joints for leaks.

f. Option: Test ductile-iron piping according to AWWA C600, "Hydrostatic Testing" Section. Use test pressure of at least 10 psig.

6. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction, UNI-B-6, and the following:

a. Option: Ductile-Iron Piping: Test according to AWWA C600, Section “Hydraulic Testing.”

D. Leaks and loss in test pressure constitute defects that must be repaired.

E. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

END OF SECTION 22 13 13
SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 2. Hubless, cast-iron soil pipe and fittings.
 3. Copper tube and fittings.
 4. Specialty pipe fittings.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS
 A. Field quality-control reports and testing to be provided for project close out.

1.5 FIELD CONDITIONS
 A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 1. Notify Owner no fewer than two days in advance of proposed interruption of sanitary waste service.
 2. Do not proceed with interruption of sanitary waste service without Owner's written permission.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

2.2 PIPING MATERIALS

A. Piping materials shall bear label, stamp, or other markings of specified testing agency.

B. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. NewAge Casting.
3. Tyler Pipe; a part of McWane family of companies.

B. Pipe and Fittings: ASTM A 74, Service class(es).

C. Gaskets: ASTM C 564, rubber.

D. Caulking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.4 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. NewAge Casting.
3. Tyler Pipe; a part of McWane family of companies.

B. Pipe and Fittings: ASTM A 888 or CISPI 301.

C. CISPI, Hubless-Piping Couplings:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
c. Fernco Inc.
d. Ideal Clamp Products, Inc.
e. NewAge Casting.
f. Tyler Pipe; a subsidiary of McWane Inc.

3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.5 COPPER TUBE AND FITTINGS

A. Copper Type DWV Tube: ASTM B 306, drainage tube, drawn temper.

B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.

C. Hard Copper Tube: ASTM B 88, Type L and Type M, water tube, drawn temper.

D. Soft Copper Tube: ASTM B 88, Type L, water tube, annealed temper.

E. Copper Pressure Fittings:
 2. Copper Unions: MSS SP-123, copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

F. Copper Flanges: ASME B16.24, Class 150, cast copper with solder-joint end.
 1. Flange Gasket Materials: ASME B16.21, full-face, flat, nonmetallic, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

G. Solder: ASTM B 32, lead free with ASTM B 813, water-flushable flux.

2.6 SPECIALTY PIPE FITTINGS

A. Transition Couplings:
 1. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 2. Unshielded, Nonpressure Transition Couplings:

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2) Fernco Inc.
3) Froet Industries LLC.

c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
d. End Connections: Same size as and compatible with pipes to be joined.
e. Sleeve Materials:
 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

B. Dielectric Fittings:

1. Dielectric Unions:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Capitol Manufacturing Company.
 2) Central Plastics Company.
 3) WATTS.
 4) Zurn Industries, LLC.
 b. Description:
 1) Standard: ASSE 1079.
 2) Pressure Rating: 125 psig minimum at 180 deg F.
 3) End Connections: Solder-joint copper alloy and threaded ferrous.

2. Dielectric Flanges:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Capitol Manufacturing Company.
 2) Central Plastics Company.
 3) WATTS.
 4) Zurn Industries, LLC.
 b. Description:
 1) Standard: ASSE 1079.
 2) Factory-fabricated, bolted, companion-flange assembly.
 3) Pressure Rating: 125 psig minimum at 180 deg F.
4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

PART 3 - EXECUTION

3.1 EARTH MOVING
 A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION
 A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems.
 1. Install piping as indicated unless deviations to layout are approved on coordination drawings.
 B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
 C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
 D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
 E. Install piping to permit valve servicing.
 F. Install piping at indicated slopes.
 G. Install piping free of sags and bends.
 H. Install fittings for changes in direction and branch connections.
 I. Install piping to allow application of insulation.
 J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends.
 1. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical.
 2. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe.
 a. Straight tees, elbows, and crosses may be used on vent lines.
 3. Do not change direction of flow more than 90 degrees.
4. Use proper size of standard increasers and reducers if pipes of different sizes are connected.
 a. Reducing size of waste piping in direction of flow is prohibited.

K. Lay buried building waste piping beginning at low point of each system.
 1. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream.
 2. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
 3. Maintain swab in piping and pull past each joint as completed.

L. Install soil and waste and vent piping at the following minimum slopes unless otherwise indicated:
 1. Building Sanitary Waste: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.

N. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."

O. Install engineered soil and waste and vent piping systems as follows:
 3. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.

P. Plumbing Specialties:
 1. Install backwater valves in sanitary waster gravity-flow piping.
 a. Comply with requirements for backwater valves specified in Section 221319 "Sanitary Waste Piping Specialties."
 2. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary waste gravity-flow piping.
 a. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."
 3. Install drains in sanitary waste gravity-flow piping.
a. Comply with requirements for drains specified in Section 221319 "Sanitary Waste Piping Specialties."

Q. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

R. Install sleeves for piping penetrations of walls, ceilings, and floors.
 1. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

S. Install sleeve seals for piping penetrations of concrete walls and slabs.
 1. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

T. Install escutcheons for piping penetrations of walls, ceilings, and floors.
 1. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

C. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1.
 1. Cut threads full and clean using sharp dies.
 2. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 a. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 b. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
 c. Do not use pipe sections that have cracked or open welds.

E. Join copper tube and fittings with soldered joints according to ASTM B 828. Use ASTM B 813, water-flushable, lead-free flux and ASTM B 32, lead-free-alloy solder.
3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:

1. Install transition couplings at joints of piping with small differences in ODs.

B. Dielectric Fittings:

1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.
4. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 VALVE INSTALLATION

A. Comply with requirements in Section 220523.12 "Ball Valves for Plumbing Piping" and "Section 220523.14 "Check Valves for Plumbing Piping," for general-duty valve installation requirements.

B. Backwater Valves: Install backwater valves in piping subject to backflow.

1. Horizontal Piping: Horizontal backwater valves. Use normally closed type unless otherwise indicated.
2. Floor Drains: Drain outlet backwater valves unless drain has integral backwater valve.
3. Install backwater valves in accessible locations.
4. Comply with requirements for backwater valve specified in Section 221319 "Sanitary Waste Piping Specialties."

3.6 INSTALLATION OF HANGERS AND SUPPORTS

A. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
3. Vertical Piping: MSS Type 8 or Type 42, clamps.
4. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
5. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
6. Base of Vertical Piping: MSS Type 52, spring hangers.
B. Install hangers for cast-iron and copper soil piping, with maximum horizontal spacing and minimum rod diameters, to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

C. Support horizontal piping and tubing within 12 inches of each fitting and coupling.

D. Support vertical runs of cast iron and copper soil piping to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.7 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect waste and vent piping to the following:
 1. Plumbing Fixtures: Connect waste piping in sizes indicated, but not smaller than required by plumbing code.
 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 3. Plumbing Specialties: Connect waste and vent piping in sizes indicated, but not smaller than required by plumbing code.
 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 5. Install horizontal backwater valves with cleanout cover flush with floor.
 6. Comply with requirements for backwater valves cleanouts and drains specified in Section 221319 "Sanitary Waste Piping Specialties."
 7. Equipment: Connect waste piping as indicated.
 a. Provide shutoff valve if indicated and union for each connection.
 b. Use flanges instead of unions for connections NPS 2-1/2 and larger.

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.

E. Make connections according to the following unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.8 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping.
3.9 FIELD QUALITY CONTROL

A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.

1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.

B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.

C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

D. Test sanitary waste and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired.
 a. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.

2. Leave uncovered and unconcealed new, altered, extended, or replaced waste and vent piping until it has been tested and approved.
 a. Expose work that was covered or concealed before it was tested.

3. Roughing-in Plumbing Test Procedure: Test waste and vent piping except outside leaders on completion of roughing-in.
 a. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water.
 b. From 15 minutes before inspection starts to completion of inspection, water level must not drop.
 c. Inspect joints for leaks.

4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight.
 a. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg.
 b. Use U-tube or manometer inserted in trap of water closet to measure this pressure.
 c. Air pressure must remain constant without introducing additional air throughout period of inspection.
d. Inspect plumbing fixture connections for gas and water leaks.

5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
6. Prepare reports for tests and required corrective action.

3.10 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect sanitary waste and vent piping during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

D. Repair damage to adjacent materials caused by waste and vent piping installation.

3.11 PIPING SCHEDULE

A. Aboveground, soil and waste piping NPS 4 and smaller shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings.
 2. Hubless, cast-iron soil pipe and fittings and hubless, single-stack fittings; CISPI hubless-piping couplings; and coupled joints.
 3. Copper Type DWV tube, copper drainage fittings, and soldered joints.

B. Aboveground, soil and waste piping NPS 5 and larger shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless, cast-iron soil pipe and fittings and hubless, single-stack fittings; CISPI hubless-piping couplings; and coupled joints.

C. Aboveground, vent piping NPS 4 and smaller shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 2. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
 3. Copper Type DWV tube, copper drainage fittings, and soldered joints.
 a. Option for Vent Piping, NPS 2-1/2 and NPS 3-1/2: Hard copper tube, Type M; copper pressure fittings; and soldered joints.

D. Aboveground, vent piping NPS 5 and larger shall be any of the following:
 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
2. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.

E. Underground, soil, waste, and vent piping NPS 4 and smaller shall be the following:
 1. Service class, cast-iron soil piping; materials; and joints per local code.

F. Underground, soil and waste piping NPS 5 and larger shall be the following:
 1. Service class, cast-iron soil piping; materials; and joints per local code.

END OF SECTION 221316
SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Backwater valves.
 2. Cleanouts.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTIONS
 A. Sanitary waste piping specialties shall bear label, stamp, or other markings of specified testing
 agency.

2.2 BACKWATER VALVES
 A. Horizontal, Cast-Iron Backwater Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the
 following:
 b. Josam Company.
 c. WATTS.
 d. Zurn Industries, LLC.
 3. Size: Same as connected piping.
5. Cover: Cast iron with bolted or threaded access check valve.
6. End Connections: Hub and spigot or hubless.
7. Type Check Valve: Removable, bronze, swing check, factory assembled or field modified to hang open for airflow unless subject to backflow condition.
8. Extension: ASTM A74, Service Class; full-size, cast-iron, soil-pipe extension to field-installed cleanout at floor; replaces backwater valve cover.

2.3 CLEANOUTS

A. Cast-Iron Exposed Floor Cleanouts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. WATTS.
 d. Zurn Industries, LLC.

2. Standard: ASME A112.36.2M for adjustable housing cleanout.
3. Size: Same as connected branch.
4. Type: Adjustable housing.
5. Body or Ferrule: Cast iron.
6. Clamping Device: Not required.
7. Closure: Brass plug with straight threads and gasket.
8. Adjustable Housing Material: Cast iron with threads, setscrews or other device.
10. Frame and Cover Shape: Round.
11. Top-Loading Classification:
 a. Extra Heavy for clean-outs in machine rooms or in warehouse.
 b. Medium Duty for areas of foot traffic.
12. Riser: ASTM A74, Service Class, cast-iron drainage pipe fitting and riser to cleanout.

B. Cast-Iron Wall Cleanouts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. WATTS.
 d. Zurn Industries, LLC.

2. Standard: ASME A112.36.2M. Include wall access.
3. Size: Same as connected drainage piping.
5. Closure Plug:
a. Brass.
b. Countersunk or raised head.
c. Drilled and threaded for cover attachment screw.
d. Size: Same as or not more than one size smaller than cleanout size.

6. Wall Access, Cover Plate: Round, flat, chrome-plated brass or stainless steel cover plate with screw.

7. Wall Access, Frame and Cover: Round, nickel-bronze, copper-alloy, or stainless steel wall-installation frame and cover.

2.4 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Open Drains:
 1. Description: Shop or field fabricate from ASTM A74, Service Class, hub-and-spigot, cast-iron soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C564 rubber gaskets.
 2. Size: Same as connected waste piping.

B. Floor-Drain, Barrier Trap- Seal Fittings:
 1. Description: Meets ASSE 1072.
 2. Size: Same as floor drain outlet.

C. Sleeve Flashing Device:
 1. Description: Manufactured, cast-iron fitting, with clamping device that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 1 inch above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
 2. Size: As required for close fit to riser or stack piping.

D. Stack Flashing Fittings:
 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
 2. Size: Same as connected stack vent or vent stack.

E. Vent Caps:
 1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
 2. Size: Same as connected stack vent or vent stack.

F. Frost-Resistant Vent Terminals:
 1. Description: Manufactured or shop-fabricated assembly constructed of copper, lead-coated copper, or galvanized steel.
2. Design: To provide 1-inch enclosed air space between outside of pipe and inside of flashing collar extension, with counterflushing.

G. Expansion Joints:

1. Standard: ASMEair
2. A112.6.4.
4. End Connections: Matching connected piping.
5. Size: Same as connected soil, waste, or vent piping.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install backwater valves in building drain piping.

1. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.

B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:

1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
2. Locate at each change in direction of piping greater than 45 degrees.
3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
4. Locate at base of each vertical soil and waste stack.

C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

E. Assemble open drain fittings and install with top of hub 1 inch above floor.

F. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.

1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
2. Size: Same as floor drain inlet.

G. Install sleeve and sleeve seals with each riser and stack passing through floors with waterproof membrane.
H. Install vent caps on each vent pipe passing through roof.

I. Install frost-resistant vent terminals on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.

J. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.

K. Install frost-proof vent caps on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.

L. Install wood-blocking reinforcement for wall-mounting-type specialties.

M. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 PIPING CONNECTIONS

A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment, to allow service and maintenance.

3.3 LABELING AND IDENTIFYING

A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.

1. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319
SECTION 221319.13 - SANITARY DRAINS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Floor drains.
2. Floor sinks.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 DRAIN ASSEMBLIES

A. Sanitary drains shall bear label, stamp, or other markings of specified testing agency.

2.2 FLOOR DRAINS

A. Cast-Iron Floor Drains:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. WATTS.
 d. Zurn Industries, LLC.

2. Standard: ASME A112.6.3.
5. Flange: Required.
6. Clamping Device: Not required.
7. Outlet: Bottom or Side.
10. Top or Strainer Material: Bronze or Nickel bronze.
12. Top Shape: Round.
13. Top Loading Classification:
 a. Extra Heavy Duty for mechanical room areas.
 b. Medium Duty for areas of foot traffic.
15. Trap Material: Cast iron.
17. Trap Features: Barrier Type Trap-seal.

2.3 FLOOR SINKS

A. Cast-Iron Floor Sinks:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Josam Company.
 c. Watts; a Watts Water Technologies company.
 d. Zurn Industries, LLC.

5. Flange: Required.
6. Clamping Device: Not required.
7. Outlet: Bottom, no-hub connection.
10. Internal Strainer: Dome.
12. Top Grate Material: Cast iron, hinged.
14. Top Shape: Square.
15. Top Loading Classification: No traffic.
16. Funnel: Not required.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.

1. Position floor drains for easy access and maintenance.
2. Set floor drains below elevation of surrounding finished floor to allow floor drainage.
3. Set with grates depressed according to the following drainage area radii:

 a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.

4. Install floor-drain flashing collar or flange, so no leakage occurs between drain and adjoining flooring.

 a. Maintain integrity of waterproof membranes where penetrated.

5. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

6. Set grates of drains flush with finished surface, unless otherwise indicated.

B. Install open drain fittings with top of hub 1 inch above floor.

3.2 CONNECTIONS

A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

3.3 LABELING AND IDENTIFYING

A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."
3.4 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319.13
SECTION 223300 - ELECTRIC, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Commercial, light-duty, storage, electric, domestic-water heaters.
 2. Domestic-water heater accessories.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.4 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For electric, domestic-water heaters to include emergency, operation, and maintenance manuals.

1.5 COORDINATION
A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.6 WARRANTY
A. Special Warranty: Manufacturer agrees to repair or replace components of electric, water heaters that fail in materials or workmanship within specified warranty period.
 1. Failures include, but are not limited to, the following:
 a. Structural failures including storage tank and supports.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.
 d. Commercial, Light-Duty, Storage, Electric, Domestic-Water Heaters:
 1) Storage Tank: Three years.
 2) Controls and Other Components: Two years.
 e. Expansion Tanks: Five years.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and use.

B. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1.

C. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 and NSF 372.

2.2 COMMERCIAL, ELECTRIC, DOMESTIC-WATER HEATERS

A. Commercial, Light-Duty, Storage, Electric, Domestic-Water Heaters:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. A. O. Smith Corporation.
 c. Lochinvar, LLC.
 d. State Industries.

2. Source Limitations: Obtain domestic-water heaters from single source from single manufacturer.

 b. Pressure Rating: 150 psig.
 c. Interior Finish: Comply with NSF 61 and NSF 372 barrier materials for potable-water tank linings, including extending lining material into tappings.

5. Factory-Installed, Storage-Tank Appurtenances:

 a. Anode Rod: Replaceable magnesium.
 b. Dip Tube: Required unless cold-water inlet is near bottom of tank.
 c. Drain Valve: Corrosion-resistant metal with hose-end connection.
 d. Insulation: Comply with ASHRAE/IES 90.1.
 e. Jacket: Steel with enameled finish or high-impact composite material.
 f. Heat-Trap Fittings: Inlet type in cold-water inlet and outlet type in hot-water outlet.
 g. Heating Elements: Electric, screw-in immersion type.
 h. Temperature Control: Adjustable thermostat.
 i. Safety Control: High-temperature-limit cutoff device or system.
 j. Relief Valve: ASME rated and stamped for combination temperature-and-pressure relief valves. Include relieving capacity at least as great as heat input, and include...
5. Special Requirements: NSF 5 construction with legs for off-floor installation.

B. Capacity and Characteristics:

1. Capacity: 40 gallons.
2. Recovery: 25 gph at 100 deg F temperature rise.
3. Temperature Setting: 125 deg F.
4. Heating Elements:
 a. Kilowatts Each Element: 6kW.
5. Electrical Characteristics:
 a. Volts: 480 V.
 b. Phases: Three.
 c. Hertz: 60 Hz.

2.3 DOMESTIC-WATER HEATER ACCESSORIES

A. Domestic-Water Expansion Tanks:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. A. O. Smith Corporation.
 b. AMTROL, Inc.
 c. Pentair Pump Group.
 d. State Industries.
 e. TACO Comfort Solutions, Inc.

2. Source Limitations: Obtain domestic-water expansion tanks from single source from single manufacturer.

3. Description: Steel pressure-rated tank constructed with welded joints and factory-installed, butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.

4. Construction:
 a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 b. Interior Finish: Comply with NSF 61 and NSF 372 barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Air-Charging Valve: Factory installed.

5. Capacity and Characteristics:
 a. Working-Pressure Rating: 100 psig.
c. Air Precharge Pressure: 40.

B. Drain Pans: Corrosion-resistant metal with raised edge. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads.

C. Piping-Type Heat Traps: Field-fabricated piping arrangement in accordance with ASHRAE/IES 90.1.

D. Heat-Trap Fittings: ASHRAE/IES 90.1.

E. Pressure-Reducing Valves: ASSE 1003 for water. Set at 25-psig-maximum outlet pressure unless otherwise indicated.

F. Combination Temperature-and-Pressure Relief Valves: ASME rated and stamped. Include relieving capacity at least as great as heat input, and include pressure setting less than working-pressure rating of domestic-water heater. Select relief valves with sensing element that extends into storage tank.

G. Pressure Relief Valves: ASME rated and stamped. Include pressure setting less than working-pressure rating of domestic-water heater.

I. Domestic-Water Heater Stands: Manufacturer's factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Include dimension that will support bottom of domestic-water heater a minimum of 18 inches above the floor.

J. Domestic-Water Heater Mounting Brackets: Manufacturer's factory-fabricated steel bracket for wall mounting, capable of supporting domestic-water heater and water.

2.4 SOURCE QUALITY CONTROL

A. Hydrostatically test commercial domestic-water heaters to minimum of one and one-half times pressure rating before shipment.

B. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.
PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

A. Commercial, Electric, Domestic-Water Heater Mounting: Install commercial, electric, domestic-water heaters on concrete base. Comply with requirements for concrete bases specified in Section 033000 "Cast-in-Place Concrete."

1. Exception: Omit concrete bases for commercial, electric, domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
2. Maintain manufacturer's recommended clearances.
3. Arrange units so controls and devices that require servicing are accessible.
4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
7. Install anchor bolts to elevations required for proper attachment to supported equipment.

B. Install electric, domestic-water heaters level and plumb, in accordance with layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.

1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping."

C. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend domestic-water heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

D. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for electric, domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 221119 "Domestic Water Piping Specialties."

E. Install pressure-reducing valve with integral bypass relief valve in electric, domestic-water booster-heater inlet piping and water hammer arrester in booster-heater outlet piping. Set pressure-reducing valve for outlet pressure of 25 psig. Comply with requirements for pressure-reducing valves and water hammer arresters specified in Section 221119 "Domestic Water Piping Specialties."

F. Install piping-type heat traps on inlet and outlet piping of electric, domestic-water heater storage tanks without integral or fitting-type heat traps.

G. Fill electric, domestic-water heaters with water.
H. Charge domestic-water expansion tanks with air to required system pressure.

I. Install dielectric fittings in all locations where piping of dissimilar metals is to be joined. The wetted surface of the dielectric fitting contacted by potable water shall contain less than 0.25 percent of lead by weight.

3.2 PIPING CONNECTIONS

A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to electric, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections with the assistance of a factory-authorized service representative.

E. Tests and Inspections:

1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
2. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

F. Electric, domestic-water heaters will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports.
3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain commercial, electric, domestic-water heaters. Training shall be a minimum of one hour(s).

END OF SECTION 223300
SECTION 224213.13 - COMMERCIAL WATER CLOSETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Water closets.
2. Flushometer valves.
3. Toilet seats.
4. Supports.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 WALL-MOUNTED WATER CLOSETS

A. Water Closets: Wall mounted, top spud, accessible.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Kohler Co.
 c. Sloan Valve Company.
 d. Zurn Industries, LLC.

2. Bowl:
b. Material: Vitreous china.
c. Type: Siphon jet.
d. Style: Flushometer valve.
e. Height: Standard.
f. Rim Contour: Elongated.
g. Water Consumption: 1.28 gal. per flush.
h. Spud Size and Location: NPS 1; top.

3. Flushometer Valve: refer to section 2.2, flushometer valves.
4. Toilet Seat: refer to section 2.3, toilet seats.

2.2 FLUSHOMETER VALVES

A. Lever-Handle, Flushometer Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Delany Products.
 b. Sloan Valve Company.
 c. Zurn Industries, LLC.

 4. Features: Include integral check stop and backflow-prevention device.
 5. Material: Brass body with corrosion-resistant components.
 7. Panel Finish: Chrome plated or stainless steel.
 9. Consumption: 1.28 gal. per flush.

2.3 TOILET SEATS

A. Toilet Seats:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Church Seats; Bemis Manufacturing Company.
 c. Zurn Industries, LLC.

4. Type: Commercial (Heavy duty).
5. Shape: Elongated rim, open front.
6. Hinge: Check.
8. Seat Cover: Not required.

2.4 SUPPORTS

A. Water Closet Carrier:

1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 a. JR Smith
 b. Watts
 c. Zurn Industries, LLC.

2. Standard: ASME A112.6.1M.
3. Description: Waste-fitting assembly, as required to match drainage piping material and arrangement with faceplates, couplings gaskets, and feet; bolts and hardware matching fixture.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before water-closet installation.

B. Examine walls and floors for suitable conditions where water closets will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Water-Closet Installation:

1. Install level and plumb according to roughing-in drawings.
2. Install accessible, wall-mounted water closets at mounting height for handicapped/elderly, according to ICC/ANSI A117.1.

B. Support Installation:

1. Use carrier supports with waste-fitting assembly and seal.
2. Install wall-mounted, back-outlet water-closet supports with waste-fitting assembly and waste-fitting seals; and affix to building substrate.
C. Flushometer-Valve Installation:
 1. Install flushometer-valve, water-supply fitting on each supply to each water closet.
 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
 3. Install lever-handle flushometer valves for accessible water closets with handle mounted on open side of water closet.
 4. Install actuators in locations that are easy for people with disabilities to reach.

D. Install toilet seats on water closets.

E. Wall Flange and Escutcheon Installation:
 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
 2. Install deep-pattern escutcheons if required to conceal protruding fittings.
 3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

F. Joint Sealing:
 1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
 2. Match sealant color to water-closet color.

3.3 CONNECTIONS
 A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.
 B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
 C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."
 D. Where installing piping adjacent to water closets, allow space for service and maintenance.

3.4 ADJUSTING
 A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.
 B. Adjust water pressure at flushometer valves to produce proper flow.

3.5 CLEANING AND PROTECTION
 A. Clean water closets and fittings with manufacturers' recommended cleaning methods and materials.
B. Install protective covering for installed water closets and fittings.

C. Do not allow use of water closets for temporary facilities unless approved in writing by Owner.

END OF SECTION 224213.13
SECTION 224213.16 - COMMERCIAL URINALS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Urinals.
2. Flushometer valves.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 WALL-HUNG URINALS

A. Urinals: Wall hung, back outlet, siphon jet, accessible.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Kohler Co.
 c. Zurn Industries, LLC.

2. Fixture:

 b. Material: Vitreous china.
c. Type: Siphon jet with extended shields.
d. Strainer or Trapway: Manufacturer's standard strainer with integral trap.
e. Water Consumption: Low.
f. Spud Size and Location: NPS 3/4; top.
g. Outlet Size and Location: NPS 2; back.
h. Color: White.

3. Flushometer Valve: refer to flushometer valve schedule.
4. Waste Fitting:
 b. Size: NPS 2.

5. Support: Type I Urinal Carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture.

2.2 URINAL FLUSHOMETER VALVES

A. Lever-Handle, Flushometer Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Delany Products.
 b. Sloan Valve Company.
 c. Zurn Industries, LLC.
 4. Features: Include integral check stop and backflow-prevention device.
 5. Material: Brass body with corrosion-resistant components.
 7. Panel Finish: Chrome plated or stainless steel.
 9. Consumption: 0.5 gal. per flush.

2.3 SUPPORTS

A. Urinal Carrier:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. WATTS.
d. Zurn Industries, LLC.

2. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before urinal installation.

B. Examine walls and floors for suitable conditions where urinals will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Urinal Installation:

1. Install urinals level and plumb according to roughing-in drawings.
2. Install wall-hung, back-outlet urinals onto waste fitting seals and attached to supports.
3. Install accessible, wall-mounted urinals at mounting height for the handicapped/elderly, according to ICC/ANSI A117.1.

B. Support Installation:

1. Install supports, affixed to building substrate, for wall-hung urinals.
2. Use off-floor carriers with waste fitting and seal for back-outlet urinals.

C. Flushometer-Valve Installation:

1. Install flushometer-valve water-supply fitting on each supply to each urinal.
2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
3. Install lever-handle flushometer valves for accessible urinals with handle mounted on open side of compartment.

D. Wall Flange and Escutcheon Installation:

1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations.
2. Install deep-pattern escutcheons if required to conceal protruding fittings.
3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

E. Joint Sealing:

1. Seal joints between urinals and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
2. Match sealant color to urinal color.

3.3 CONNECTIONS
 A. Connect urinals with water supplies and soil, waste, and vent piping. Use size fittings required to match urinals.
 B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
 C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."
 D. Where installing piping adjacent to urinals, allow space for service and maintenance.

3.4 ADJUSTING
 A. Operate and adjust urinals and controls. Replace damaged and malfunctioning urinals, fittings, and controls.
 B. Adjust water pressure at flushometer valves to produce proper flow.

3.5 CLEANING AND PROTECTION
 A. Clean urinals and fittings with manufacturers' recommended cleaning methods and materials.
 B. Install protective covering for installed urinals and fittings.
 C. Do not allow use of urinals for temporary facilities unless approved in writing by Owner.

END OF SECTION 224213.16
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

 1. Lavatories.
 2. Faucets.
 5. Supports.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For faucets to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 VITREOUS-CHINA, COUNTER-MOUNTED LAVATORIES

A. Lavatory: Oval, self-rimming, vitreous china, counter mounted.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the
 following:

 b. Kohler Co.
 c. Zurn Industries, LLC.

 2. Fixture:

b. Type: Self-rimming for above-counter mounting.
c. Nominal Size: Oval, 19 by 17 inches.
d. Faucet-Hole Punching: One hole.
e. Faucet-Hole Location: Top.
g. Mounting Material: Sealant.

3. Faucet: refer to faucet schedule.

2.2 VITREOUS-CHINA, WALL-MOUNTED LAVATORIES

A. Lavatory: Vitreous china, wall mounted, with back.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Kohler Co.
 c. Zurn Industries, LLC.

2. Fixture:

 b. Type: For wall hanging.
 c. Nominal Size: Oval, 19 by 16 inches minimum.
 d. Faucet-Hole Punching: One hole.
 e. Faucet-Hole Location: Top.
 g. Mounting Material: Chair carrier.

3. Faucet: refer to faucet schedule.

4. Support: Type II, concealed-arm lavatory carrier with escutcheons.

5. Lavatory Mounting Height: Handicapped/elderly according to ICC A117.1.

2.3 SOLID-BRASS, MANUALLY OPERATED FAUCETS

A. NSF Standard: Comply with NSF 372 for faucet materials that will be in contact with potable water.

B. Lavatory Faucets: Manual-type, single-control mixing, commercial, solid-brass valve.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 b. Chicago Faucets; Geberit Company.
 c. Kohler Co.
 d. Zurn Industries, LLC.
3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.
7. Maximum Flow Rate: 0.5 gpm.
8. Mounting Type: Deck, exposed.
10. Spout: Rigid type.
12. Drain: Not part of faucet, grid drain.

2.4 SUPPLY FITTINGS

A. NSF Standard: Comply with NSF 372 for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.

C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.

D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. Operation: Loose key.

F. Risers:
 2. Chrome-plated, soft-copper flexible tube riser.

2.5 WASTE FITTINGS

A. Standard: ASME A112.18.2/CSA B125.2.

B. Drain: Grid type with NPS 1-1/4 offset and straight tailpiece.

C. Trap:
 2. Material: Chrome-plated, two-piece, cast-brass trap and ground-joint swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated, brass or steel wall flange.
 3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch-thick stainless-steel tube to wall; and stainless-steel wall flange.
2.6 SUPPORTS

A. Lavatory Carrier:
 1. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before lavatory installation.

B. Examine counters and walls for suitable conditions where lavatories will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install lavatories level and plumb according to roughing-in drawings.

B. Install supports, affixed to building substrate, for wall-mounted lavatories.

C. Install accessible wall-mounted lavatories at handicapped/elderly mounting height for people with disabilities or the elderly, according to ICC/ANSI A117.1.

D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

E. Seal joints between lavatories, counters, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color.

F. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."
3.4 ADJUSTING

A. Operate and adjust lavatories and controls. Replace damaged and malfunctioning lavatories, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of lavatories, inspect and repair damaged finishes.

B. Clean lavatories, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed lavatories and fittings.

D. Do not allow use of lavatories for temporary facilities unless approved in writing by Owner.

END OF SECTION 224216.13
SECTION 224216.16 - COMMERCIAL SINKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Service basins.
2. Utility sinks.
3. Sink faucets.
4. Supply fittings.
5. Waste fittings.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For sinks to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 SERVICE BASINS

A. Service Basins: Terrazzo, floor mounted.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Acorn Engineering Company; a Division of Morris Group International.
 b. Crane Plumbing, L.L.C.
 c. Fiat
 d. Florestone Products Co., Inc.
 e. Stern-Williams Co., Inc.

2. Fixture:
2.2 UTILITY SINKS

A. Utility Sinks: Stainless steel, counter mounted.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Eagle Group.
 b. Elkay Manufacturing Co.
 c. Just Manufacturing.

2. Fixture:

 b. Type: Ledge back.
 c. Number of Compartments: One.
 d. Overall Dimensions: refer to drawing fixture schedule.
 e. Metal Thickness: 18 gauge.
 f. Compartment:
 1) Drain: Grid with NPS 2 tailpiece and twist drain.
 2) Drain Location: Centered in compartment.

3. Faucet(s): Refer to "Sink Faucets" Article.

 a. Number Required: One.
 b. Mounting: On ledge.

4. Supply Fittings:

 b. Supplies: Chrome-plated brass compression stop with inlet connection matching water-supply piping type and size.

 1) Operation: Loose key.
 2) Risers: NPS 1/2, chrome-plated, soft-copper flexible tube.

5. Waste Fittings:
5. Commercial Sinks

b. Trap(s):
 1) Size: NPS 1-1/2.
 2) Material: Chrome-plated, two-piece, cast-brass trap and ground-joint swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.
 3) Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch-thick stainless-steel tube to wall; and stainless-steel wall flange.

2.3 SINK FAUCETS

A. NSF Standard: Comply with NSF 372 for faucet-spout materials that will be in contact with potable water.

B. Sink Faucets: Manual type, single control or two lever handle mixing valve.

1. Commercial, Solid-Brass Faucets:

 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1) American Standard.
 2) Chicago Faucets; Geberit Company.
 3) Elkay Manufacturing Co.
 4) Just Manufacturing.
 5) T&S Brass and Bronze Works, Inc.

 3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and sink receptor.
 4. Body Type: refer to fixture schedule.
 6. Finish: Chrome plated.
 7. Maximum Flow Rate: 2.2 gpm.
 8. Handle(s): Lever or Wrist blade, 4 inches.
 9. Mounting Type service sink: Back/wall, exposed.
 10. Mounting Type utility sink: Deck, concealed.
 11. Spout Type service sink: Rigid, solid brass with wall brace.
 12. Spout Type utility sink: Rigid, solid brass.
 14. Spout Outlet service sink: Hose thread according to ASME B1.20.7.
 15. Spout Outlet utility sink: Aerator.
2.4 SUPPLY FITTINGS

A. NSF Standard: Comply with NSF 372 for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.

C. Supply Piping: Chrome-plated brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated brass or stainless-steel wall flange.

D. Supply Stops: Chrome-plated brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. Operation: Loose key.

F. Risers:
 1. NPS 1/2.
 2. Chrome-plated, soft-copper flexible tube.

2.5 WASTE FITTINGS

A. Standard: ASME A112.18.2/CSA B125.2.

B. Drain: Grid type with NPS 1-1/2 offset and straight tailpiece.

C. Trap:
 2. Material: Chrome-plated, two-piece, cast-brass trap and ground-joint swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.
 3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch-thick stainless-steel tube to wall; and stainless-steel wall flange.

2.6 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before sink installation.

B. Examine walls, floors, and counters for suitable conditions where sinks will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install sinks level and plumb according to roughing-in drawings.

B. Install accessible wall-mounted sinks at handicapped/elderly mounting height according to ICC/ANSI A117.1.

C. Set floor-mounted sinks in leveling bed of cement grout.

D. Install water-supply piping with stop on each supply to each sink faucet.

 1. Exception: Use ball or gate valves if supply stops are not specified with sink. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping."

 2. Install stops in locations where they can be easily reached for operation.

E. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

F. Seal joints between sinks and counters, floors, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color.

G. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible sinks. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

A. Connect sinks with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."
3.4 ADJUSTING

A. Operate and adjust sinks and controls. Replace damaged and malfunctioning sinks, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of sinks, inspect and repair damaged finishes.

B. Clean sinks, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed sinks and fittings.

D. Do not allow use of sinks for temporary facilities unless approved in writing by Owner.

END OF SECTION 224216.16
SECTION 224716 - PRESSURE WATER COOLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes pressure water coolers and related components.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of pressure water cooler.

1.4 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For pressure water coolers to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filter Cartridges: Equal to 10 percent of quantity installed for each type and size indicated, but no fewer than 1 of each.

PART 2 - PRODUCTS

A. Pressure Water Coolers: Wall mounted, bi-level with bottle filler, vandal resistant.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Elkay Manufacturing Co.
 b. Halsey Taylor.
 c. Haws Corporation.
 d. Oasis International.
 2. Standards:
b. Comply with ASHRAE 34, "Designation and Safety Classification of Refrigerants," for water coolers. Provide HFC 134a (tetrafluoroethane) refrigerant unless otherwise indicated.
c. Comply with ICC A117.1.

3. Cabinet: Bi-level with two attached cabinets and with a bi-level skirt kit, all stainless steel.
4. Bubbler: One, with adjustable stream regulator, located on each cabinet deck.
6. Bottle Filler: Sensor activation with 20-second automatic shutoff timer. Fill rate 0.5 to 1.5 gpm.
7. Drain: Grid with NPS 1-1/4 tailpiece.
10. Filter: One or more water filters complying with NSF 42 and NSF 53 for cyst and lead reduction to below EPA standards; with capacity sized for unit peak flow rate.
11. Cooling System: Electric, with hermetically sealed compressor, cooling coil, air-cooled condensing unit, corrosion-resistant tubing, refrigerant, corrosion-resistant-metal storage tank, and adjustable thermostat.

a. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

12. Capacities and Characteristics:

b. Ambient-Air Temperature: 90 deg F.
c. Inlet-Water Temperature: 80 deg F.
d. Cooled-Water Temperature: 50 deg F.
e. Electrical Characteristics:

2) Volts: 120-V ac.
3) Phase: Single.
4) Hertz: 60.

2.2 SUPPORTS

A. Type I Water Cooler Carrier:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before fixture installation.

B. Examine walls and floors for suitable conditions where fixtures will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install fixtures level and plumb according to roughing-in drawings. For fixtures indicated for children, install at height required by authorities having jurisdiction.

B. Install off-the-floor carrier supports, affixed to building substrate, for wall-mounted fixtures.

C. Install water-supply piping with shutoff valve on supply to each fixture to be connected to domestic-water distribution piping. Use ball valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Section 220523.12 "Ball Valves for Plumbing Piping."

D. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.

E. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

F. Seal joints between fixtures and walls using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color.

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
C. Install ball shutoff valve on water supply to each fixture. Install valve upstream from filter for water cooler. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping."

D. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Adjust fixture flow regulators for proper flow and stream height.

B. Adjust pressure water-cooler temperature settings.

3.5 CLEANING

A. After installing fixture, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.

B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.

C. Provide protective covering for installed fixtures.

D. Do not allow use of fixtures for temporary facilities unless approved in writing by Owner.

END OF SECTION 224716
SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on alternating-current power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:

1. Motor controllers.
2. Torque, speed, and horsepower requirements of the load.
3. Ratings and characteristics of supply circuit and required control sequence.
4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with NEMA MG 1 unless otherwise indicated.

B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg and at altitude of 3300 feet above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.

B. Efficiency: Premium efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 ADDITIONAL REQUIREMENTS FOR POLYPHASE MOTORS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable-Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width-modulated inverters.
 2. Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.
2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Pre-lubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 230513
SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Metal framing systems.
3. Fastener systems.
4. Equipment supports.

B. Related Requirements:

1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.
2. Section 233113 "Metal Ducts" for duct hangers and supports.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of trapeze hangers.
2. Include design calculations for designing trapeze hangers.

1.4 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.5 QUALITY ASSURANCE

A. Structural-Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE.
 1. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

2.2 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pre-galvanized, hot-dip galvanized, or electro-galvanized.

B. Copper Pipe and Tube Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-plated steel, factory-fabricated components.
 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-plated steel or stainless steel.

2.3 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:
 1. Description: Shop- or field-fabricated, pipe-support assembly made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
 2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
 3. Channels: Continuous slotted carbon-steel channel with in-turned lips.
 4. Channel Width: Selected for applicable load criteria.
 5. Channel Nuts: Formed or stamped nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type anchors for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Indoor Applications: stainless-steel.

2.5 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.6 MATERIALS

A. Aluminum: ASTM B221.

B. Carbon Steel: ASTM A1011/A1011M.

C. Structural Steel: ASTM A36/A36M, carbon-steel plates, shapes, and bars; galvanized.

D. Stainless Steel: ASTM A240/A240M.

E. Threaded Rods: Continuously threaded. Zinc-plated or galvanized steel for indoor applications and stainless steel for outdoor applications. Mating nuts and washers of similar materials as rods.

F. Grout: ASTM C1107/C1107M, factory-mixed and -packaged, dry, hydraulic-cement, non-shrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-58. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled strut systems.
C. Fastener System Installation:

1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

D. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

F. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.
3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780/A780M.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

C. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

D. Use carbon-steel pipe hangers and supports metal framing systems and attachments for general service applications.

E. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.

F. Use padded hangers for piping that is subject to scratching.

G. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
3. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
4. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
5. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
6. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
7. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
8. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
9. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
10. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.

H. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

I. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

J. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

K. Comply with MSS SP-58 for applications that are not specified in piping system Sections.

L. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

M. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 230529
SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Duct labels.
 3. Warning signs and labels
 4. Warning tags

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

1.4 COORDINATION

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Brady Corporation.
 b. Carlton Industries, LP.
 c. Champion America.
 d. Craftmark Pipe Markers.
 e. Kolbi Pipe Marker Co.
 f. Seton Identification Products.

2. Material and Thickness: Brass, 0.032-inch Stainless steel, 0.025-inch Aluminum, 0.032-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.

5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

7. Fasteners: Stainless-steel rivets or self-tapping screws.

8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 DUCT LABELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Carlton Industries, LP.
2. Champion America.
3. Craftmark Pipe Markers.
5. Seton Identification Products.

B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

C. Letter Color: Black.
D. Background Color: White.

E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

H. Fasteners: Stainless-steel rivets or self-tapping screws.

I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

J. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings; also include duct size and an arrow indicating flow direction.
 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions or as separate unit on each duct label to indicate flow direction.
 2. Lettering Size: At least 1 ½ inches high.

2.3 STENCILS

A. Stencils for Ducts:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Carlton Industries, LP.
 b. Champion America.
 c. Craftmark Pipe Markers.
 d. Kolbi Pipe Marker Co.
 2. Lettering Size: Minimum letter height of 1-1/4 inches for viewing distances up to 15 feet and proportionately larger lettering for greater viewing distances.
 4. Stencil Paint: Exterior, gloss, acrylic enamel. Paint may be in pressurized spray-can form.
 5. Identification Paint: Exterior, acrylic enamel. Paint may be in pressurized spray-can form.

B. Stencils for Access Panels and Door Labels, Equipment Labels, and Similar Operational Instructions:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
Identification for HVAC Piping and Equipment

2.4 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Red.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.

H. Label Content: Include caution and warning information, plus emergency notification instructions.

2.5 WARNING TAGS

A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.

 1. Size: Approximately 4 by 7 inches.
 2. Fasteners: Brass grommet and wire.
 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.

3.4 DUCT LABEL INSTALLATION

A. Install self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:
 1. Blue: For cold-air supply ducts.
 2. Green: For exhaust-, outside-, relief-, return-, and mixed-air ducts.

B. Stenciled Duct Label Option: Stenciled labels showing service and flow direction may be provided instead of plastic-laminated duct labels, at Installer's option.

C. Locate labels near points where ducts enter into and exit from concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

END OF SECTION 230553
SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Balancing Air Systems:
 a. Constant-volume air systems
 b. Variable-air-volume systems.
 2. Testing, Adjusting, and Balancing Equipment:
 a. Motors.
 3. Sound tests.
 4. Vibration tests.
 5. Duct leakage tests.

1.3 DEFINITIONS
 B. BAS: Building automation systems.
 D. TAB: Testing, adjusting, and balancing.
 F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
 G. TDH: Total dynamic head.

1.4 ACTION SUBMITTALS
 A. Sustainable Design Submittals:
1. TAB Report: Documentation indicating that Work complies with ASHRAE/IES 90.1, Section 6.7.2.3 - "System Balancing."

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

B. Contract Documents Examination Report: Within 60 days of Contractor's Notice to Proceed, submit the Contract Documents review report as specified in Part 3.

D. Certified TAB reports.

E. Sample report forms.

F. Instrument calibration reports, to include the following:
 1. Instrument type and make.
 2. Serial number.
 3. Application.
 4. Dates of use.
 5. Dates of calibration.

1.6 QUALITY ASSURANCE

A. TAB Specialists Qualifications: Certified by AABC.
 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC or NEBB.
 2. TAB Technician: Employee of the TAB specialist and certified by AABC or NEBB as a TAB technician.

B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.7.2.3 - "System Balancing."

1.7 FIELD CONDITIONS

A. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.
PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.

B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.

C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.
 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.

I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.

J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.

K. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

L. Examine operating safety interlocks and controls on HVAC equipment.
M. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes the following:

1. Equipment and systems to be tested.
3. Instrumentation to be used.
4. Sample forms with specific identification for all equipment.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:

1. Airside:
 a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 b. Duct systems are complete with terminals installed.
 c. Volume, smoke, and fire dampers are open and functional.
 d. Clean filters are installed.
 e. Fans are operating, free of vibration, and rotating in correct direction.
 f. Variable-frequency controllers' startup is complete and safeties are verified.
 g. Automatic temperature-control systems are operational.
 h. Ceilings are installed.
 i. Windows and doors are installed.
 j. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" ASHRAE 111 NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation."
C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems’ "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

1. Measure total airflow.

 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.

 b. Where duct conditions allow, measure airflow by main Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses, close to the fan and prior to any outlets, to obtain total airflow.

 c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
2. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
 d. Report artificial loading of filters at the time static pressures are measured.

3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

4. Obtain approval from Owner commissioning authority for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.
 1. Measure airflow of submain and branch ducts.
 2. Adjust submain and branch duct volume dampers for specified airflow.
 3. Re-measure each submain and branch duct after all have been adjusted.

C. Adjust air inlets and outlets for each space to indicated airflows.
 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 2. Measure inlets and outlets airflow.
 3. Adjust each inlet and outlet for specified airflow.
 4. Re-measure each inlet and outlet after they have been adjusted.

D. Verify final system conditions.
 1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
 2. Re-measure and confirm that total airflow is within design.
 3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
 4. Mark all final settings.
 5. Test system in economizer mode. Verify proper operation and adjust if necessary.
 6. Measure and record all operating data.
 7. Record final fan-performance data.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Adjust the variable-air-volume systems as follows:
1. Verify that the system static pressure sensor is located two-thirds of the distance down the duct from the fan discharge.

2. Verify that the system is under static pressure control.

3. Select the terminal unit that is most critical to the supply-fan airflow. Measure inlet static pressure, and adjust system static pressure control set point so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.

4. Calibrate and balance each terminal unit for maximum and minimum design airflow as follows:
 a. Adjust controls so that terminal is calling for maximum airflow. Some controllers require starting with minimum airflow. Verify calibration procedure for specific project.
 b. Measure airflow and adjust calibration factor as required for design maximum airflow. Record calibration factor.
 c. When maximum airflow is correct, balance the air outlets downstream from terminal units.
 d. Adjust controls so that terminal is calling for minimum airflow.
 e. Measure airflow and adjust calibration factor as required for design minimum airflow. Record calibration factor. If no minimum calibration is available, note any deviation from design airflow.
 f. When in full cooling or full heating, ensure that there is no mixing of hot-deck and cold-deck airstreams unless so designed.
 g. On constant volume terminals, in critical areas where room pressure is to be maintained, verify that the airflow remains constant over the full range of full cooling to full heating. Note any deviation from design airflow or room pressure.

5. After terminals have been calibrated and balanced, test and adjust system for total airflow. Adjust fans to deliver total design airflows within the maximum allowable fan speed listed by fan manufacturer.
 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 b. Set terminals for maximum airflow. If system design includes diversity, adjust terminals for maximum and minimum airflow so that connected total matches fan selection and simulates actual load in the building.
 c. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 d. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 e. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

6. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
d. Report any artificial loading of filters at the time static pressures are measured.

7. Set final return and outside airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 a. Balance the return-air ducts and inlets the same as described for constant-volume air systems.
 b. Verify that terminal units are meeting design airflow under system maximum flow.

8. Re-measure the inlet static pressure at the most critical terminal unit and adjust the system static pressure set point to the most energy-efficient set point to maintain the optimum system static pressure. Record set point and give to controls contractor.

9. Verify final system conditions as follows:
 a. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to match design if necessary.
 b. Re-measure and confirm that total airflow is within design.
 c. Re-measure final fan operating data, rpms, volts, amps, and static profile.
 d. Mark final settings.
 e. Test system in economizer mode. Verify proper operation and adjust if necessary. Measure and record all operating data.
 f. Verify tracking between supply and return fans.

3.7 PROCEDURES FOR MOTORS

A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 1. Manufacturer’s name, model number, and serial number.
 4. Phase and hertz.
 5. Nameplate and measured voltage, each phase.
 6. Nameplate and measured amperage, each phase.
 7. Starter size and thermal-protection-element rating.
 8. Service factor and frame size.

B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.

3.8 SOUND TESTS

A. After the systems are balanced and construction is Substantially Complete, measure and record sound levels at 10 locations as designated by the Architect.

B. Instrumentation:
 1. The sound-testing meter shall be a portable, general-purpose testing meter consisting of a microphone, processing unit, and readout.
2. The sound-testing meter shall be capable of showing fluctuations at minimum and maximum levels, and measuring the equivalent continuous sound pressure level (LEQ).
3. The sound-testing meter must be capable of using 1/3 octave band filters to measure mid-frequencies from 31.5 Hz to 8000 Hz.
4. The accuracy of the sound-testing meter shall be plus or minus one decibel.

C. Test Procedures:

1. Perform test at quietest background noise period. Note cause of unpreventable sound that affects test outcome.
2. Equipment should be operating at design values.
3. Calibrate the sound-testing meter prior to taking measurements.
4. Use a microphone suitable for the type of noise levels measured that is compatible with meter. Provide a windshield for outside or in-duct measurements.
5. Record a set of background measurements in dBA and sound pressure levels in the eight un-weighted octave bands 63 Hz to 8000 Hz (NC) with the equipment off.
6. Take sound readings in dBA and sound pressure levels in the eight un-weighted octave bands 63 Hz to 8000 Hz (NC) with the equipment operating.
7. Take readings no closer than 36 inches from a wall or from the operating equipment and approximately 60 inches from the floor, with the meter held or mounted on a tripod.
8. For outdoor measurements, move sound-testing meter slowly and scan area that has the most exposure to noise source being tested. Use A-weighted scale for this type of reading.

D. Reporting:

1. Report shall record the following:
 a. Location.
 b. System tested.
 c. dBA reading.
 d. Sound pressure level in each octave band with equipment on and off.
2. Plot sound pressure levels on NC worksheet with equipment on and off.

3.9 VIBRATION TESTS

A. After systems are balanced and construction is Substantially Complete, measure and record vibration levels on equipment having motor horsepower equal to or greater than 10.

B. Instrumentation:

1. Use portable, battery-operated, and microprocessor-controlled vibration meter with or without a built-in printer.
2. The meter shall automatically identify engineering units, filter bandwidth, amplitude, and frequency scale values.
3. The meter shall be able to measure machine vibration displacement in mils of deflection, velocity in inches per second, and acceleration in inches per second squared.
4. Verify calibration date is current for vibration meter before taking readings.
C. Test Procedures:

1. To ensure accurate readings, verify that accelerometer has a clean, flat surface and is mounted properly.
2. With the unit running, set up vibration meter in a safe, secure location. Connect transducer to meter with proper cables. Hold magnetic tip of transducer on top of the bearing, and measure unit in mils of deflection. Record measurement, then move transducer to the side of the bearing and record in mils of deflection. Record an axial reading in mils of deflection by holding nonmagnetic, pointed transducer tip on end of shaft.
3. Change vibration meter to velocity (inches per second) measurements. Repeat and record above measurements.
4. Record CPM or rpm.
5. Read each bearing on motor, fan, and pump as required. Track and record vibration levels from rotating component through casing to base.

D. Reporting:

1. Report shall record location and the system tested.
2. Include horizontal-vertical-axial measurements for tests.
3. Verify that vibration limits follow Specifications, or, if not specified, follow the General Machinery Vibration Severity Chart or Vibration Acceleration General Severity Chart from the AABC National Standards. Acceptable levels of vibration are normally "smooth" to "good."
4. Include in report General Machinery Vibration Severity Chart, with conditions plotted.

3.10 DUCT LEAKAGE TESTS

A. Witness the duct pressure testing performed by Installer.
B. Verify that proper test methods are used and that leakage rates are within specified tolerances.
C. Report deficiencies observed.

3.11 TOLERANCES

A. Set HVAC system's airflow rates and water flow rates within the following tolerances:
 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 2. Air Outlets and Inlets: Plus or minus 5 percent.
B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.
3.12 PROGRESS REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare monthly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.13 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.
3. Certify validity and accuracy of field data.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Fan curves.
2. Manufacturers' test data.
3. Field test reports prepared by system and equipment installers.
4. Other information relative to equipment performance; do not include Shop Drawings and Product Data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB specialist.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:

 a. Indicated versus final performance.
b. Notable characteristics of systems.
c. Description of system operation sequence if it varies from the Contract Documents.

12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Water and steam flow rates.
3. Duct, outlet, and inlet sizes.
4. Pipe and valve sizes and locations.
5. Terminal units.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave and amount of adjustments in inches.
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
d. Full-load amperage and service factor.
e. Sheave make, size in inches, and bore.
f. Center-to-center dimensions of sheave and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Outdoor airflow in cfm.
 g. Return airflow in cfm.
 h. Outdoor-air damper position.
 i. Return-air damper position.

F. Gas-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:

1. Unit Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Fuel type in input data.
 g. Output capacity in Btu/h.
 h. Ignition type.
 i. Burner-control types.
 j. Motor horsepower and rpm.
 k. Motor volts, phase, and hertz.
 l. Motor full-load amperage and service factor.
 m. Sheave make, size in inches, and bore.
 n. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Entering-air temperature in deg F.
 c. Leaving-air temperature in deg F.
 d. Air temperature differential in deg F.
 e. Entering-air static pressure in inches wg.
 f. Leaving-air static pressure in inches wg.
 g. Air static-pressure differential in inches wg.
 h. Low-fire fuel input in Btu/h.
 i. High-fire fuel input in Btu/h.
 j. Manifold pressure in psig.
 k. High-temperature-limit setting in deg F.
 l. Operating set point in Btu/h.
m. Motor voltage at each connection.

n. Motor amperage for each phase.

o. Heating value of fuel in Btu/h.

G. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:

1. Unit Data:
 a. System identification.
 b. Location.
 c. Coil identification.
 d. Capacity in Btu/h.
 e. Number of stages.
 f. Connected volts, phase, and hertz.
 g. Rated amperage.
 h. Airflow rate in cfm.
 i. Face area in sq. ft..
 j. Minimum face velocity in fpm.

2. Test Data (Indicated and Actual Values):
 a. Heat output in Btu/h.
 b. Airflow rate in cfm.
 c. Air velocity in fpm.
 d. Entering-air temperature in deg F.
 e. Leaving-air temperature in deg F.
 f. Voltage at each connection.
 g. Amperage for each phase.

H. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

I. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:
 a. System and air-handling-unit number.
 b. Location and zone.
 c. Traverse air temperature in deg F.
 d. Duct static pressure in inches wg.
 e. Duct size in inches.
 f. Duct area in sq. ft.
 g. Indicated airflow rate in cfm.
 h. Indicated velocity in fpm.
 i. Actual airflow rate in cfm.
 j. Actual average velocity in fpm.
 k. Barometric pressure in psig.

J. Air-Terminal-Device Reports:

1. Unit Data:
 a. System and air-handling unit identification.
 b. Location and zone.
 c. Apparatus used for test.
 d. Area served.
 e. Make.
 f. Number from system diagram.
 g. Type and model number.
 h. Size.
 i. Effective area in sq. ft.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Air velocity in fpm.
 c. Preliminary airflow rate as needed in cfm.
 d. Preliminary velocity as needed in fpm.
 e. Final airflow rate in cfm.
 f. Final velocity in fpm.
g. Space temperature in deg F.

K. Instrument Calibration Reports:

1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.

3.14 VERIFICATION OF TAB REPORT

A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of Owner or commissioning authority.

B. Owner or Commissioning authority shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.

C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

E. If TAB work fails, proceed as follows:
 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.
 3. If the second verification also fails, Owner may contact AABC Headquarters regarding the AABC National Performance Guaranty.

F. Prepare test and inspection reports.

3.15 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593
SECTION 230713 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following duct services:

1. Indoor, concealed supply and outdoor air.
2. Indoor, exposed supply and outdoor air.
3. Indoor, concealed return located in unconditioned space.
4. Indoor, exposed return located in unconditioned space.
5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.

B. Related Sections:

1. Section 233113 "Metal Ducts" for duct liners.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.

1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
2. Detail insulation application at elbows, fittings, dampers, specialties and flanges for each type of insulation.
3. Detail application of field-applied jackets.
4. Detail application at linkages of control devices.

1.4 INFORMATIONAL SUBMITTALS

A. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
B. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230 529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type II for sheet materials.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Sheet, K-Flex Gray Duct Liner, and K-FLEX LS.

G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type II with factory-applied vinyl jacket, Type III with factory-applied FSK jacket, or Type III with factory-applied FSP jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; SoftTouch Duct Wrap.
 b. Johns Manville; Microlite.
 c. Knauf Insulation; Friendly Feel Duct Wrap.

H. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied ASJ or with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; Commercial Board.
 b. Johns Manville; 800 Series Spin-Glas.
 c. Knauf Insulation; Insulation Board.
2.2 FIRE-RATED INSULATION SYSTEMS

A. Fire-Rated Board: Structural-grade, press-molded, xonolite calcium silicate, fireproofing board suitable for operating temperatures up to 1700 deg F. Comply with ASTM C 656, Type II, Grade 6. Tested and certified to provide a 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction.

1. Products: Subject to compliance with requirements, provide the following:
 a. Johns Manville; Super Firetemp M.

B. Fire-Rated Blanket: High-temperature, flexible, blanket insulation with FSK jacket that is tested and certified to provide a 2-hour fire rating by an NRTL acceptable to authorities having jurisdiction.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. CertainTeed Corp.; FlameChek.
 b. Johns Manville; Firetemp Wrap.
 c. 3M; Fire Barrier Wrap Products.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Aeroflex USA, Inc.; Aeroseal.
 b. Armacell LLC; Armaflex 520 Adhesive.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.

2. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 225.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

E. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Dow Corning Corporation; 739, Dow Silicone.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 COATINGS AND MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
B. Vapor-Barrier Coatings: Water based; suitable for indoor or outdoor use on below ambient services.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Childers CP-38.
 c. Vimasco Corporation; 749.

2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Coatings: Solvent based; suitable for indoor use on below ambient services.

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Eagle Bridges - Marathon Industries; 501.
 d. Mon-Eco Industries, Inc.; 55-10.

2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
3. Service Temperature Range: 0 to 180 deg F.

D. Vapor-Barrier Coatings: Solvent based; suitable for outdoor use on below ambient services.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel X/V.
 b. Eagle Bridges - Marathon Industries; 570.

2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
3. Service Temperature Range: Minus 50 to plus 220 deg F.
4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

E. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.

1. Products: Subject to compliance with requirements, provide one of the following:
2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Products: Subject to compliance with requirements, provide one of the following:
 c. Vimasco Corporation; 713 and 714.
3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct insulation.
4. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:

1. Products: Subject to compliance with requirements, provide one of the following:
 b. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum or gray.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:

1. Products: Subject to compliance with requirements, provide the following:

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.8 FIELD-APPLIED CLOTHS

A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd.

1. Products: Subject to compliance with requirements, provide the following:

2.9 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. Johns Manville; Zeston.
 c. Proto Corporation; LoSmoke.

2. Adhesive: As recommended by jacket material manufacturer.

C. Metal Jacket:

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 b. RPR Products, Inc.; Insul-Mate.

 a. Sheet and roll stock ready for shop or field sizing.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 c. Moisture Barrier for Indoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.

2.10 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 428 AWF ASJ.
 b. Compac Corporation; 104 and 105.
 c. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.

2. Width: 3 inches.
3. Thickness: 11.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 491 AWF FSK.
 b. Compac Corporation; 110 and 111.
 c. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.

2. Width: 3 inches.
3. Thickness: 6.5 mils.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch in width.
7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.

2. Width: 2 inches.
3. Thickness: 6 mils.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch in width.

D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.

1. Products: Subject to compliance with requirements, provide one of the following:
 a. ABI, Ideal Tape Division; 488 AWF.
 b. Compac Corporation; 120.
 c. Venture Tape; 3520 CW.

2. Width: 2 inches.
3. Thickness: 3.7 mils.
5. Elongation: 5 percent.
6. Tensile Strength: 34 lbf/inch in width.

2.11 SECUREMENTS

A. Bands:
1. **Products:** Subject to compliance with requirements, provide one of the following:
 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.

2. **Stainless Steel:** ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 3/4 inch wide with wing seal or closed seal.

3. **Aluminum:** ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 3/4 inch wide with wing seal or closed seal.

4. **Springs:** Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.

B. Insulation Pins and Hangers:

1. **Capacitor-Discharge-Weld Pins:** Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 a. **Products:** Subject to compliance with requirements, provide one of the following:
 1) AGM Industries, Inc.; CWP-1.
 2) GEMCO; CD.
 3) Midwest Fasteners, Inc.; CD.

2. **Metal, Adhesively Attached, Perforated-Base Insulation Hangers:** Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. **Products:** Subject to compliance with requirements, provide one of the following:
 1) AGM Industries, Inc.; Tactoo Perforated Base Insul-Hangers.
 2) GEMCO; Perforated Base.
 3) Midwest Fasteners, Inc.; Spindle.
 b. **Baseplate:** Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 c. **Spindle:** Copper- or zinc-coated, low-carbon steel or Stainless steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 d. **Adhesive:** Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

3. **Insulation-Retaining Washers:** Self-locking washers formed from 0.016-inch-thick, galvanized-steel or stainless-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 a. **Products:** Subject to compliance with requirements, provide one of the following:
 1) AGM Industries, Inc.; RC-150.
b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch wide, stainless steel or Monel.

D. Wire: 0.062-inch soft-annealed, stainless steel.

1. Manufacturers: Subject to compliance with requirements, provide products by the following:

2.12 CORNER ANGLES

A. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.

B. Stainless-Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.
 1. Comply with requirements in Section 078 400 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

E. Insulation Installation at Floor Penetrations:
 1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.
2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078 400 "Penetration Firestopping."

3.5 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install capacitor-discharge-weld pins and speed washers on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.

6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.

2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.

3. Install capacitor-discharge-weld pins and speed washers on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over insulation with factory-applied jackets.

1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive.

C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.8 FIRE-RATED INSULATION SYSTEM INSTALLATION

A. Where fire-rated insulation system is indicated, secure system to ducts and duct hangers and supports to maintain a continuous fire rating.

B. Insulate duct access panels and doors to achieve same fire rating as duct.

C. Install firestopping at penetrations through fire-rated assemblies. Fire-stop systems are specified in Section 078 400 "Penetration Firestopping."

3.9 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099 113 "Exterior Painting" and Section 099 123 "Interior Painting."

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location for each duct system defined in the "Duct Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:

1. Indoor, concealed supply and outdoor air.
2. Indoor, exposed supply and outdoor air.
3. Indoor, concealed return located in unconditioned space.
4. Indoor, exposed return located in unconditioned space.
5. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
6. Indoor, exposed exhaust between isolation damper and penetration of building exterior.

B. Items Not Insulated:

1. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
2. Factory-insulated flexible ducts.
3. Factory-insulated plenums and casings.
4. Flexible connectors.
5. Vibration-control devices.
6. Factory-insulated access panels and doors.

3.12 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, round and flat-oval, supply-air duct insulation shall be one of the following:

1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.
B. Concealed, round and flat-oval, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

C. Concealed, rectangular, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

D. Concealed, rectangular, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

E. Concealed, supply-air plenum insulation shall be the following:
 1. Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.

F. Concealed, outdoor-air plenum insulation shall be the following:
 1. Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.

G. Exposed, round and flat-oval, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

H. Exposed, round and flat-oval, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

I. Exposed, rectangular, supply-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

J. Exposed, rectangular, outdoor-air duct insulation shall be one of the following:
 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density.

K. Exposed, supply-air plenum insulation shall be the following:
 1. Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.

L. Exposed, outdoor-air plenum insulation shall be the following:
 1. Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.
3.13 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Concealed:
 1. None.

D. Ducts and Plenums, Exposed:
 1. PVC: 30 mils thick.
 2. Aluminum, Smooth: 0.016 inch thick.
 3. Stainless Steel, Type 304 or Type 316, Smooth 2B Finish: 0.010 inch thick.

END OF SECTION 230713
SECTION 230923 - DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. DDC system for monitoring and controlling of HVAC systems.
2. Delivery of selected control devices to equipment and systems manufacturers for factory installation and to HVAC systems installers for field installation.

1.3 DEFINITIONS

A. Algorithm: A logical procedure for solving a recurrent mathematical problem. A prescribed set of well-defined rules or processes for solving a problem in a finite number of steps.

B. Analog: A continuously varying signal value, such as current, flow, pressure, or temperature.

C. BACnet Specific Definitions:

2. BACnet Interoperability Building Blocks (BIBBs): BIBB defines a small portion of BACnet functionality that is needed to perform a particular task. BIBBs are combined to build the BACnet functional requirements for a device.
3. BACnet/IP: Defines and allows using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP subnetworks that share the same BACnet network number.
5. PICS (Protocol Implementation Conformance Statement): Written document that identifies the particular options specified by BACnet that are implemented in a device.

D. Binary: Two-state signal where a high signal level represents "ON" or "OPEN" condition and a low signal level represents "OFF" or "CLOSED" condition. "Digital" is sometimes used interchangeably with "Binary" to indicate a two-state signal.
E. Controller: Generic term for any standalone, microprocessor-based, digital controller residing on a network, used for local or global control. Three types of controllers are indicated: Network Controller, Programmable Application Controller, and Application-Specific Controller.

F. Control System Integrator: An entity that assists in expansion of existing enterprise system and support of additional operator interfaces to I/O being added to existing enterprise system.

G. COV: Changes of value.

H. DDC System Provider: Authorized representative of, and trained by, DDC system manufacturer and responsible for execution of DDC system Work indicated.

I. Distributed Control: Processing of system data is decentralized, and control decisions are made at subsystem level. System operational programs and information are provided to remote subsystems and status is reported back. On loss of communication, subsystems shall be capable of operating in a standalone mode using the last best available data.

J. DOCSIS: Data-Over Cable Service Interface Specifications.

K. E/P: Voltage to pneumatic.

L. Gateway: Bidirectional protocol translator that connects control systems that use different communication protocols.

M. HLC: Heavy load conditions.

N. I/O: System through which information is received and transmitted. I/O refers to analog input (AI), binary input (BI), analog output (AO) and binary output (BO). Analog signals are continuous and represent control influences such as flow, level, moisture, pressure, and temperature. Binary signals convert electronic signals to digital pulses (values) and generally represent two-position operating and alarm status. "Digital," (DI and (DO), is sometimes used interchangeably with "Binary," (BI) and (BO), respectively.

O. I/P: Current to pneumatic.

P. LAN: Local area network.

Q. LNS: LonWorks Network Services.

R. LON Specific Definitions:

1. FTT-10: Echelon Transmitter-Free Topology Transceiver.
2. LonMark: Association comprising suppliers and installers of LonTalk products. Association provides guidelines for implementing LonTalk protocol to ensure interoperability through a standard or consistent implementation.
3. LonTalk: An open standard protocol developed by the Echelon Corporation that uses a "Neuron Chip" for communication. LonTalk is a register trademark of Echelon.
4. LonWorks: Network technology developed by Echelon.
5. Node: Device that communicates using CEA-709.1-C protocol and that is connected to a CEA-709.1-C network.
6. Node Address: The logical address of a node on the network, consisting of a Domain number, Subnet number, and Node number. "Node number" portion of an address is a number assigned to device during installation, is unique within a subnet, and is not a factory-set unique Node ID.

7. Node ID: A unique 48-bit identifier assigned at factory to each CEA-709.1-C device. Sometimes called a "Neuron ID."

8. Program ID: An identifier (number) stored in a device (usually EEPROM) that identifies node manufacturer, functionality of device (application and sequence), transceiver used, and intended device usage.

10. Standard Network Variable Type (SNVT): Pronounced "snivet." A standard format type maintained by LonMark used to define data information transmitted and received by individual nodes. "SNVT" is used in two ways. It is an acronym for "Standard Network Variable Type" and is often used to indicate a network variable itself (i.e., it can mean "a network variable of a standard network variable type").

11. Subnet: Consists of a logical grouping of up to 127 nodes, where logical grouping is defined by node addressing. Each subnet is assigned a number, which is unique within a Domain. See "Node Address."

12. TP/FT-10: Free Topology Twisted Pair network defined by CEA-709.3 and is most common media type for a CEA-709.1-C control network.

13. TP/XF-1250: High-speed, 1.25-Mbps, twisted-pair, doubly terminated bus network defined by "LonMark Interoperability Guidelines" typically used only to connect multiple TP/FT-10 networks.

14. User-Defined Configuration Property Type (UCPT): Pronounced "U-Keep-It." A Configuration Property format type that is defined by device manufacturer.

15. User-Defined Network Variable Type (UNVT): Network variable format defined by device manufacturer. UNVTs create non-standard communications that other vendors' devices may not correctly interpret and may negatively impact system operation. UNVTs are not allowed.

S. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

T. Mobile Device: A data-enabled phone or tablet computer capable of connecting to a cellular data network and running a native control application or accessing a web interface.

V. MS/TP: Master-slave/token-passing, IEE 8802-3. Datalink protocol LAN option that uses twisted-pair wire for low-speed communication.

W. MTBF: Mean time between failures.

X. Network Controller: Digital controller, which supports a family of programmable application controllers and application-specific controllers, that communicates on peer-to-peer network for transmission of global data.

Y. Network Repeater: Device that receives data packet from one network and rebroadcasts it to another network. No routing information is added to protocol.
Z. Peer to Peer: Networking architecture that treats all network stations as equal partners.

AA. POT: Portable operator's terminal.

BB. PUE: Performance usage effectiveness.

CC. RAM: Random access memory.

DD. RF: Radio frequency.

EE. Router: Device connecting two or more networks at network layer.

FF. Server: Computer used to maintain system configuration, historical and programming database.

GG. TCP/IP: Transport control protocol/Internet protocol.

HH. UPS: Uninterruptible power supply.

II. USB: Universal Serial Bus.

JJ. User Datagram Protocol (UDP): This protocol assumes that the IP is used as the underlying protocol.

KK. VAV: Variable air volume.

LL. WLED: White light emitting diode.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

A. Multiple Submissions:

1. If multiple submissions are required to execute work within schedule, first submit a coordinated schedule clearly defining intent of multiple submissions. Include a proposed date of each submission with a detailed description of submittal content to be included in each submission.

2. Clearly identify each submittal requirement indicated and in which submission the information will be provided.

3. Include an updated schedule in each subsequent submission with changes highlighted to easily track the changes made to previous submitted schedule.

B. Product Data: For each type of product include the following:

1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.

4. Installation, operation and maintenance instructions including factors effecting performance.

5. Bill of materials of indicating quantity, manufacturer, and extended model number for each unique product.
 a. Workstations.
 b. Servers.
 c. Routers.
 d. Protocol analyzers.
 e. DDC controllers.
 f. Enclosures.
 g. Electrical power devices.
 h. UPS units.
 i. Accessories.
 j. Instruments.
 k. Control dampers and actuators.
 l. Control valves and actuators.

6. When manufacturer's product datasheets apply to a product series rather than a specific product model, clearly indicate and highlight only applicable information.

7. Each submitted piece of product literature shall clearly cross reference specification and drawings that submittal is to cover.

C. Software Submittal:

1. Cross-referenced listing of software to be loaded on each operator workstation, server, gateway, and DDC controller.

2. Description and technical data of all software provided and cross-referenced to products in which software will be installed.

3. Operating system software, operator interface and programming software, color graphic software, DDC controller software, maintenance management software, and third-party software.

4. Include a flow diagram and an outline of each subroutine that indicates each program variable name and units of measure.

5. Listing and description of each engineering equation used with reference source.

6. Listing and description of each constant used in engineering equations and a reference source to prove origin of each constant.

7. Description of operator interface to alphanumeric and graphic programming.

8. Description of each network communication protocol.

9. Description of system database, including all data included in database, database capacity and limitations to expand database.
10. Description of each application program and device drivers to be generated, including specific information on data acquisition and control strategies showing their relationship to system timing, speed, processing burden and system throughout.

11. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.

D. Shop Drawings:

1. General Requirements:
 a. Include cover drawing with Project name, location, Owner, Architect, Contractor and issue date with each Shop Drawings submission.
 b. Include a drawing index sheet listing each drawing number and title that matches information in each title block.

2. Include plans, elevations, sections, and mounting details where applicable.

3. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

4. Detail means of vibration isolation and show attachments to rotating equipment.

5. Plan Drawings indicating the following:
 a. Screened backgrounds of walls, structural grid lines, HVAC equipment, ductwork and piping.
 b. Room names and numbers with coordinated placement to avoid interference with control products indicated.
 c. Each desktop workstation, server, gateway, router, DDC controller, control panel instrument connecting to DDC controller, and damper and valve connecting to DDC controller, if included in Project.
 d. Exact placement of products in rooms, ducts, and piping to reflect proposed installed condition.
 e. Network communication cable and raceway routing.
 f. Information, drawn to scale, of.
 g. Proposed routing of wiring, cabling, conduit, and tubing coordinated with building services for review before installation.

6. Schematic drawings for each controlled HVAC system indicating the following:
 a. I/O points labeled with point names shown. Indicate instrument range, normal operating set points, and alarm set points. Indicate fail position of each damper and valve, if included in Project.
 b. I/O listed in table format showing point name, type of device, manufacturer, model number, and cross-reference to product data sheet number.
 c. A graphic showing location of control I/O in proper relationship to HVAC system.
 d. Wiring diagram with each I/O point having a unique identification and indicating labels for all wiring terminals.
 e. Unique identification of each I/O that shall be consistently used between different drawings showing same point.
f. Elementary wiring diagrams of controls for HVAC equipment motor circuits including interlocks, switches, relays and interface to DDC controllers.

g. Narrative sequence of operation.

h. Graphic sequence of operation, showing all inputs and output logical blocks.

7. Control panel drawings indicating the following:

a. Panel dimensions, materials, size, and location of field cable, raceways, and tubing connections.
b. Interior subpanel layout, drawn to scale and showing all internal components, cabling and wiring raceways, nameplates and allocated spare space.
c. Front, rear, and side elevations and nameplate legend.
d. Unique drawing for each panel.

8. DDC system network riser diagram indicating the following:

a. Each device connected to network with unique identification for each.
b. Interconnection of each different network in DDC system.
c. For each network, indicate communication protocol, speed and physical means of interconnecting network devices, such as copper cable type, or optical fiber cable type. Indicate raceway type and size for each.
d. Each network port for connection of an operator workstation or other type of operator interface with unique identification for each.

9. DDC system electrical power riser diagram indicating the following:

a. Each point of connection to field power with requirements (volts/phase/hertz/amperes/connection type) listed for each.
b. Each control power supply including, as applicable, transformers, power-line conditioners, transient voltage suppression and high filter noise units, DC power supplies, and UPS units with unique identification for each.
c. Each product requiring power with requirements (volts/phase/hertz/amperes/connection type) listed for each.
d. Power wiring type and size, race type, and size for each.

10. Monitoring and control signal diagrams indicating the following:

a. Control signal cable and wiring between controllers and I/O.
b. Point-to-point schematic wiring diagrams for each product.

11. Color graphics indicating the following:

a. Itemized list of color graphic displays to be provided.
b. For each display screen to be provided, a true color copy showing layout of pictures, graphics and data displayed.
c. Intended operator access between related hierarchical display screens.

E. System Description:
1. Full description of DDC system architecture, network configuration, operator interfaces and peripherals, servers, controller types and applications, gateways, routers and other network devices, and power supplies.
2. Complete listing and description of each report, log and trend for format and timing and events which initiate generation.
3. System and product operation under each potential failure condition including, but not limited to, the following:
 a. Loss of power.
 b. Loss of network communication signal.
 c. Loss of controller signals to inputs and outpoints.
 d. Operator workstation failure.
 e. Server failure.
 f. Network failure
 g. Controller failure.
 h. Instrument failure.
 i. Control damper and valve actuator failure.
4. Complete bibliography of documentation and media to be delivered to Owner.
5. Description of testing plans and procedures.
6. Description of Owner training.

F. Delegated-Design Submittal: For DDC system products and installation indicated as being delegated.
1. Supporting documentation showing DDC system design complies with performance requirements indicated, including calculations and other documentation necessary to prove compliance.
2. Schedule and design calculations for control dampers and actuators.
 a. Flow at Project design and minimum flow conditions.
 b. Face velocity at Project design and minimum airflow conditions.
 c. Pressure drop across damper at Project design and minimum airflow conditions.
 d. AMCA 500-D damper installation arrangement used to calculate and schedule pressure drop, as applicable to installation.
 e. Maximum close-off pressure.
 f. Leakage airflow at maximum system pressure differential (fan close-off pressure).
 g. Torque required at worst case condition for sizing actuator.
 h. Actuator selection indicating torque provided.
 i. Actuator signal to control damper (on, close or modulate).
 j. Actuator position on loss of power.
 k. Actuator position on loss of control signal.
3. Schedule and design calculations for control valves and actuators.
 a. Flow at Project design and minimum flow conditions.
 b. Pressure-differential drop across valve at Project design flow condition.
 c. Maximum system pressure-differential drop (pump close-off pressure) across valve at Project minimum flow condition.
 d. Design and minimum control valve coefficient with corresponding valve position.
e. Maximum close-off pressure.
f. Leakage flow at maximum system pressure differential.
g. Torque required at worst case condition for sizing actuator.
h. Actuator selection indicating torque provided.
i. Actuator signal to control damper (on, close or modulate).
j. Actuator position on loss of power.
k. Actuator position on loss of control signal.

4. Schedule and design calculations for selecting flow instruments.
 a. Instrument flow range.
 b. Project design and minimum flow conditions with corresponding accuracy, control signal to transmitter and output signal for remote control.
 c. Extreme points of extended flow range with corresponding accuracy, control signal to transmitter and output signal for remote control.
 d. Pressure-differential loss across instrument at Project design flow conditions.
 e. Where flow sensors are mated with pressure transmitters, provide information for each instrument separately and as an operating pair.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings:

1. Plan drawings and corresponding product installation details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

 a. Product installation location shown in relationship to room, duct, pipe and equipment.
 b. Structural members to which products will be attached.
 c. Wall-mounted instruments located in finished space showing relationship to light switches, fire-alarm devices and other installed devices.
 d. Size and location of wall access panels for products installed behind walls and requiring access.

2. Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

 a. Ceiling components.
 b. Size and location of access panels for products installed above inaccessible ceiling assemblies and requiring access.
 c. Items penetrating finished ceiling including the following:

 1) Lighting fixtures.
 2) Air outlets and inlets.
 3) Speakers.
 4) Sprinklers.
 5) Access panels.
 6) Motion sensors.
7) Pressure sensors.
8) Temperature sensors and other DDC control system instruments.

B. Product Certificates:
 1. Data Communications Protocol Certificates: Certifying that each proposed DDC system component complies with ASHRAE 135.

C. Product Test Reports: For each product that requires testing to be performed by manufacturer.

D. Preconstruction Test Reports: For each separate test performed.

E. Source quality-control reports.

F. Field quality-control reports.

G. Sample Warranty: For manufacturer's warranty.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For DDC system to include in emergency, operation and maintenance manuals.

 1. Include the following:
 a. Project Record Drawings of as-built versions of submittal Shop Drawings provided in electronic PDF format.
 b. Testing and commissioning reports and checklists of completed final versions of reports, checklists, and trend logs.
 c. As-built versions of submittal Product Data.
 d. Names, addresses, e-mail addresses and 24-hour telephone numbers of Installer and service representatives for DDC system and products.
 e. Operator's manual with procedures for operating control systems including logging on and off, handling alarms, producing point reports, trending data, overriding computer control and changing set points and variables.
 f. Programming manuals with description of programming language and syntax, of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.
 g. Engineering, installation, and maintenance manuals that explain how to:
 1) Design and install new points, panels, and other hardware.
 2) Perform preventive maintenance and calibration.
 3) Debug hardware problems.
 4) Repair or replace hardware.
 h. Documentation of all programs created using custom programming language including set points, tuning parameters, and object database.
 i. Backup copy of graphic files, programs, and database on electronic media such as DVDs.
j. List of recommended spare parts with part numbers and suppliers.
k. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware including computer equipment and sensors.
l. Complete original-issue copies of furnished software, including operating systems, custom programming language, operator workstation software, and graphics software.
m. Licenses, guarantees, and warranty documents.
n. Recommended preventive maintenance procedures for system components, including schedule of tasks such as inspection, cleaning, and calibration; time between tasks; and task descriptions.
o. Owner training materials.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials and parts that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

B. Include product manufacturers' recommended parts lists for proper product operation over four-year period following warranty period. Parts list shall be indicated for each year.

C. Furnish parts, as indicated by manufacturer's recommended parts list, for product operation during two-year period following warranty period.

1.9 QUALITY ASSURANCE

A. DDC System Provider Qualifications:

1. Authorized representative of, and trained by, DDC system manufacturer.
2. In-place facility located within 50 miles of Project.
3. Demonstrated past experience with installation of DDC system products being installed for period within five consecutive years before time of bid.
4. Demonstrated past experience on five projects of similar complexity, scope and value.
5. Each person assigned to Project shall have demonstrated past experience.
6. Staffing resources of competent and experienced full-time employees that are assigned to execute work according to schedule.
7. Service and maintenance staff assigned to support Project during warranty period.
8. Product parts inventory to support on-going DDC system operation for a period of not less than 5 years after Substantial Completion.
9. DDC system manufacturer's backing to take over execution of Work if necessary, to comply with requirements indicated. Include Project-specific written letter, signed by manufacturer's corporate officer, if requested.

B. Testing Agency Qualifications: Member company of NETA.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

C. Welding Qualifications: Qualify procedures and personnel according to the following:
1. AWS D1.1/D1.1M, "Structural Welding Code - Steel."
2. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."

D. Pipe and Pressure-Vessel Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

1.10 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace products that fail in materials or workmanship within specified warranty period.

1. Failures shall be adjusted, repaired, or replaced at no additional cost or reduction in service to Owner.
2. Include updates or upgrades to software and firmware if necessary, to resolve deficiencies.
 a. Install updates only after receiving Owner's written authorization.
3. Warranty service shall occur during normal business hours and commence within 24 hours of Owner's warranty service request.
4. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 DDC SYSTEM MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Honeywell International Inc.
2. Johnson Controls, Inc.

2.2 DDC SYSTEM DESCRIPTION

A. Microprocessor-based monitoring and control including analog/digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices to achieve a set of predefined conditions.

1. DDC system shall consist of a high-speed, peer-to-peer network of distributed DDC controllers, other network devices, operator interfaces, and software.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2.3 WEB ACCESS

A. DDC system shall be Web based or Web compatible.

1. Web-Based Access to DDC System:
 a. DDC system software shall be based on server thin-client architecture, designed around open standards of Web technology. DDC system server shall be accessed using a Web browser over DDC system network, using Owner's LAN, and remotely over Internet.
 b. Intent of thin-client architecture is to provide operators complete access to DDC system via a Web browser. No special software other than a Web browser shall be required to access graphics, point displays, and trends; to configure trends, points, and controllers; and to edit programming.
 c. Web access shall be password protected.

2.4 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional to design DDC system to satisfy requirements indicated.

1. System Performance Objectives:
 a. DDC system shall manage HVAC systems.
 b. DDC system control shall operate HVAC systems to achieve optimum operating costs while using least possible energy and maintaining specified performance.
 c. DDC system shall respond to power failures, HVAC equipment failures, and adverse and emergency conditions encountered through connected I/O points.
 d. DDC system shall operate while unattended by an operator and through operator interaction.
 e. DDC system shall record trends and transaction of events and produce report information such as performance, energy, occupancies, and equipment operation.

B. Surface-Burning Characteristics: Products installed in ducts, equipment, and return-air paths shall comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame-Spread Index: 25 or less.
2. Smoke-Developed Index: 50 or less.

C. DDC System Speed:

1. Response Time of Connected I/O:
 a. AI point values connected to DDC system shall be updated at least every five seconds for use by DDC controllers. Points used globally shall also comply with this requirement.
b. BI point values connected to DDC system shall be updated at least every five seconds for use by DDC controllers. Points used globally shall also comply with this requirement.

c. AO points connected to DDC system shall begin to respond to controller output commands within two second(s). Global commands shall also comply with this requirement.

d. BO point values connected to DDC system shall respond to controller output commands within two second(s). Global commands shall also comply with this requirement.

2. Display of Connected I/O:

 a. Analog point COV connected to DDC system shall be updated and displayed at least every five seconds for use by operator.

 b. Binary point COV connected to DDC system shall be updated and displayed at least every five seconds for use by operator.

 c. Alarms of analog and digital points connected to DDC system shall be displayed within 30 seconds of activation or change of state.

 d. Graphic display refresh shall update within eight seconds.

 e. Point change of values and alarms displayed from workstation to workstation when multiple operators are viewing from multiple workstations shall not exceed graphic refresh rate indicated.

D. Network Bandwidth: Design each network of DDC system to include at least 30 percent available spare bandwidth with DDC system operating under normal and heavy load conditions indicated. Calculate bandwidth usage and apply a safety factor to ensure that requirement is satisfied when subjected to testing under worst case conditions.

E. DDC System Data Storage:

 1. Include capability to archive not less than 24 consecutive months of historical data for all I/O points connected to system, including alarms, event histories, transaction logs, trends and other information indicated.

 2. Local Storage:

 a. Provide server with data storage indicated. Server(s) shall use IT industry standard database platforms and be capable of functions described in "DDC Data Access" Paragraph.

 3. Cloud Storage:

 a. Provide application-based and web browser interfaces to configure, upload, download, and manage data, and service plan with storage adequate to store all data for term indicated. Cloud storage shall use IT industry standard database platforms such as Microsoft SQL Server and Microsoft Data Engine (MSDE).

F. DDC Data Access:

 1. When logged into the system, operator shall be able to also interact with any DDC controller connected to DDC system as required for functional operation of DDC system.
2. System(s) shall be used for application configuration; for archiving, reporting and trending of data; for operator transaction archiving and reporting; for network information management; for alarm annunciation; and for operator interface tasks and controls application management.

G. Future Expandability:

1. DDC system size shall be expandable to an ultimate capacity of at least two times total I/O points indicated.
2. Additional DDC controllers, I/O and associated wiring shall be all that is needed to achieve ultimate capacity. Initial network infrastructure shall be designed and installed to support ultimate capacity.
3. Operator interfaces installed initially shall not require hardware and software additions and revisions for ultimate capacity.

H. Input Point Displayed Accuracy: Input point displayed values shall meet following end-to-end overall system accuracy, including errors associated with meter, sensor, transmitter, lead wire or cable, and analog to digital conversion.

1. Energy:
 a. Thermal: Within 5 percent of reading.
 b. Electric Power: Within 1 percent of reading.
 c. Requirements indicated on Drawings for meters not supplied by utility.

2. Flow:
 a. Air: Within 5 percent of design flow rate.
 b. Air (Terminal Units): Within 5 percent of design flow rate.

3. Gas:
 a. Carbon Dioxide: Within 50 ppm.

4. Moisture (Relative Humidity):
 a. Air: Within 5 percent RH.
 b. Space: Within 5 percent RH.
 c. Outdoor: Within 5 percent RH.

5. Pressure:
 a. Air, Ducts and Equipment: 1 percent of instrument range.

6. Speed: Within 5 percent of reading.

7. Temperature, Dry Bulb:
 a. Air: Within 1 deg F.
 b. Space: Within 1 deg F.
c. Outdoor: Within 2 deg F.
d. Temperature Difference: Within 0.25 deg F.
e. Other Temperatures Not Indicated: Within 1 deg F.

8. Temperature, Wet Bulb:

a. Air: Within 0.5 deg F
b. Space: Within 0.5 deg F
c. Outdoor: Within 1 deg F

I. Precision of I/O Reported Values: Values reported in database and displayed shall have following precision:

1. Current:

 a. Milliamperes: Nearest 1/100th of a milliampere.
 b. Amperes: Nearest 1/10th of an ampere up to 100 A; nearest ampere for 100 A and more.

2. Energy:

 a. Electric Power:

 1) Rate (Watts): Nearest 1/10th of a watt through 1000 W.
 2) Rate (Kilowatts): Nearest 1/10th of a kilowatt through 1000 kW; nearest kilowatt above 1000 kW.
 3) Usage (Kilowatt-Hours): Nearest kilowatt through 10,000 kW; nearest 10 kW between 10,000 and 100,000 kW; nearest 100 kW for above 100,000 kW.

 b. Thermal, Rate:

 1) Heating: For Btu/h, nearest Btu/h up to 1000 Btu/h; nearest 10 Btu/h between 1000 and 10,000 Btu/h; nearest 100 Btu/h for above 10,000 Btu/h. For Mbtu, round to nearest Mbtu up to 1000 Mbtu; nearest 10 Mbtu between 1000 and 10,000 Mbtu; nearest 100 Mbtu above 10,000 Mbtu.
 2) Cooling: For tons, nearest ton up to 1000 tons; nearest 10 tons between 1000 and 10,000 tons; nearest 100 tons above 10,000 tons.

 c. Thermal, Usage:

 1) Heating: For Btu, nearest Btu up to 1000 Btu; nearest 10 Btu between 1000 and 10,000 Btu; nearest 100 Btu for above 10,000 Btu. For Mbtu, round to nearest Mbtu up to 1000 Mbtu; nearest 10 Mbtu between 1000 and 10,000 Mbtu; nearest 100 Mbtu above 10,000 Mbtu.
 2) Cooling: For ton-hours, nearest ton-hours up to 1000 ton-hours; nearest 10 ton-hours between 1000 and 10,000 ton-hours; nearest 100 tons above 10,000 tons.

3. Flow:
a. Air: Nearest 1/10th of a cfm through 100 cfm; nearest cfm between 100 and 1000 cfm; nearest 10 cfm between 1000 and 10,000 cfm; nearest 100 cfm above 10,000 cfm.
b. Water: Nearest 1/10th gpm through 100 gpm; nearest gpm between 100 and 1000 gpm; nearest 10 gpm between 1000 and 10,000 gpm; nearest 100 gpm above 10,000 gpm.
c. Steam: Nearest 1/10th lb/hr through 100 lbs/hr; nearest lbs/hr between 100 and 1000 lbs/hr; nearest 10 lbs/hr above 1000 lbs/hr.

4. Gas:

5. Moisture (Relative Humidity):
 a. Relative Humidity (Percentage): Nearest 1 percent.

6. Level: Nearest 1/100th of an inch through 10 inches; nearest 1/10 of an inch between 10 and 100 inches; nearest inch above 100 inches.

7. Speed:
 a. Rotation (rpm): Nearest 1 rpm.
 b. Velocity: Nearest 1/10th fpm through 100 fpm; nearest fpm between 100 and 1000 fpm; nearest 10 fpm above 1000 fpm.

9. Pressure:
 a. Air, Ducts and Equipment: Nearest 1/10th in. w.c.
 b. Space: Nearest 1/100th in. w.c.

10. Temperature:
 a. Air, Ducts and Equipment: Nearest 1/10th of a degree.
 b. Outdoor: Nearest degree.
 c. Space: Nearest 1/10th of a degree.

11. Vibration: Nearest 1/10th in/s.

12. Voltage: Nearest 1/10 volt up to 100 V; nearest volt above 100 V.

J. Control Stability: Control variables indicated within the following limits:

1. Flow:
 a. Air, Ducts and Equipment, except Terminal Units: Within 2 percent of design flow rate.
 b. Air, Terminal Units: Within 5 percent of design flow rate.

2. Gas:
a. Carbon Dioxide: Within 50 ppm.

b.

3. Moisture (Relative Humidity):
 a. Air: Within 2 percent RH.
 b. Space: Within 5 percent RH.
 c. Outdoor: Within 5 percent RH.

4. Pressure:
 a. Air, Ducts and Equipment: 1 percent of instrument range.

5. Temperature, Dew Point:
 a. Air: Within 1 deg F.

6. Temperature, Dry Bulb:
 a. Air: Within 2 deg F.
 b. Space: Within 2 deg F.

7. Temperature, Wet Bulb:
 a. Air: Within 1 deg F.

K. Environmental Conditions for Controllers, Gateways, and Routers:

1. Products shall operate without performance degradation under ambient environmental temperature, pressure and humidity conditions encountered for installed location.
 a. If product alone cannot comply with requirement, install product in a protective enclosure that is isolated and protected from conditions impacting performance. Enclosure shall be internally insulated, electrically heated, cooled and ventilated as required by product and application.

2. Products shall be protected with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Products not available with integral enclosures complying with requirements indicated shall be housed in protective secondary enclosures. Installed location shall dictate the following NEMA 250 enclosure requirements:
 a. Outdoors, Protected: Type 2.
 b. Outdoors, Unprotected: Type 4.
 c. Indoors, Heated with Filtered Ventilation: Type 1.
 d. Indoors, Heated with Non-Filtered Ventilation: Type 2.
 e. Indoors, Heated and Air Conditioned: Type 1.
 f. Within Duct Systems and Air-Moving Equipment Not Exposed to Possible Condensation: Type 2.
 g. Within Duct Systems and Air-Moving Equipment Exposed to Possible Condensation: Type 4.
h. Hazardous Locations: Explosion-proof rating for condition.

L. Environmental Conditions for Instruments and Actuators:

1. Instruments and actuators shall operate without performance degradation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified and encountered for installed location.

 a. If instruments and actuators alone cannot comply with requirement, install instruments and actuators in protective enclosures that are isolated and protected from conditions impacting performance. Enclosure shall be internally insulated, electrically heated, cooled and ventilated as required by instrument and application.

2. Instruments, actuators and accessories shall be protected with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Instruments and actuators not available with integral enclosures complying with requirements indicated shall be housed in protective secondary enclosures. Installed location shall dictate the following NEMA 250 enclosure requirements:

 a. Outdoors, Protected: Type 2.
 b. Outdoors, Unprotected: Type 4.
 c. Indoors, Heated with Filtered Ventilation: Type 1.
 d. Indoors, Heated with Non-Filtered Ventilation: Type 2.
 e. Indoors, Heated and Air-conditioned: Type 1.
 f. Within Duct Systems and Air-Moving Equipment Not Exposed to Possible Condensation: Type 2.
 g. Within Duct Systems and Air-Moving Equipment Exposed to Possible Condensation: Type 4.
 h. Hazardous Locations: Explosion-proof rating for condition.

M. DDC System Reliability:

1. Design, install and configure DDC controllers, routers, to yield a MTBF of at least 40,000 hours, based on a confidence level of at least 90 percent. MTBF value shall include any failure for any reason to any part of products indicated.

2. If required to comply with MTBF indicated, include DDC system and product redundancy to maintain DCC system, and associated systems and equipment that are being controlled, operational and under automatic control.

3. Critical systems and equipment that require a higher degree of DDC system redundancy than MTBF indicated shall be indicated on Drawings.

N. Electric Power Quality:

1. Power-Line Surges:

 a. Protect susceptible DDC system products connected to ac power circuits from power-line surges to comply with requirements of IEEE C62.41.
 b. Do not use fuses for surge protection.
c. Test protection in the normal mode and in the common mode, using the following two waveforms:

1) 10-by-1000-mic.sec. waveform with a peak voltage of 1500 V and a peak current of 60 A.
2) 8-by-20-mic.sec. waveform with a peak voltage of 1000 V and a peak current of 500 A.

2. Power Conditioning:

a. Protect susceptible DDC system products connected to ac power circuits from irregularities and noise rejection. Characteristics of power-line conditioner shall be as follows:

1) At 85 percent load, output voltage shall not deviate by more than plus or minus 1 percent of nominal when input voltage fluctuates between minus 20 percent to plus 10 percent of nominal.
2) During load changes from zero to full load, output voltage shall not deviate by more than plus or minus 3 percent of nominal.
3) Accomplish full correction of load switching disturbances within five cycles, and 95 percent correction within two cycles of onset of disturbance.
4) Total harmonic distortion shall not exceed 3-1/2 percent at full load.

3. Ground Fault: Protect products from ground fault by providing suitable grounding. Products shall not fail due to ground fault condition.

O. Backup Power Source:

1. HVAC systems and equipment served by a backup power source shall have associated DDC system products that control such systems and equipment also served from a backup power source.

P. UPS:

1. DDC system products powered by UPS units shall include the following:
 a. Servers.
 b. DDC controllers, except application-specific controllers.

Q. Continuity of Operation after Electric Power Interruption:

1. Equipment and associated factory-installed controls, field-installed controls, electrical equipment, and power supply connected to building normal and backup power systems shall automatically return equipment and associated controls to operating state occurring immediately before loss of normal power, without need for manual intervention by operator when power is restored either through backup power source or through normal power if restored before backup power is brought online.
2.5 SYSTEM ARCHITECTURE

A. System architecture shall consist of no more than two or three levels of LANs.

1. Level one LAN shall connect network controllers and operator workstations.
2. Level one or Level two LAN shall connect programmable application controllers to other programmable application controllers, and to network controllers.
3. Level two or Level three LAN shall connect application-specific controllers to programmable application controllers and network controllers.
4. Level two or Level three LAN shall connect application-specific controllers to application-specific controllers.

B. Minimum Data Transfer and Communication Speed:

1. LAN Connecting Operator Workstations and Network Controllers: 100 Mbps.
2. LAN Connecting Programmable Application Controllers: 100 kbps.
3. LAN Connecting Application-Specific Controllers: 19,200 bps.

C. DDC system shall consist of dedicated LANs that are not shared with other building systems and tenant data and communication networks.

D. System architecture shall be modular and have inherent ability to expand to not less than two times system size indicated with no impact to performance indicated.

E. System architecture shall perform modifications without having to remove and replace existing network equipment.

F. Number of LANs and associated communication shall be transparent to operator. All I/O points residing on any LAN shall be capable of global sharing between all system LANs.

G. System design shall eliminate dependence on any single device for system alarm reporting and control execution. Each controller shall operate independently by performing its' own control, alarm management and historical data collection.

H. Special Network Architecture Requirements:

1. Air-Handling Systems: For control applications of an air-handling system that consists of air-handling unit(s) and VAV terminal units, include a dedicated LAN of application-specific controllers serving VAV terminal units connected directly to controller that is controlling air-handling system air-handling unit(s). Basically, create a DDC system LAN that aligns with air-handling system being controlled.

2.6 DDC SYSTEM OPERATOR INTERFACES

A. Operator Means of System Access: Operator shall be able to access entire DDC system through any of multiple means, including, but not limited to, the following:

1. Portable operator terminal with hardwired connection through LAN port.
2. Portable operator workstation with wireless connection through LAN router.
3. Mobile device and application with secured wireless connection through LAN router or cellular data service.
4. Remote connection through web access.

B. Access to system, regardless of operator means used, shall be transparent to operator.

C. Network Ports: For hardwired connection of desktop or portable workstation. Network port shall be easily accessible, properly protected, clearly labeled, and installed at the following locations:
 1. Each different roof level with roof-mounted air-handling units or rooftop units.

D. POT:
 1. Connect DDC controller through a communications port local to controller.
 2. Able to communicate with any DDC system controller that is directly connected or connected to DDC system.

E. Mobile Device:
 1. Connect to system through a wireless router connected to LAN.
 2. Able to communicate with any DDC controller connected to DDC system using a dedicated application.

F. Critical Alarm Reporting:
 1. Operator-selected critical alarms shall be sent by DDC system to notify operator of critical alarms that require immediate attention.
 2. DDC system shall send alarm notification to multiple recipients that are assigned for each alarm.
 3. DDC system shall notify recipients by any or all means, including e-mail, text message and prerecorded phone message to mobile and landline phone numbers.

G. Simultaneous Operator Use: Capable of accommodating up to five simultaneous operators that are accessing DDC system through any one of operator interfaces indicated.

2.7 NETWORKS

A. Acceptable networks for connecting workstations, mobile devices, and network controllers include the following:
 1. ATA 878.1, ARCNET.
 2. CEA-709.1-C.
 3. IP.
 4. IEEE 8802-3, Ethernet.

B. Acceptable networks for connecting programmable application controllers include the following:
 1. ATA 878.1, ARCNET.
2. **CEA-709.1-C.**
3. **IP.**
4. **IEEE 8802-3, Ethernet.**

C. Acceptable networks for connecting application-specific controllers include the following:
 1. **ATA 878.1, ARCNET.**
 2. **CEA-709.1-C.**
 3. **EIA-485A.**
 4. **IP.**
 5. **IEEE 8802-3, Ethernet.**

2.8 NETWORK COMMUNICATION PROTOCOL

A. Network communication protocol(s) used throughout entire DDC system shall be open to Owner and available to other companies for use in making future modifications to DDC system.

B. **ASHRAE 135 Protocol:**
 1. ASHRAE 135 communication protocol shall be sole and native protocol used throughout entire DDC system.
 2. DDC system shall not require use of gateways except to integrate HVAC equipment and other building systems and equipment, not required to use ASHRAE 135 communication protocol.
 3. If used, gateways shall connect to DDC system using ASHRAE 135 communication protocol and Project object properties and read/write services indicated by interoperability schedule.
 4. Operator workstations, controllers and other network devices shall be tested and listed by BACnet Testing Laboratories.

2.9 PORTABLE OPERATOR TERMINAL

A. Description: Handheld device with integral keypad or touch screen operator interface.

B. Display: Multiple lines of text display for use in operator interaction with DDC system.

C. Cable: Flexible cable, at least 36 inches long, with a plug-in jack for connection to DDC controllers, network ports or instruments with an integral LAN port. As an alternative to hardwired connection, POT shall be accessible to DDC controllers through a wireless network connection.

D. POT shall be powered through network connection.

E. Connection of POT to DDC system shall not interrupt or interfere with normal network operation in any way, prevent alarms from being transmitted, or preclude central initiated commands and system modification.

F. POT shall give operator the ability to do the following:
1. Display and monitor BI point status.
2. Change BO point set point (on or off, open or closed).
3. Display and monitor analog point values.
4. Change analog control set points.
5. Command a setting of AO point.
6. Display and monitor I/O point in alarm.
7. Add a new or delete an existing I/O point.
8. Enable and disable I/O points, initiators, and programs.
9. Display and change time and date.
10. Display and change time schedules.
11. Display and change run-time counters and run-time limits.
12. Display and change time and event initiation.
13. Display and change control application and DDC parameters.
14. Display and change programmable offset values.
15. Access DDC controller initialization routines and diagnostics.

2.10 SERVERS

A. Performance Requirements:

1. Performance requirements may dictate equipment exceeding minimum requirements indicated.
2. Energy Star compliant.

3. Redundant Array of Independent Disks: One configuration.
4. Drive Bays: Eight at 2.5 inches or eight at 3.5 inches.
5. Hard-Drive Storage: Two drives
7. DVD +RW Drive.
8. Color, flat-screen display with minimum 24 inches diagonal viewable area.
10. Next-day on-site warranty for three-year period following Substantial Completion.

B. Servers shall include the following:

1. Full-feature backup server (server and backup minimum requirement).
2. Software licenses.
3. Cable installation between server(s) and network.

C. Web Server:

1. If required to be separate, include Web server hardware and software to match, except backup server is not required.
2. Firewalls between server Web and networks.
3. Password protection for access to server from Web server.
4. CAT-5e or CAT-6 cable installation between the server(s) and building Ethernet network.

D. Power each server through a dedicated UPS unit.
2.11 SYSTEM SOFTWARE

A. System Software Minimum Requirements:

1. Real-time multitasking and multiuser 64-bit operating system that allows concurrent multiple operator workstations operating and concurrent execution of multiple real-time programs and custom program development.

2. Operating system shall be capable of operating DOS and Microsoft Windows applications.

3. Database management software shall manage all data on an integrated and non-redundant basis. Additions and deletions to database shall be without detriment to existing data. Include cross linkages so no data required by a program can be deleted by an operator until that data have been deleted from respective programs.

4. Network communications software shall manage and control multiple network communications to provide exchange of global information and execution of global programs.

5. Operator interface software shall include day-to-day operator transaction processing, alarm and report handling, operator privilege level and data segregation control, custom programming, and online data modification capability.

6. Scheduling software shall schedule centrally based time and event, temporary, and exception day programs.

B. Operator Interface Software:

1. Minimize operator training through use of English language prorating and English language point identification.

2. Minimize use of a typewriter-style keyboard through use of a pointing device similar to a mouse.

3. Operator sign-off shall be a manual operation or, if no keyboard or mouse activity takes place, an automatic sign-off.

4. Automatic sign-off period shall be programmable from one to 60 minutes in one-minute increments on a per operator basis.

5. Operator sign-on and sign-off activity shall be recorded and sent to printer.

6. Security Access:

 a. Operator access to DDC system shall be under password control.

 b. An alphanumeric password shall be field assignable to each operator.

 c. Operators shall be able to access DDC system by entry of proper password.

 d. Operator password shall be same regardless of which computer or other interface means is used.

 e. Additions or changes made to passwords shall be updated automatically.

 f. Each operator shall be assigned an access level to restrict access to data and functions the operator is capable of performing.

 g. Software shall have at least five access levels.

 h. Each menu item shall be assigned an access level so that a one-for-one correspondence between operator assigned access level(s) and menu item access level(s) is required to gain access to menu item.

 i. Display menu items to operator with those capable of access highlighted. Menu and operator access level assignments shall be online programmable and under password control.
7. Data Segregation:
 a. Include data segregation for control of specific data routed to a workstation, to an
 operator or to a specific output device, such as a printer.
 b. Include at least 32 segregation groups.
 c. Segregation groups shall be selectable such as "fire points," "fire points on second
 floor," "space temperature points," "HVAC points," and so on.
 d. Points shall be assignable to multiple segregation groups. Display and output of
 data to printer or monitor shall occur where there is a match of operator or
 peripheral segregation group assignment and point segregations.
 e. Alarms shall be displayed and printed at each peripheral to which segregation
 allows, but only those operators assigned to peripheral and having proper
 authorization level will be allowed to acknowledge alarms.
 f. Operators and peripherals shall be assignable to multiple segregation groups and
 all assignments are to be online programmable and under password control.

8. Operators shall be able to perform commands including, but not limited to, the following:
 a. Start or stop selected equipment.
 b. Adjust set points.
 c. Add, modify, and delete time programming.
 d. Enable and disable process execution.
 e. Lock and unlock alarm reporting for each point.
 f. Enable and disable totalization for each point.
 g. Enable and disable trending for each point.
 h. Override control loop set points.
 i. Enter temporary override schedules.
 j. Define holiday schedules.
 k. Change time and date.
 l. Enter and modify analog alarm limits.
 m. Enter and modify analog warning limits.
 n. View limits.
 o. Enable and disable demand limiting.
 p. Enable and disable duty cycle.
 q. Display logic programming for each control sequence.

9. Reporting:
 a. Generated automatically and manually.
 b. Sent to displays, printers and disk files.
 c. Types of Reporting:
 1) General listing of points.
 2) List points currently in alarm.
 3) List of off-line points.
 4) List points currently in override status.
 5) List of disabled points.
 6) List points currently locked out.
 7) List of items defined in a "Follow-Up" file.
 8) List weekly schedules.
9) List holiday programming.
10) List of limits and deadbands.

10. Summaries: For specific points, for a logical point group, for an operator selected group(s), or for entire system without restriction due to hardware configuration.

C. Graphic Interface Software:

1. Include a full interactive graphical selection means of accessing and displaying system data to operator. Include at least five levels with the penetration path operator assignable (for example, site, building, floor, air-handling unit, and supply temperature loop). Native language descriptors assigned to menu items are to be operator defined and modifiable under password control.

2. Include a hierarchical-linked dynamic graphic operator interface for accessing and displaying system data and commanding and modifying equipment operation. Interface shall use a pointing device with pull-down or penetrating menus, color and animation to facilitate operator understanding of system.

3. Include at least 10 levels of graphic penetration with the hierarchy operator assignable.

4. Descriptors for graphics, points, alarms and such shall be modified through operator's workstation under password control.

5. Graphic displays shall be online user definable and modifiable using the hardware and software provided.

6. Data to be displayed within a graphic shall be assignable regardless of physical hardware address, communication or point type.

7. Graphics are to be online programmable and under password control.

8. Points may be assignable to multiple graphics where necessary to facilitate operator understanding of system operation.

9. Graphics shall also contain software points.

10. Penetration within a graphic hierarchy shall display each graphic name as graphics are selected to facilitate operator understanding.

11. Back-trace feature shall permit operator to move upward in the hierarchy using a pointing device. Back trace shall show all previous penetration levels. Include operator with option of showing each graphic full screen size with back trace as horizontal header or by showing a "stack" of graphics, each with a back trace.

12. Display operator accessed data on the monitor.

13. Operator shall select further penetration using pointing device to click on a site, building, floor, area, equipment, and so on. Defined and linked graphic below that selection shall then be displayed.

14. Include operator with means to directly access graphics without going through penetration path.

15. Dynamic data shall be assignable to graphics.

16. Display points (physical and software) with dynamic data provided by DDC system with appropriate text descriptors, status or value, and engineering unit.

17. Use color, rotation, or other highly visible means, to denote status and alarm states. Color shall be variable for each class of points, as chosen by operator.

18. Points shall be dynamic with operator adjustable update rates on a per point basis from one second to over a minute.

19. For operators with appropriate privilege, points shall be commanded directly from display using pointing device.
a. For an analog command point such as set point, current conditions and limits shall be displayed and operator can position new set point using pointing device.

b. For a digital command point such as valve position, valve shall show its current state such as open or closed and operator could select alternative position using pointing device.

c. Keyboard equivalent shall be available for those operators with that preference.

20. Operator shall be able to split or resize viewing screen into quadrants to show one graphic on one quadrant of screen and other graphics or spreadsheet, bar chart, word processing, curve plot and other information on other quadrants on screen. This feature shall allow real-time monitoring of one part of system while displaying other parts of system or data to better facilitate overall system operation.

21. Help Features:

a. On-line context-sensitive help utility to facilitate operator training and understanding.

b. Bridge to further explanation of selected keywords. Document shall contain text and graphics to clarify system operation.

1) If help feature does not have ability to bridge on keywords for more information, a complete set of user manuals shall be provided in an indexed word-processing program, which shall run concurrently with operating system software.

c. Available for Every Menu Item:

1) Index items for each system menu item.

22. Graphic generation software shall allow operator to add, modify, or delete system graphic displays.

a. Include libraries of symbols depicting HVAC symbols such as fans, coils, filters, dampers, valves pumps, and electrical symbols.

b. Graphic development package shall use a pointing device in conjunction with a drawing program to allow operator to perform the following:

1) Define background screens.
2) Define connecting lines and curves.
3) Locate, orient and size descriptive text.
4) Define and display colors for all elements.
5) Establish correlation between symbols or text and associated system points or other displays.

D. Project-Specific Graphics: Graphics documentation including, but not limited to, the following:

1. Site plan showing each building, and additional site elements, which are being controlled or monitored by DDC system.

2. Plan for each building floor, including interstitial floors, and each roof level of each building, showing the following:
a. Room layouts with room identification and name.
b. Locations and identification of all monitored and controlled HVAC equipment and other equipment being monitored and controlled by DDC system.
c. Location and identification of each hardware point being controlled or monitored by DDC system.

3. Control schematic for each of following, including a graphic system schematic representation with point identification, set point and dynamic value indication, sequence of operation and control logic diagram.

4. Graphic display for each piece of equipment connected to DDC system through a data communications link. Include dynamic indication of all points associated with equipment.

5. DDC system network riser diagram that shows schematic layout for entire system including all networks and all controllers, and other network devices.

E. Customizing Software:

1. Software to modify and tailor DDC system to specific and unique requirements of equipment installed, to programs implemented and to staffing and operational practices planned.
2. Online modification of DDC system configuration, program parameters, and database using menu selection and keyboard entry of data into preformatted display templates.
3. As a minimum, include the following modification capability:

 a. Operator assignment shall include designation of operator passwords, access levels, point segregation and auto sign-off.
 b. Peripheral assignment capability shall include assignment of segregation groups and operators to consoles and printers, designation of backup workstations and printers, designation of workstation header points and enabling and disabling of print-out of operator changes.
 c. System configuration and diagnostic capability shall include communications and peripheral port assignments, DDC controller assignments to network, DDC controller enable and disable, assignment of command trace to points and application programs and initiation of diagnostics.
 d. System text addition and change capability shall include English or native language descriptors for points, segregation groups and access levels and action messages for alarms, run time and trouble condition.
 e. Time and schedule change capability shall include time and date set, time and occupancy schedules, exception and holiday schedules and daylight savings time schedules.
 f. Point related change capability shall include the following:

 1) System and point enable and disable.
 2) Run-time enable and disable.
 3) Assignment of points to segregation groups, calibration tables, lockout, and run time and to a fixed I/O value.
 4) Assignment of alarm and warning limits.
 g. Application program change capability shall include the following:

 1) Enable and disable of software programs.
2) Programming changes.
3) Assignment of comfort limits, global points, time and event initiators, time and event schedules and enable and disable time and event programs.

4. Software shall allow operator to add points, or groups of points, to DDC system and to link them to energy optimization and management programs. Additions and modifications shall be online programmable using operator workstation, downloaded to other network devices and entered into their databases. After verification of point additions and associated program operation, database shall be uploaded and recorded on hard drive and disk for archived record.

5. Include high-level language programming software capability for implementation of custom DDC programs. Software shall include a compiler, linker, and up- and down-load capability.

6. Include a library of DDC algorithms, intrinsic control operators, arithmetic, logic and relational operators for implementation of control sequences. Also include, as a minimum, the following:
 a. Proportional control (P).
 b. Proportional plus integral (PI).
 c. Proportional plus integral plus derivative (PID).
 d. Adaptive and intelligent self-learning control.

 1) Algorithm shall monitor loop response to output corrections and adjust loop response characteristics according to time constant changes imposed.
 2) Algorithm shall operate in a continuous self-learning manner and shall retain in memory a stored record of system dynamics so that on system shut down and restart, learning process starts from where it left off.

7. Fully implemented intrinsic control operators including sequence, reversing, ratio, time delay, time of day, highest select AO, lowest select AO, analog controlled digital output, analog control AO, and digitally controlled AO.

8. Logic operators such as "And," "Or," "Not," and others that are part of a standard set available with a high-level language.

9. Arithmetic operators such as "Add," "Subtract," "Multiply," "Divide," and others that are part of a standard set available with a high-level language.

10. Relational operators such as "Equal To," "Not Equal To," "Less Than," "Greater Than," and others that are part of a standard set available with a high-level language.

F. Alarm Handling Software:

1. Include alarm handling software to report all alarm conditions monitored and transmitted through DDC controllers and other network devices.

2. Include first in, first out handling of alarms according to alarm priority ranking, with most critical alarms first, and with buffer storage in case of simultaneous and multiple alarms.

3. Alarm handling shall be active at all times to ensure that alarms are processed even if an operator is not currently signed on to DDC system.

4. Alarms display shall include the following:
a. Indication of alarm condition such as "Abnormal Off," "Hi Alarm," and "Low Alarm."
b. "Analog Value" or "Status" group and point identification with native language point descriptor such as "Space Temperature, Building 110, 2nd Floor, Room 212."
c. Discrete per point alarm action message, such as "Call Maintenance Dept. Ext-5561."
d. Include extended message capability to allow assignment and printing of extended action messages. Capability shall be operator programmable and assignable on a per point basis.

5. Alarms shall be directed to appropriate operator workstations, printers, and individual operators by privilege level and segregation assignments.

6. Send e-mail alarm messages to designated operators.

7. Send e-mail, page, text and voice messages to designated operators for critical alarms.

8. Alarms shall be categorized and processed by class.

 a. Class 1:

 1) Associated with fire, security and other extremely critical equipment monitoring functions; have alarm, trouble, return to normal, and acknowledge conditions printed and displayed.
 2) Unacknowledged alarms to be placed in unacknowledged alarm buffer.
 3) All conditions shall cause an audible sound and shall require individual acknowledgment to silence audible sound.

 b. Class 2:

 1) Critical, but not life-safety related, and processed same as Class 1 alarms, except do not require individual acknowledgment.
 2) Acknowledgement may be through a multiple alarm acknowledgment.

 c. Class 3:

 1) General alarms; printed, displayed and placed in unacknowledged alarm buffer queues.
 2) Each new alarm received shall cause an audible sound. Audible sound shall be silenced by "acknowledging" alarm or by pressing a "silence" key.
 3) Acknowledgement of queued alarms shall be either on an individual basis or through a multiple alarm acknowledgement.
 4) Alarms returning to normal condition shall be printed and not cause an audible sound or require acknowledgment.

 d. Class 4:

 1) Routine maintenance or other types of warning alarms.
 2) Alarms to be printed only, with no display, no audible sound and no acknowledgment required.
9. Include an unacknowledged alarm indicator on display to alert operator that there are unacknowledged alarms in system. Operator shall be able to acknowledge alarms on an individual basis or through a multiple alarm acknowledge key, depending on alarm class.

10. To ensure that no alarm records are lost, it shall be possible to assign a backup printer to accept alarms in case of failure of primary printer.

G. Reports and Logs:

1. Include reporting software package that allows operator to select, modify, or create reports using DDC system I/O point data available.
2. Each report shall be definable as to data content, format, interval and date.
3. Report data shall be sampled and stored on DDC controller, within storage limits of DDC controller, and then uploaded to archive on server for historical reporting.
4. Operator shall be able to obtain real-time logs of all I/O points by type or status, such as alarm, point lockout, or normal.
5. Reports and logs shall be stored on server hard drives in a format that is readily accessible by other standard software applications, including spreadsheets and word processing.
6. Reports and logs shall be readily printed and set to be printed either on operator command or at a specific time each day.

H. Standard Reports: Standard DDC system reports shall be provided and operator shall be able to customize reports later.

1. All I/O: With current status and values.
2. Alarm: All current alarms, except those in alarm lockout.
3. Disabled I/O: All I/O points that are disabled.
4. Alarm Lockout I/O: All I/O points in alarm lockout, whether manual or automatic.
5. Alarm Lockout I/O in Alarm: All I/O in alarm lockout that are currently in alarm.
6. Logs:
 a. Alarm history.
 b. System messages.
 c. System events.
 d. Trends.

I. Custom Reports: Operator shall be able to easily define any system data into a daily, weekly, monthly, or annual report. Reports shall be time and date stamped and shall contain a report title.

J. Tenant Override Reports: Prepare Project-specific reports.

1. Weekly report showing daily total time in hours that each tenant has requested after-hours HVAC.
2. Monthly report showing daily total time in hours that each tenant has requested after-hours HVAC.
3. Annual summary report that shows after-hours HVAC usage on a monthly basis.

K. HVAC Equipment Reports: Prepare Project-specific reports.
L. Utility Reports: Prepare Project-specific reports.

1. Electric Report:
 a. Include weekly report showing daily electrical consumption and peak electrical demand with time and date stamp for each meter.
 b. Include monthly report showing the daily electrical consumption and peak electrical demand with time and date stamp for each meter.
 c. Include annual report showing the monthly electrical consumption and peak electrical demand with time and date stamp for each meter.
 d. For each weekly, monthly and annual report, include sum total of submeters combined by load type, such as lighting, receptacles and HVAC equipment showing daily electrical consumption and peak electrical demand.
 e. For each weekly, monthly and annual report, include sum total of all submeters in building showing electrical consumption and peak electrical demand.

2. Natural Gas Report:
 a. Include weekly report showing daily natural gas consumption and peak natural gas demand with time and date stamp for each meter.
 b. Include monthly report showing the daily natural gas consumption and peak natural gas demand with time and date stamp for each meter.
 c. Include annual report showing the monthly natural gas consumption and peak natural gas demand with time and date stamp for each meter.
 d. For each weekly, monthly and annual report, include sum total of submeters combined by load type, such as boilers and service water heaters showing daily natural gas consumption and peak natural gas demand.
 e. For each weekly, monthly and annual report, include sum total of all submeters in building showing natural gas consumption and peak natural gas demand.

3. Service Water Report:
 a. Include weekly report showing daily service water consumption and peak service water demand with time and date stamp for each meter.
 b. Include monthly report showing the daily service water consumption and peak service water demand with time and date stamp for each meter.
 c. Include annual report showing the monthly service water consumption and peak service water demand with time and date stamp for each meter.
 d. For each weekly, monthly and annual report, include sum total of submeters combined by load type, such as cooling tower makeup and irrigation showing daily service water consumption and peak service water demand.
 e. For each weekly, monthly and annual report, include sum total of all submeters in building showing service water consumption and peak service water demand.

M. Energy Reports: Prepare Project-specific daily, weekly, monthly, annual and since-installed energy reports.

1. Prepare report for each purchased energy utility, indicating the following:
 a. Time period being reported with beginning and end date, and time indicated.
b. Consumption in units of measure commonly used to report specific utility consumption over time.

c. Gross area served by utility.

d. Consumption per unit area served using utility-specific unit of measure.

e. Cost per utility unit.

f. Utility cost per unit area.

g. Convert all utilities to a common energy consumption unit of measure and report for each utility.

h. Consumption per unit area using common unit of measure.

2. Prepare purchased energy utility report for each submetered area that indicates the following:

 a. Time period being reported with beginning and end date, and time indicated.
 b. Gross area served.
 c. Energy consumption by energy utility type.
 d. Energy consumption per unit area by energy utility type.
 e. Total energy consumption of all utilities in common units of measure.
 f. Total energy consumption of all utilities in common units of measure per unit area.
 g. Unit energy cost by energy utility type.
 h. Energy cost by energy utility type.
 i. Energy cost per unit area by energy utility type.
 j. Total cost of all energy utilities.
 k. Total cost of all energy utilities per unit area.

3. Prepare Project total purchased energy utility report that combines all purchased energy utilities and all areas served. Project total energy report shall indicate the following:

 a. Time period being reported with beginning and end date, and time indicated.
 b. Gross area served.
 c. Energy consumption by energy utility type.
 d. Energy consumption per unit area by energy utility type.
 e. Total energy consumption of all utilities in common units of measure.
 f. Total energy consumption of all utilities in common units of measure per unit area.
 g. Unit energy cost by energy utility type.
 h. Energy cost by energy utility type.
 i. Energy cost per unit area by energy utility type.
 j. Total cost of all energy utilities.
 k. Total cost of all energy utilities per unit area.

N. Weather Reports:

 1. Include daily report showing the following:

 a. Daily minimum, maximum, and average outdoor dry-bulb temperature.
 b. Daily minimum, maximum, and average outdoor wet-bulb temperature.
 c. Daily minimum, maximum, and average outdoor dew point temperature.
 d. Number of heating degree-days for each day calculated from a base temperature of 55 deg F.
e. Number of cooling degree-days for each day calculated from a base temperature of 65 deg F.
f. Daily minimum, maximum, and average outdoor carbon dioxide level.
g. Daily minimum, maximum, and average relative humidity.
h. Daily minimum, maximum, and average barometric pressure.
i. Daily minimum, maximum, and average wind speed and direction.

2. Include weekly report showing the following:

a. Daily minimum, maximum, and average outdoor dry-bulb temperature.
b. Daily minimum, maximum, and average outdoor wet-bulb temperature.
c. Daily minimum, maximum, and average outdoor dew point temperature.
d. Number of heating degree-days for each day calculated from a base temperature of 55 deg F.
e. Number of cooling degree-days for each day calculated from a base temperature of 65 deg F.
f. Weekly minimum, maximum, and average outdoor carbon dioxide level.
g. Daily minimum, maximum, and average relative humidity.
h. Daily minimum, maximum, and average barometric pressure.
i. Daily minimum, maximum, and average wind speed and direction.

3. Include monthly report showing the following:

a. Daily minimum, maximum, and average outdoor dry-bulb temperature.
b. Daily minimum, maximum, and average outdoor wet-bulb temperature.
c. Daily minimum, maximum, and average outdoor dew point temperature.
d. Number of heating degree-days for each day calculated from a base temperature of 55 deg F.
e. Number of cooling degree-days for each day calculated from a base temperature of 65 deg F.
f. Monthly minimum, maximum, and average outdoor carbon dioxide level.
g. Daily minimum, maximum, and average relative humidity.
h. Daily minimum, maximum, and average barometric pressure.
i. Daily minimum, maximum, and average wind speed and direction.

4. Include annual (12-month) report showing the following:

a. Monthly minimum, maximum, and average outdoor dry-bulb temperature.
b. Monthly minimum, maximum, and average outdoor wet-bulb temperature.
c. Monthly minimum, maximum, and average outdoor dew point temperature.
d. Number of heating degree-days for each month calculated from a base temperature of 55 deg F.
e. Number of cooling degree-days for each month calculated from a base temperature of 65 deg F.
f. Annual minimum, maximum, and average outdoor carbon dioxide level.
g. Monthly minimum, maximum, and average relative humidity.
h. Daily minimum, maximum, and average barometric pressure.
i. Daily minimum, maximum, and average wind speed and direction.

O. Standard Trends:
P. Custom Trends: Operator shall be able to define a custom trend log for any I/O point in DDC system.
1. Each trend shall include interval, start time, and stop time.
2. Data shall be sampled and stored on DDC controller, within storage limits of DDC controller, and then uploaded to archive on server hard drives.
3. Data shall be retrievable for use in spreadsheets and standard database programs.

Q. Programming Software:
1. Include programming software to execute sequences of operation indicated.
2. Include programming routines in simple and easy to follow logic with detailed text comments describing what the logic does and how it corresponds to sequence of operation.
3. Programming software shall be any of the following:
 a. Graphic Based: Programming shall use a library of function blocks made from preprogrammed code designed for DDC control systems.
 1) Function blocks shall be assembled with interconnection lines that represent to control sequence in a flowchart.
 2) Programming tools shall be viewable in real time to show present values and logical results of each function block.
 b. Menu Based: Programming shall be done by entering parameters, definitions, conditions, requirements and constraints.
 c. Line by Line and Text Based: Programming shall declare variable types such as local, global, real, integer, and so on, at the beginning of the program. Use descriptive comments frequently to describe programming code.
4. Include means for detecting programming errors and testing software control strategies with a simulation tool before implementing in actual control. Simulation tool may be inherent with programming software or as a separate product.

R. Database Management Software:
1. Where a separate SQL database is used for information storage, DDC system shall include database management software that separates database monitoring and managing functions by supporting multiple separate windows.

2. Database secure access shall be accomplished using standard SQL authentication including ability to access data for use outside of DDC system applications.

3. Database management function shall include summarized information on trend, alarm, event, and audit for the following database management actions:
 a. Backup.
 b. Purge.
 c. Restore.

4. Database management software shall support the following:
 a. Statistics: Display database server information and trend, alarm, event, and audit information on database.
 b. Maintenance: Include method of purging records from trend, alarm, event and audit databases by supporting separate screens for creating a backup before purging, selecting database, and allowing for retention of a selected number of day's data.
 c. Backup: Include means to create a database backup file and select a storage location.
 d. Restore: Include a restricted means of restoring a database by requiring operator to have proper security level.

5. Database management software shall include information of current database activity, including the following:
 a. Ready.
 b. Purging record from a database.
 c. Action failed.
 d. Refreshing statistics.
 e. Restoring database.
 f. Shrinking a database.
 g. Backing up a database.
 h. Resetting Internet information services.
 i. Starting network device manager.
 j. Shutting down the network device manager.
 k. Action successful.

6. Database management software monitoring functions shall continuously read database information once operator has logged on.

7. Include operator notification through on-screen pop-up display and e-mail message when database value has exceeded a warning or alarm limit.

8. Monitoring settings window shall have the following sections:
 a. Allow operator to set and review scan intervals and start times.
 b. E-mail: Allow operator to create and review e-mail and phone text messages to be delivered when a warning or an alarm is generated.
c. Warning: Allow operator to define warning limit parameters, set reminder frequency and link e-mail message.

d. Alarm: Allow operator to define alarm limit parameters, set reminder frequency and link e-mail message.

e. Database Login: Protect system from unauthorized database manipulation by creating a read access and a write access for each of trend, alarm, event and audit databases as well as operator proper security access to restore a database.

9. Monitoring settings taskbar shall include the following informational icons:

a. Normal: Indicates by color and size, or other easily identifiable means that all databases are within their limits.

b. Warning: Indicates by color and size, or other easily identifiable means that one or more databases have exceeded their warning limit.

c. Alarm: Indicates by color and size, or other easily identifiable means that one or more databases have exceeded their alarm limit.

2.12 MAINTENANCE MANAGEMENT SOFTWARE

A. Scope:

1. Include complete and functional software-driven maintenance management system. Software shall perform scheduling of preventive maintenance and generation of work orders, for mechanical and electrical equipment and systems.

2. Work orders shall be automatically generated from alarm conditions, run time, and calendar time. Each work order generated shall list parts, tools, craftspeople, and define task to be performed.

3. Work order generated shall be used to schedule a repair or preventive maintenance routine.

4. Work order shall be used to track completion of work, parts used and total cost of repair.

5. A database shall include an inventory tracking system. Work orders generated shall automatically update inventory database to show quantity of tools, repair parts and expendables used for a work order.

6. Work orders and preventive maintenance schedules shall be printed on a dedicated printer assigned solely to maintenance management function.

B. Additional Hardware Requirements:

1. Maintenance management software shall not require additional hardware, except for an additional printer that is dedicated to maintenance management.

2. Maintenance management software shall be integrated into DDC system.

C. Software Requirements:

1. From main menu of maintenance management system, it shall be possible through selection of icons to penetrate to individual functions described below.

2. Work Orders:
a. Automatically generate work orders initiated from alarm conditions, accumulated run time or calendar time. Work orders generated shall specify a particular task to be accomplished including the labor, material and tools needed to accomplish work.

b. Include at least two of the following types of work orders:

1) Corrective and emergency maintenance work orders shall be generated for a specific job or repair for emergency, breakdown, or scheduled work.
2) Preventive maintenance that are used on a periodic basis to generate preventive maintenance work orders.

c. Include the following functions:

1) Work Order Tracking: Perform every function related to processing work orders including creating, approving and initiating work orders, checking their status history and closing or reworking them when appropriate.
2) Work Requests: Report any problems that require corrective maintenance activity generated by dispatchers and those people designated to request work orders.
3) Quick Reporting: Report work done on an open work order or a small job.
4) Work Manager: Specify the type of labor to be applied to a specific work order at specific times. It shall include the capability to dispatch one or more laborers to top-priority jobs on as-needed basis and to interrupt work in progress to reassign labor to higher priority tasks.

d. Reports:

1) Daily Maintenance Schedule by Supervisor: List a schedule of open work orders for a specified date by supervisor.
2) Equipment Cost Roll-up Report: Include a roll-up of equipment costs incurred since the date the report was last run.
3) Delinquent Work Order Report: List open work orders whose target completion date is earlier than the date the report is run.
4) Employee Job Assignments: List labor codes that have job assignments for the specified date.
5) Daily Work Order Assignment: List work orders that have labor assignments for the specified date.
6) Estimated versus Actual Work Order Costs: List a cost summary of outstanding work orders.
7) Open Work Orders Report: List open work orders for locations and equipment.

3. Inventory:

a. Include an inventory tracking system to keep track of stocked, non-stocked and special-order items.

b. Link inventory tracking to database and when items are consumed, as noted on a work order issued by system, inventory of stocked items shall be automatically updated.

c. Include the following functions:
1) Inventory Control: Enter, display, and update information on each inventory item. It shall allow viewing of master inventory records that are independent of storeroom locations or item/location records. Include a screen that lists inventory transactions that move items in or out of inventory or from one storeroom location to another. Minimum information tracked shall include the following:

a) Vendors supply items.
b) Item balances, including the bin and lot level for each storeroom location.
c) Alternative items.

2) Issues and Transfers: Issue stock directly from inventory, with or without a work order. When transfer of stock from one location to another location occurs, provide appropriate adjustments in stock balance record. Include a trace record of stock transfers from one storeroom to another.

3) Item Assembly Structures: Include modeling of equipment with inventory items and building of equipment and location hierarchies.

4) Metered Material Usage:

a) Track usage by a piece of equipment.
b) Record against a standing work order for a selected piece of equipment.
c) Material usage transaction shall be written for each item of material used and be provided as an input to calculation for per unit material consumption report for a piece of equipment.

d. Reports:

1) Inventory Analysis Report: List for a given storeroom location, inventory items analysis information that allows quick identification of which inventory items represent greatest monetary investment for dollar value and rate of turnover.

2) Inventory Cycle Count Report: List for a specified storeroom, inventory items that are due to be cycle-counted, based on cycle-count frequency and last count date.

3) Economic Order Quantity Report: For a given storeroom location, display optimum economic ordering quantity for items in selected results set.

4) Inventory Pick Report: A pick list, by work order for items needed to be pulled from a designated storeroom's inventory for work orders having a target start date of specified date.

5) Suggested Order Report: List inventory items in selected results set that are due to be recorded, for a specified storeroom location, based on the following calculation: Suggest a reorder if current balance minus reserve quantity plus on-order quantity is less than reorder point.

6) Reorder Point Report: List selected set of items and optimum minimum level to have in stock based on demand, lead delivery time and a reserve safety stock.

7) Inventory Valuation Report: Gives an accounting of cost of current inventory, for inventory records in a designated storeroom location.
8) Item Order Status: Lists items on order.
9) List of Expired Items: Lists expired lot items in a storeroom. Report shall include item number, description, expiration date, bin number, lot number, manufacturer lot number, and quantity of expired items in that lot and bin.
10) Item Availability at All Locations: Lists alternative storeroom locations for selected items.
11) Where Used Report: List equipment on which item is recorded as being used.

4. Equipment:
 a. Include equipment and location records; establish relationships between equipment, between locations, and between equipment and locations; track maintenance costs; and enter and review meter readings.
 b. Include the following functions:
 1) Equipment: Store equipment numbers and corresponding information including equipment class, location, vendor, up/down status and maintenance costs for each piece of equipment. Include building of equipment assemblies. Equipment assemblies hierarchical ordering shall be provided for arrangement of buildings, departments, equipment and sub-assemblies.
 2) Operating Locations: Facilitate creation of records for operating locations of equipment, and track equipment that is used in multiple locations. In addition, allow hierarchical organization of equipment operating in facility by means of grouping equipment locations into areas of responsibility.
 3) Failure Codes: Develop and display failure hierarchies to acquire an accurate history of types of failures that affect equipment and operating locations.
 4) Condition Monitoring: Display time related or limit measurements recorded for a piece of equipment. It shall be possible to generate work orders from this screen and to take immediate action on problem conditions.
 c. Reports:
 1) Availability Statistic by Location: List equipment availability by location over a user-specified time period.
 2) Equipment Failure Summary: List total number of failures by problem code for a piece of equipment for a specified time period.
 3) Detailed Equipment Failure Report by Equipment: List of failure reports for the current piece of equipment for a specified time period.
 5) Equipment History Graphs: Include a graphical report in histogram format that displays equipment breakdown history over a specified period.
 6) Equipment Measurement Report: Tabular listing and description of each measurement point for a piece of equipment and the history of measurements taken for that point.
 7) Maintenance Cost by Equipment: List of transactions costs for elected equipment in the specified date range.
8) Failure Count by Equipment: Graphically report the number of failures for each piece of equipment showing number of failures for each piece of equipment over a specified time period, occurrence of each problem code within set of failures and failures by problem code.

9) Failure Analysis Graphs: Graphically report number of failures for each piece of equipment over a specified time period, number of occurrences of each problem code within set of failures and failures by problem code.

10) Failure Code Hierarchy Report: List of failure codes in each level of the failure hierarchy.

11) Location Failure Summary: A summary for each selected location of failures reported and any hierarchy level locations for specified time period.

12) Failure Summary by Location: A summary of failures for the selected location and their subordinate locations that are part of the hierarchical system.

13) Detailed Failure Report by Location: List all failures for selected location and its subordinate locations that are part of a hierarchical system.

14) Maintenance Cost by System: List of total costs reported in a given date range for locations in selected hierarchical system.

15) Location Hierarchy Report: Lists member locations of a hierarchical system displayed in hierarchical fashion.

5. Purchasing:

a. Include preparation and generation of purchase requisitions and purchase orders; to report receipt of both items and services, match invoices with purchase orders and receipts and define and convert foreign currencies.

b. Include the following functions:

1) Purchase Requisition: Create and process purchase requisitions for items and services.

2) Purchase Orders: Create and process purchase orders for items and services from scratch or from purchase requisitions. Record receipts of items and services.

3) Invoices: Include functionality to match purchase orders with invoices and receipts. It shall also be possible to match a service receipt to an invoice. Project for entering of an invoice for bills that do not require purchase orders or receipts.

4) Currency Management: Define currencies and specify exchange rates. Include preparation of purchase requisitions and purchase orders in currency of vendor, while tracking costs in systems base currency.

c. Reports:

1) Invoice Approval Report: Include an approval form for entered invoices.

2) Inventory Receipts Register: List purchase orders and inventory received for the user-specified time frame.

3) Direct Purchase Back-Order Report: List of items ordered as a direct purchase not received by the required delivery date.

4) Standard Purchase Order: A printing of primary purchase order with vendors shipping information, and items purchased.
5) Purchase Order Status Report: List of purchase orders whose status has changed during a certain time period.

6) Standard Purchase Requisition: A printing of primary purchase requisition, including vendor name and shipping information.

6. Job Plans:

 a. Include creation of a detailed description of work to be performed by a work order. The job plan shall contain operations, procedures and list of estimated material, labor and tools required for work.

7. Labor:

 a. Store information on employees, contractors, and crafts and include the following functions:

 1) Labor: Create, modify and view employee records. Employee records shall contain pay rate, overtime worked, overtime refused, specials skills and certifications.

 2) Crafts: Create, modify and view craftspeople records.

 3) Labor Reporting: Report labor usage by employee or craft externally from the work orders module.

 b. Reports:

 1) Employee Attendance Analysis: List of planned attendance, actual attendance, vacation and sick time in hours as a percentage of planned attendance for selected employees for specified time period.

 2) Labor Productivity Analysis: List of actual labor hours by labor report category showing each by percentage.

 3) Labor Availability versus Commitments by Crafts: A graphical report that details available labor hours versus committed work order hours by craft and day.

8. Calendars:

 a. Establish calendar records indicating working time for equipment, location, craft, and labor records.

9. Resources:

 a. Include entry and retrieval of data associated with resources required to maintain facility and to include the following functions:

 1) Companies: Establish and update data on vendors and other companies.

 2) Tools: Create and maintain information on the tools used on jobs. The information contained within this module shall be available to job plans and work orders.

 3) Service Contracts: Specify information on service contracts with vendors or manufacturers.
10. Custom Applications:
 a. Include creation of customized database tables and application screens that supplement functions specified.

11. Setup:
 a. Include configuration of database, security and setup applications.
 b. Perform the following functions:
 1) Reports and Other Applications: Register reports and other applications for use within system.
 2) Documents: Enter, track and link information from Drawings to equipment and inventory items.
 3) Chart of Accounts: Add or modify accounts; set up financial periods; enter inventory accounts, company accounts, and resource recovery accounts; and define tax codes and rates.
 4) Signature Security: Establish each user's access rights to modules, applications, screens and options.
 5) Database Configuration: Customize database, including adjusting field lengths and modifying data types.
 6) Application Setup: Change position of icons and menu items on the main menu screen.
 7) Application Launching: Allow for connecting of third-party applications to data fields and push buttons.

12. Utilities:
 a. Include utilities module that allows system administrator to customize system and to maintain database.
 b. Include the following functions:
 1) Interactive SQL: Include access to database for database management functions of import/export and backup.
 2) Edit Windows: Display a dialog box to customize an application.
 3) Archive Data: Remove records from database and store them for future reference.

D. Documentation:
 1. Include complete documentation for the system consisting of a User Manual and Systems Administrator Guide.
 2. User Manual shall describe how to use each application module and screen with step-by-step instructions detailing entry and retrieval of data for functions specified.
 3. Include a step-by-step description of how each report is defined and retrieved.
 4. Bind documentation and clearly title it indicating volume number and use.
2.13 ASHRAE 135 GATEWAYS

A. Include BACnet communication ports, whenever available as an equipment OEM standard option, for integration via a single communication cable. BACnet-controlled plant equipment includes, but is not limited to, Roof Top Units and variable-speed drives.

B. Include gateways to connect BACnet to legacy systems, existing non-BACnet devices, and existing non-BACnet DDC-controlled equipment, only when specifically requested and approved by Owner.

C. Include with each gateway an interoperability schedule showing each point or event on legacy side that BACnet "client" will read, and each parameter that BACnet network will write to. Describe this interoperability of BACnet services, or BIBBs, defined in ASHRAE 135, Annex K.

D. Gateway Minimum Requirements:
 1. Read and view all readable object properties on non-BACnet network to BACnet network and vice versa where applicable.
 2. Write to all writeable object properties on non-BACnet network from BACnet network and vice versa where applicable.
 3. Include single-pass (only one protocol to BACnet without intermediary protocols) translation from non-BACnet protocol to BACnet and vice versa.
 4. Comply with requirements of Data Sharing Read Property, Data Sharing Write Property, Device Management Dynamic Device Binding-B, and Device Management Communication Control BIBBs according to ASHRAE 135.
 5. Hardware, software, software licenses, and configuration tools for operator-to-gateway communications.
 6. Backup programming and parameters on CD media and the ability to modify, download, backup, and restore gateway configuration.

2.14 ASHRAE 135 PROTOCOL ANALYZER

A. Analyzer and required cables and fittings for connection to ASHRAE 135 network.

B. Analyzer shall include the following minimum capabilities:
 1. Capture and store to a file data traffic on all network levels.
 2. Measure bandwidth usage.
 3. Filtering options with ability to ignore select traffic.

2.15 WIRELESS ROUTERS FOR OPERATOR INTERFACE

A. Single-Band Wireless Routers:
 1. Description: High-speed router with integral Ethernet ports.
 2. Technology: IEEE 802.11n; 2.4-GHz speed band.
 3. Speed: Up to 300 Mbps.
 4. Compatibility: IEEE 802.11n/g/b/a wireless devices.
5. Ethernet Ports: Four, gigabit (1000 Mbps).
6. Wireless Security: Wi-Fi Protected Access (WPA) and WPA2 according to IEEE 802.11i.

B. Dual-Band Wireless Routers:
1. Description: High-speed, dual-band router with integral Ethernet ports and USB port.
2. Technology: IEEE 802.11n; 2.4- and 5-GHz speed bands.
3. Speed: Up to 300 Mbps on 2.4-GHz band and up to 450 Mbps on 5-GHz band.
4. Compatibility: IEEE 802.11n/g/b/a wireless devices.
5. Ethernet Ports: Four, gigabit (1000 Mbps).
6. USB Port: One, USB 2.0 or 3.0.
7. Wireless Security: Wi-Fi Protected Access (WPA) and WPA2 according to IEEE 802.11i.

2.16 DDC CONTROLLERS

A. DDC system shall consist of a combination of network controllers, programmable application controllers and application-specific controllers to satisfy performance requirements indicated.

B. DDC controllers shall perform monitoring, control, energy optimization and other requirements indicated.

C. DDC controllers shall use a multitasking, multiuser, real-time digital control microprocessor with a distributed network database and intelligence.

D. Each DDC controller shall be capable of full and complete operation as a completely independent unit and as a part of a DDC system wide distributed network.

E. Environment Requirements:
 1. Controller hardware shall be suitable for the anticipated ambient conditions.
 2. Controllers located in conditioned space shall be rated for operation at 32 to 120 deg F.
 3. Controllers located outdoors shall be rated for operation at 40 to 150 deg F.

F. Power and Noise Immunity:
 1. Controller shall operate at 90 to 110 percent of nominal voltage rating and shall perform an orderly shutdown below 80 percent of nominal voltage.
 2. Operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios with up to 5 W of power located within 36 inches of enclosure.

G. DDC Controller Spare Processing Capacity:
 1. Include spare processing memory for each controller. RAM, PROM, or EEPROM will implement requirements indicated with the following spare memory:
 a. Network Controllers: 50 percent.
 b. Programmable Application Controllers: Not less than 60 percent.
 c. Application-Specific Controllers: Not less than 70 percent.
2. Memory shall support DDC controller's operating system and database and shall include the following:
 a. Monitoring and control.
 b. Energy management, operation and optimization applications.
 c. Alarm management.
 d. Historical trend data of all connected I/O points.
 e. Maintenance applications.
 f. Operator interfaces.
 g. Monitoring of manual overrides.

H. DDC Controller Spare I/O Point Capacity: Include spare I/O point capacity for each controller as follows:

1. Network Controllers:
 a. 10 percent of each AI, AO, BI, and BO point connected to controller.
 b. Minimum Spare I/O Points per Controller:
 1) AIs: Two.
 2) AOs: Two.
 3) BIs: Three.
 4) BOs: Three.

2. Programmable Application Controllers:
 a. 10 percent of each AI, AO, BI, and BO point connected to controller.
 b. Minimum Spare I/O Points per Controller:
 1) AIs: Two.
 2) AOs: Two.
 3) BIs: Three.
 4) BOs: Three.

3. Application-Specific Controllers:
 a. 10 percent of each AI, AO, BI, and BO point connected to controller.
 b. Minimum Spare I/O Points per Controller:
 1) AIs: Two.
 2) AOs: Two.
 3) BIs: Two.
 4) BOs: Two.

I. Maintenance and Support: Include the following features to facilitate maintenance and support:

1. Mount microprocessor components on circuit cards for ease of removal and replacement.
2. Means to quickly and easily disconnect controller from network.
3. Means to quickly and easily access connect to field test equipment.
4. Visual indication that controller electric power is on, of communication fault or trouble, and that controller is receiving and sending signals to network.

J. Input and Output Point Interface:

1. Hardwired input and output points shall connect to network, programmable application and application-specific controllers.
2. Input and output points shall be protected so shorting of point to itself, to another point, or to ground will not damage controller.
3. Input and output points shall be protected from voltage up to 24 V of any duration so that contact will not damage controller.
4. AIs:
 a. AIs shall include monitoring of low-voltage (zero- to 10-V dc), current (4 to 20 mA) and resistance signals from thermistor and RTD sensors.
 b. AIs shall be compatible with, and field configurable to, sensor and transmitters installed.
 c. Controller AIs shall perform analog-to-digital (A-to-D) conversion with a minimum resolution of 8 bits or better to comply with accuracy requirements indicated.
 d. Signal conditioning including transient rejection shall be provided for each AI.
 e. Capable of being individually calibrated for zero and span.
 f. Incorporate common-mode noise rejection of at least 50 dB from zero to 100 Hz for differential inputs, and normal-mode noise rejection of at least 20 dB at 60 Hz from a source impedance of 10000 ohms.

5. AOs:
 a. Controller AOs shall perform analog-to-digital (A-to-D) conversion with a minimum resolution of 8 bits or better to comply with accuracy requirements indicated.
 b. Output signals shall have a range of 4 to 20 mA dc or zero- to 10-V dc as required to include proper control of output device.
 c. Capable of being individually calibrated for zero and span.
 d. AOs shall not exhibit a drift of greater than 0.4 percent of range per year.

6. BIs:
 a. Controller BIs shall accept contact closures and shall ignore transients of less than 5-ms duration.
 b. Isolation and protection against an applied steady-state voltage of up to 180-V ac peak.
 c. BIs shall include a wetting current of at least 12 mA to be compatible with commonly available control devices and shall be protected against effects of contact bounce and noise.
 d. BIs shall sense "dry contact" closure without external power (other than that provided by the controller) being applied.
 e. Pulse accumulation input points shall comply with all requirements of BIs and accept up to 10 pulses per second for pulse accumulation. Buffer shall be provided
to totalize pulses. Pulse accumulator shall accept rates of at least 20 pulses per second. The totalized value shall be reset to zero on operator's command.

7. BOs:

a. Controller BOs shall include relay contact closures or triac outputs for momentary and maintained operation of output devices.

1) Relay contact closures shall have a minimum duration of 0.1 second. Relays shall include at least 180 V of isolation. Electromagnetic interference suppression shall be provided on all output lines to limit transients to non-damaging levels. Minimum contact rating shall be 1 A at 24-V ac.
2) Triac outputs shall include at least 180 V of isolation. Minimum contact rating shall be 1 A at 24-V ac.

b. BOs shall include for two-state operation or a pulsed low-voltage signal for pulse-width modulation control.

c. BOs shall be selectable for either normally open or normally closed operation.

d. Include tristate outputs (two coordinated BOs) for control of three-point floating-type electronic actuators without feedback.

e. Limit use of three-point floating devices to VAV terminal unit control applications. Control algorithms shall operate actuator to one end of its stroke once every 24 hours for verification of operator tracking.

2.17 NETWORK CONTROLLERS

A. General Network Controller Requirements:

1. Include adequate number of controllers to achieve performance indicated.
2. System shall consist of one or more independent, standalone, microprocessor-based network controllers to manage global strategies indicated.
3. Controller shall have enough memory to support its operating system, database, and programming requirements.
4. Data shall be shared between networked controllers and other network devices.
5. Operating system of controller shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
6. Controllers that perform scheduling shall have a real-time clock.
7. Controller shall continually check status of its processor and memory circuits. If an abnormal operation is detected, controller shall assume a predetermined failure mode and generate an alarm notification.
8. Controllers shall be fully programmable.

B. Communication:

1. Network controllers shall communicate with other devices on DDC system Level one network.
2. Network controller also shall perform routing if connected to a network of programmable application and application-specific controllers.
C. Operator Interface:

1. Controller shall be equipped with a service communications port for connection to a portable operator's workstation or mobile device.
2. Local Keypad and Display:
 a. Equip controller with local keypad and digital display for interrogating and editing data.
 b. Use of keypad and display shall require security password.

D. Serviceability:

1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
3. Controller shall maintain BIOS and programming information in event of a power loss for at least 72 hours.

2.18 APPLICATION-SPECIFIC CONTROLLERS

A. Description: Microprocessor-based controllers, which through hardware or firmware design are dedicated to control a specific piece of equipment. Controllers are not fully user-programmable but are configurable and customizable for operation of equipment they are designed to control.

1. Capable of standalone operation and shall continue to include control functions without being connected to network.
2. Data shall be shared between networked controllers and other network devices.

B. Communication: Application-specific controllers shall communicate with other application-specific controller and devices on network, and to programmable application and network controllers.

C. Operator Interface: Controller shall be equipped with a service communications port for connection to a portable operator's workstation. Connection shall extend to port on space temperature sensor that is connected to controller.

D. Serviceability:

1. Controller shall be equipped with diagnostic LEDs or other form of local visual indication of power, communication, and processor.
2. Wiring and cable connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
3. Controller shall use nonvolatile memory and maintain all BIOS and programming information in event of power loss.
2.19 CONTROLLER SOFTWARE

A. General Controller Software Requirements:

1. Software applications shall reside and operate in controllers. Editing of applications shall occur at operator workstations.
2. I/O points shall be identified by up to 30-character point name and up to 16-character point descriptor. Same names shall be used at operator workstations.
3. Control functions shall be executed within controllers using DDC algorithms.
4. Controllers shall be configured to use stored default values to ensure fail-safe operation. Default values shall be used when there is a failure of a connected input instrument or loss of communication of a global point value.

B. Security:

1. Operator access shall be secured using individual security passwords and user names.
2. Passwords shall restrict operator to points, applications, and system functions as assigned by system manager.
3. Operator log-on and log-off attempts shall be recorded.
4. System shall protect itself from unauthorized use by automatically logging off after last keystroke. The delay time shall be operator-definable.

C. Scheduling: Include capability to schedule each point or group of points in system. Each schedule shall consist of the following:

1. Weekly Schedule:
 a. Include separate schedules for each day of week.
 b. Each schedule should include the capability for start, stop, optimal start, optimal stop, and night economizer.
 c. Each schedule may consist of up to 10 events.
 d. When a group of objects are scheduled together, include capability to adjust start and stop times for each member.

2. Exception Schedules:
 a. Include ability for operator to designate any day of the year as an exception schedule.
 b. Exception schedules may be defined up to a year in advance. Once an exception schedule is executed, it will be discarded and replaced by regular schedule for that day of week.

3. Holiday Schedules:
 a. Include capability for operator to define up to 99 special or holiday schedules.
 b. Schedules may be placed on scheduling calendar and will be repeated each year.
 c. Operator shall be able to define length of each holiday period.

D. System Coordination:
1. Include standard application for proper coordination of equipment.
2. Application shall include operator with a method of grouping together equipment based on function and location.
3. Group may then be used for scheduling and other applications.

E. Binary Alarms:
1. Each binary point shall be set to alarm based on operator-specified state.
2. Include capability to automatically and manually disable alarming.

F. Analog Alarms:
1. Each analog object shall have both high and low alarm limits.
2. Alarming shall be able to be automatically and manually disabled.

G. Alarm Reporting:
1. Operator shall be able to determine action to be taken in event of an alarm.
2. Alarms shall be routed to appropriate operator workstations based on time and other conditions.
3. Alarm shall be able to start programs, print, be logged in event log, generate custom messages, and display graphics.

H. Remote Communication:
1. System shall have ability to dial out in the event of an alarm.

I. Electric Power Demand Limiting:
1. Demand-limiting program shall monitor building or other operator-defined electric power consumption from signals connected to electric power meter or from a watt transducer or current transformer.
2. Demand-limiting program shall predict probable power demand such that action can be taken to prevent exceeding demand limit. When demand prediction exceeds demand limit, action will be taken to reduce loads in a predetermined manner. When demand prediction indicates demand limit will not be exceeded, action will be taken to restore loads in a predetermined manner.
3. Demand reduction shall be accomplished by the following means:
 a. Reset air-handling unit supply temperature set points.
 b. Reset space temperature set points.
 c. De-energize equipment based on priority.
4. Demand-limiting parameters, frequency of calculations, time intervals, and other relevant variables shall be based on the means by which electric power service provider computes demand charges.
5. Include demand-limiting prediction and control for any individual meter monitored by system or for total of any combination of meters.
6. Include means operator to make the following changes online:
a. Addition and deletion of loads controlled.
b. Changes in demand intervals.
c. Changes in demand limit for meter(s).
d. Maximum shutoff time for equipment.
e. Minimum shutoff time for equipment.
f. Select rotational or sequential shedding and restoring.
g. Shed and restore priority.

7. Include the following information and reports, to be available on an hourly, daily, weekly, monthly and annual basis:
 a. Total electric consumption.
 b. Peak demand.
 c. Date and time of peak demand.
 d. Daily peak demand.

J. Maintenance Management: System shall monitor equipment status and generate maintenance messages based on operator-designated run-time, starts, and calendar date limits.

K. Sequencing: Include application software based on sequences of operation indicated to properly sequence chillers, boilers, and other applicable HVAC equipment.

L. Control Loops:
 1. Support any of the following control loops, as applicable to control required:
 a. Two-position (on/off, open/close, slow/fast) control.
 b. Proportional control.
 c. Proportional plus integral (PI) control.
 d. Proportional plus integral plus derivative (PID) control.

 1) Include PID algorithms with direct or reverse action and anti-windup.
 2) Algorithm shall calculate a time-varying analog value used to position an output or stage a series of outputs.
 3) Controlled variable, set point, and PID gains shall be operator-selectable.

 e. Adaptive (automatic tuning).

M. Staggered Start: Application shall prevent all controlled equipment from simultaneously restarting after a power outage. Order which equipment (or groups of equipment) is started, along with the time delay between starts, shall be operator-selectable.

N. Energy Calculations:
 1. Include software to allow instantaneous power or flow rates to be accumulated and converted to energy usage data.
 2. Include an algorithm that calculates a sliding-window average (rolling average). Algorithm shall be flexible to allow window intervals to be operator specified (such as 15, 30, or 60 minutes).
3. Include an algorithm that calculates a fixed-window average. A digital input signal shall define start of window period (such as signal from utility meter) to synchronize fixed-window average with that used by utility.

O. Anti-Short Cycling:
 1. BO points shall be protected from short cycling.
 2. Feature shall allow minimum on-time and off-time to be selected.

P. On and Off Control with Differential:
 1. Include an algorithm that allows a BO to be cycled based on a controlled variable and set point.
 2. Algorithm shall be direct- or reverse-acting and incorporate an adjustable differential.

Q. Run-Time Totalization:
 1. Include software to totalize run-times for all BI points.
 2. A high run-time alarm shall be assigned, if required, by operator.

2.20 ENCLOSURES

A. General Enclosure Requirements:
 1. House each controller and associated control accessories in a single enclosure. Enclosure shall serve as central tie-in point for control devices such as switches, transmitters, transducers, power supplies and transformers.
 2. Do not house more than one controller in a single enclosure.
 3. Include enclosure door with key locking mechanism. Key locks alike for all enclosures and include one pair of keys per enclosure.
 4. Equip doors of enclosures housing controllers and components with analog or digital displays with windows to allow visual observation of displays without opening enclosure door.
 5. Individual wall-mounted single-door enclosures shall not exceed 36 inches wide and 48 inches high.
 6. Individual wall-mounted double-door enclosures shall not exceed 60 inches wide and 36 inches high.
 7. Include wall-mounted enclosures with brackets suitable for mounting enclosures to wall or freestanding support stand as indicated.
 8. Supply each enclosure with a complete set of as-built schematics, tubing, and wiring diagrams and product literature located in a pocket on inside of door. For enclosures with windows, include pocket on bottom of enclosure.

B. Internal Arrangement:
 1. Internal layout of enclosure shall group and protect pneumatic, electric, and electronic components associated with a controller, but not an integral part of controller.
 2. Arrange layout to group similar products together.
 3. Include a barrier between line-voltage and low-voltage electrical and electronic products.
4. Factory or shop install products, tubing, cabling and wiring complying with requirements and standards indicated.
5. Terminate field cable and wire using heavy-duty terminal blocks.
6. Include spare terminals, equal to not less than 10 percent of used terminals.
7. Include spade lugs for stranded cable and wire.
8. Install a maximum of two wires on each side of a terminal.
9. Include enclosure field power supply with a toggle-type switch located at entrance inside enclosure to disconnect power.
10. Include enclosure with a line-voltage nominal 20-A GFCI duplex receptacle for service and testing tools. Wire receptacle on hot side of enclosure disconnect switch and include with a 5-A circuit breaker.
11. Mount products within enclosure on removable internal panel(s).
12. Include products mounted in enclosures with engraved, laminated phenolic nameplates (black letters on a white background). The nameplates shall have at least 1/4-inch-high lettering.
13. Route tubing cable and wire located inside enclosure within a raceway with a continuous removable cover.
14. Label each end of cable, wire and tubing in enclosure following an approved identification system that extends from field I/O connection and all intermediate connections throughout length to controller connection.
15. Size enclosure internal panel to include at least 25 percent spare area on face of panel.

C. Environmental Requirements:

1. Evaluate temperature and humidity requirements of each product to be installed within each enclosure.
2. Calculate enclosure internal operating temperature considering heat dissipation of all products installed within enclosure and ambient effects (solar, conduction and wind) on enclosure.
3. Where required by application, include temperature-controlled electrical heat to maintain inside of enclosure above minimum operating temperature of product with most stringent requirement.
4. Where required by application, include temperature-controlled ventilation fans with filtered louver(s) to maintain inside of enclosure below maximum operating temperature of product with most stringent requirement.
5. Include temperature-controlled cooling within the enclosure for applications where ventilation fans cannot maintain inside temperature of enclosure below maximum operating temperature of product with most stringent requirement.
6. Where required by application, include humidity-controlled electric dehumidifier or cooling to maintain inside of enclosure below maximum relative humidity of product with most stringent requirement and to prevent surface condensation within enclosure.

D. Wall-Mounted, NEMA 250, Type 1:

1. Enclosure shall be NRTL listed according to UL 50 or UL 50E.
2. Construct enclosure of steel, not less than:
 a. Enclosure size less than 24 in.: 0.053 in. thick.
 b. Enclosure size 24 in. and larger: 0.067 in. thick.
3. Finish enclosure inside and out with polyester powder coating that is electrostatically
 applied and then baked to bond to substrate.
 a. Exterior color shall be selected by Architect.
 b. Interior color shall be manufacturer's standard.

4. Hinged door full size of front face of enclosure and supported using:
 a. Enclosures sizes less than 36 in. tall: Multiple butt hinges.
 b. Enclosures sizes 36 in. tall and larger: Continuous piano hinges.

5. Removable internal panel with a white polyester powder coating that is electrostatically
 applied and then baked to bond to substrate.
 a. Size less than 24 in.: Solid or Perforated steel, 0.053 in. thick.
 b. Size 24 in. and larger: Solid aluminum, 0.10 in. or steel, 0.093 in. thick.

6. Internal panel mounting hardware, grounding hardware and sealing washers.
7. Grounding stud on enclosure body.
8. Thermoplastic pocket on inside of door for record Drawings and Product Data.

E. Wall Mounted NEMA 250, Types 4 and 12:
1. Enclosure shall be NRTL listed according to UL 508A.
2. Seam and joints are continuously welded and ground smooth.
3. Where recessed enclosures are indicated, include enclosures with face flange for flush
 mounting.
4. Externally formed body flange around perimeter of enclosure face for continuous
 perimeter seamless gasket door seal.
5. Single-door enclosure sizes up to 60 inches tall by 36 inches wide.
6. Double-door enclosure sizes up to 36 inches tall by 60 inches wide.
7. Construct enclosure of steel, not less than the following:
 a. Size Less Than 24 Inches: 0.053 inch or 0.067 inch thick.
 b. Size 24 Inches and Larger: 0.067 inch thick.

8. Finish enclosure with polyester powder coating that is electrostatically applied and then
 baked to bond to substrate.
 a. Exterior color shall be as selected by Architect.
 b. Interior color shall be manufacturer's standard.

9. Corner-formed door, full size of enclosure face, supported using multiple concealed
 hinges with easily removable hinge pins.
 a. Sizes through 24 Inches Tall: Two hinges.
 b. Sizes between 24 Inches through 48 Inches Tall: Three hinges.
 c. Sizes Larger 48 Inches Tall: Four hinges.

10. Double-door enclosures with overlapping door design to include unobstructed full-width
 access.
a. Single-door enclosures 48 inches and taller, and all double-door enclosures, with three-point (top, middle and bottom) latch system.

11. Removable internal panel with a white polyester powder coating that is electrostatically applied and then baked to bond to substrate.
 a. Size Less Than 24 Inches: Solid or perforated steel, 0.053 inch thick.
 b. Size 24 Inches and Larger: Solid aluminum, 0.10 inch or steel, 0.093 inch thick.

12. Internal panel mounting studs with hardware, grounding hardware, and sealing washers.
14. Thermoplastic pocket on inside of door for record Drawings and Product Data.

F. Accessories:

1. Electric Heater:
 a. Aluminum housing with brushed finish.
 b. Thermostatic control with adjustable set point from zero to 100 deg F.
 c. Capacity: 100, 200, 400, and 800 W as required by application.
 d. Fan draws cool air from bottom of enclosure and passes air across thermostat and heating elements before being released into enclosure cavity. Heated air is discharged through the top of heater.

2. Ventilation Fans, Filtered Intake and Exhaust Grilles:
 a. Number and size of fans, filters and grilles as required by application.
 b. Compact cooling fans engineered for 50,000 hours of continuous operation without lubrication or service.
 c. Fans capable of being installed on any surface and in any position within enclosure for spot cooling or air circulation.
 d. Thermostatic control with adjustable set point from 32 to 140 deg F.
 e. Airflow Capacity at Zero Pressure:
 1) 4-Inch Fan: 100 cfm.
 2) 6-Inch Fan: 240 cfm.
 3) 10-Inch Fan: 560 cfm.
 f. Maximum operating temperature of 158 deg F.
 g. 4-inch fan thermally protected and provided with permanently lubricated ball-bearings.
 h. 6- and 10-inch fans with ball-bearing construction and split capacitor motors thermally protected to avoid premature failure.
 i. Dynamically balanced impellers molded from polycarbonate material.
 j. Fan furnished with power cord and polarized plug for power connection.
 k. Fan brackets, finger guards and mounting hardware provided with fans to complete installation.
 l. Removable Intake and Exhaust Grilles: ABS plastic or stainless steel of size to match fan size and suitable for NEMA 250, Types 1 and 12 enclosures.
m. Filters for NEMA 250, Type 1 Enclosures: Washable foam, of a size to match intake grille.

n. Filters for NEMA 250, Type 12 Enclosures: Disposable, of a size to match intake grille.

3. Air Conditioner:
 a. Electric-powered, self-contained air-conditioning unit specially designed for electrical enclosures to maintain temperature inside enclosure below ambient temperature outside enclosure.
 b. Thermostatic control with adjustable set point from 60 to 120 deg F.
 c. Enclosure side or top mounting with unit capacity as required by application.
 d. Designed for closed-loop cooling with continuous operation in ambient environments up to 125 deg F.
 e. HFC refrigerant.
 f. Reusable and washable air filter.
 g. High-performance, industrial-grade, and high-efficiency fans.
 h. Furnished with power cord and polarized plug for power connection.
 i. Condensate management system with base pan side drain.
 j. Mounting hardware, gaskets, mounting template and instruction manual furnished with unit.
 k. Outdoor units equipped with head pressure control for low ambient operation, compressor heater, coated condenser coil and thermostat.

4. Thermoelectric Humidifier:
 a. ABS plastic enclosure.
 b. Capacity of 8 oz. of water per 24 hours.
 c. Built-in drain captures moisture and plastic hose directs moisture to outside enclosure through a drain.
 d. Controlled to maintain enclosure relative humidity at an adjustable set point.
 e. Unit power supply shall be internally wired to enclosure electrical power source.

5. Framed Fixed Window Kit for NEMA 250, Types 4, 4X, and 12 Enclosures:
 a. 0.25-inch-thick, scratch-resistant acrylic or polycarbonate window mounted in a metal frame matching adjacent door material.
 b. Enclosure types, except NEMA 250 Type 1, shall have a continuous gasket material around perimeter of window and frame to provide watertight seal.
 c. Window kit shall be factory or shop installed before shipment to Project.

6. Frameless Fixed Window Kit for NEMA 250, Type 1 Enclosures:
 a. 0.125-inch-thick, polycarbonate window mounted in enclosure door material.
 b. Window attached to door with screw fasteners and continuous strip of high-strength double-sided tape around window perimeter.
 c. Window kit shall be factory or shop installed before shipment to Project.

7. Frame Fixed or Hinged Window Kit for NEMA 250, Types 1 and 12 Enclosures:
a. 0.25-inch-thick, scratch-resistant acrylic or polycarbonate window mounted in a metal frame matching adjacent door material.

b. Enclosure types, except NEMA 250 Type 1, shall have a continuous gasket material around perimeter of window and frame to provide watertight seal.

c. Window kit shall be factory or shop installed before shipment to Project.

8. Bar handle with keyed cylinder lock set.

2.21 RELAYS

A. General-Purpose Relays:

1. Relays shall be heavy duty and rated for at least 10 A at 250-V ac and 60 Hz.

2. Relays shall be either double pole double throw (DPDT) or three-pole double throw, depending on the control application.

3. Use a plug-in-style relay with an eight-pin octal plug for DPDT relays and an 11-pin octal plug for three-pole double-throw relays.

4. Construct the contacts of either silver cadmium oxide or gold.

5. Enclose the relay in a clear transparent polycarbonate dust-tight cover.

6. Relays shall have LED indication and a manual reset and push-to-test button.

7. Performance:

 a. Mechanical Life: At least 10 million cycles.
 b. Electrical Life: At least 100,000 cycles at rated load.
 c. Pickup Time: 15 ms or less.
 d. Dropout Time: 10 ms or less.
 e. Pull-in Voltage: 85 percent of rated voltage.
 f. Dropout Voltage: 50 percent of nominal rated voltage.
 g. Power Consumption: 2 VA.
 h. Ambient Operating Temperatures: Minus 40 to 115 deg F.

8. Equip relays with coil transient suppression to limit transients to non-damaging levels.

9. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.

10. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.

B. Multifunction Time-Delay Relays:

1. Relays shall be continuous duty and rated for at least 10 A at 240-V ac and 60 Hz.

2. Relays shall be DPDT relay with up to eight programmable functions to provide on/off delay, interval and recycle timing functions.

3. Use a plug-in-style relay with either an 8- or 11-pin octal plug.

4. Construct the contacts of either silver cadmium oxide or gold.

5. Enclose the relay in a dust-tight cover.

6. Include knob and dial scale for setting delay time.

7. Performance:

 a. Mechanical Life: At least 10 million cycles.
 b. Electrical Life: At least 100,000 cycles at rated load.
 c. Timing Ranges: Multiple ranges from 0.1 seconds to 100 minutes.
d. Repeatability: Within 2 percent.
e. Recycle Time: 45 ms.
f. Minimum Pulse Width Control: 50 ms.
g. Power Consumption: 5 VA or less at 120-V ac.
h. Ambient Operating Temperatures: Minus 40 to 115 deg F.

8. Equip relays with coil transient suppression to limit transients to non-damaging levels.
9. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
10. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.

C. Latching Relays:
1. Relays shall be continuous duty and rated for at least 10 A at 250-V ac and 60 Hz.
2. Relays shall be either DPDT or three-pole double throw, depending on the control application.
3. Use a plug-in-style relay with a multibladed plug.
4. Construct the contacts of either silver cadmium oxide or gold.
5. Enclose the relay in a clear transparent polycarbonate dust-tight cover.
6. Performance:
 a. Mechanical Life: At least 10 million cycles.
 b. Electrical Life: At least 100,000 cycles at rated load.
 c. Pickup Time: 15 ms or less.
 d. Dropout Time: 10 ms or less.
 e. Pull-in Voltage: 85 percent of rated voltage.
 f. Dropout Voltage: 50 percent of nominal rated voltage.
 g. Power Consumption: 2 VA.
 h. Ambient Operating Temperatures: Minus 40 to 115 deg F.
7. Equip relays with coil transient suppression to limit transients to non-damaging levels.
8. Plug each relay into an industry-standard, 35-mm DIN rail socket. Plug all relays located in control panels into sockets that are mounted on a DIN rail.
9. Relay socket shall have screw terminals. Mold into the socket the coincident screw terminal numbers and associated octal pin numbers.

D. Current Sensing Relay:
1. Monitors ac current.
2. Independent adjustable controls for pickup and dropout current.
3. Energized when supply voltage is present and current is above pickup setting.
4. De-energizes when monitored current is below dropout current.
5. Dropout current is adjustable from 50 to 95 percent of pickup current.
6. Include a current transformer, if required for application.
7. House current sensing relay and current transformer in its own enclosure. Use NEMA 250, Type 12 enclosure for indoors and NEMA 250, Type 4 for outdoors.

E. Combination On-Off Status Sensor and On-Off Relay:
1. Description:
 a. On-off control and status indication in a single device.
b. LED status indication of activated relay and current trigger.
c. Closed-Open-Auto override switch located on the load side of the relay.

2. Performance:
 a. Ambient Temperature: Minus 30 to 140 deg F.

3. Status Indication:
 a. Current Sensor: Integral sensing for single-phase loads up to 20 A and external solid or split sensing ring for three-phase loads up to 150 A.
 b. Current Sensor Range: As required by application.
 c. Current Set Point: Fixed or adjustable as required by application.
 d. Current Sensor Output:
 1) Solid-state, single-pole double-throw contact rated for 30-V ac and dc and for 0.4 A.
 2) Solid-state, single-pole double-throw contact rated for 120-V ac and 1.0 A.
 3) Analog, zero- to 5- or 10-V dc.
 4) Analog, 4 to 20 mA, loop powered.

5. Enclosure: NEMA 250, Type 1 enclosure.

2.22 ELECTRICAL POWER DEVICES

A. Transformers:
 1. Transformer shall be sized for the total connected load, plus an additional 25 percent of connected load.
 2. Transformer shall be at least 40 VA.
 3. Transformer shall have both primary and secondary fuses.

B. Power-Line Conditioner:
 1. General Power-Line Conditioner Requirements:
 a. Design to ensure maximum reliability, serviceability and performance.
 b. Overall function of the power-line conditioner is to receive raw, polluted electrical power and purify it for use by electronic equipment. The power-line conditioner shall provide isolated, regulated, transient and noise-free sinusoidal power to loads served.
 2. Standards: NRTL listed per UL 1012.
 3. Performance:
 a. Single phase, continuous, 100 percent duty rated KVA/KW capacity. Design to supply power for linear or nonlinear, high crest factor, resistive and reactive loads.
b. Automatically regulate output voltage to within 2 percent or better with input voltage fluctuations of plus 10 to minus 20 percent of nominal when system is loaded 100 percent. Use Variable Range Regulation to obtain improved line voltage regulation when operating under less than full load conditions.

1) At 75 Percent Load: Output voltage automatically regulated to within 3 percent with input voltage fluctuations of plus 10 to minus 35 percent of nominal.

2) At 50 Percent Load: Output voltage automatically regulated to within 3 percent with input voltage fluctuations of plus 10 to minus 40 percent of nominal.

3) At 25 Percent Load: Output voltage automatically regulated to within 3 percent with input voltage fluctuations of plus 10 to minus 45 percent of nominal.

c. With input voltage distortion of up to 40 percent, limit the output voltage sine wave to a maximum harmonic content of 5 percent.

d. Automatically regulate output voltage to within 2.5 percent when load (resistive) changes from zero percent to 100 percent to zero percent.

e. Output voltage returns to 95 percent of nominal level within two cycles and to 100 percent within three cycles when the output is taken from no load to full resistive load or vice-versa. Recovery from partial resistive load changes is corrected in a shorter period of time.

f. K Factor: 30, designed to operate with nonlinear, non-sinusoidal, high crest factor loads without overheating.

g. Input power factor within 0.95 approaching unity with load power factor as poor as 0.6.

h. Attenuate load-generated odd current harmonics 23 dB at the input.

i. Electrically isolate the primary from the secondary. Meet isolation criteria as defined in NFPA 70, Article 250-5D.

j. Lighting and Surge Protection: Compare to UL 1449 rating of 330 V when subjected to Category B3 (6000 V/3000 A) combination waveform as established by IEEE C62.41.

k. Common-mode noise attenuation of 140 dB.

l. Transverse-mode noise attenuation of 120 dB.

m. With loss of input power for up to 16.6 ms, the output sine wave remains at usable ac voltage levels.

n. Reliability of 200,000 hours' MTBF.

o. At full load, when measured at 1-m distance, audible noise is not to exceed 54 dB.

p. Approximately 92 percent efficient at full load.

4. Transformer Construction:

a. Ferroresonant, dry type, convection cooled, 600V class. Transformer windings of Class H (220 deg C) insulated copper.

b. Use a Class H installation system throughout with operating temperatures not to exceed 150 deg C over a 40-deg C ambient temperature.

c. Configure transformer primary for multi-input voltage. Include input terminals for source conductors and ground.
d. Manufacture transformer core using M-6 grade, grain-oriented, stress-relieved transformer steel.

e. Configure transformer secondary in a 240/120-V split with a 208-V tap or straight 120 V, depending on power output size.

f. Electrically isolate the transformer secondary windings from the primary windings. Bond neutral conductor to cabinet enclosure and output neutral terminal.

g. Include interface terminals for output power hot, neutral and ground conductors.

h. Label leads, wires and terminals to correspond with circuit wiring diagram.

i. Vacuum impregnate transformer with epoxy resin.

5. Cabinet Construction:

a. Design for panel or floor mounting.

b. NEMA 250, Type 1, general-purpose, indoor enclosure.

c. Manufacture the cabinet from heavy gauge steel complying with UL 50.

d. Include a textured baked-on paint finish.

C. Transient Voltage Suppression and High-Frequency Noise Filter Unit:

1. The maximum continuous operating voltage shall be at least 125 percent.

2. The operating frequency range shall be 47 to 63 Hz.

3. Protection modes according to NEMA LS-1.

4. The rated single-pulse surge current capacity, for each mode of protection, shall be no less than the following:

 a. Line to Neutral: 45,000 A.
 b. Neutral to Ground: 45,000 A.
 c. Line to Ground: 45,000 A.
 d. Per Phase: 90,000 A.

5. Clamping voltages shall be in compliance with test and evaluation procedures defined in NEMA LS-1. Maximum clamping voltage shall be as follows:

 a. Line to Neutral: 360 V.
 b. Line to Ground: 360 V.
 c. Neutral to Ground: 360 V.

6. Electromagnetic interference and RF interference noise rejection or attenuation values shall comply with test and evaluation procedures defined in NEMA LS-1.

 a. Line to Neutral:

 1) 100 kHz: 42 dB.
 2) 1 MHz: 25 dB.
 3) 10 MHz: 21 dB.
 4) 100 MHz: 36 dB.

 b. Line to Ground:

 1) 100 kHz: 16 dB.
 2) 1 MHz: 55 dB.
 3) 10 MHz: 81 dB.
 4) 100 MHz: 80 dB.

7. Unit shall have LED status indicator that extinguishes to indicate a failure.
8. Unit shall be listed by an NRTL as a transient voltage surge suppressor per UL 1449, and as an electromagnetic interference filter per UL 1283.
9. Unit shall not generate any appreciable magnetic field.
10. Unit shall not generate an audible noise.

D. DC Power Supply:
1. Plug-in style suitable for mating with a standard eight-pin octal socket. Include the power supply with a mating mounting socket.
2. Enclose circuitry in a housing.
3. Include both line and load regulation to ensure a stable output. To protect both the power supply and the load, power supply shall have an automatic current limiting circuit.
4. Performance:
 a. Output voltage nominally 25-V dc within 5 percent.
 b. Output current up to 100 mA.
 c. Input voltage nominally 120-V ac, 60 Hz.
 d. Load regulation within 0.5 percent from zero- to 100-mA load.
 e. Line regulation within 0.5 percent at a 100-mA load for a 10 percent line change.
 f. Stability within 0.1 percent of rated volts for 24 hours after a 20-minute warmup.

2.23 UNINTERRUPTABLE POWER SUPPLY (UPS) UNITS FOR WORKSTATIONS

A. 250 through 1000 VA:
1. UPS units shall provide continuous, regulated output power without using their batteries during brown-out, surge, and spike conditions.
2. Load served shall not exceed 75 percent of UPS rated capacity, including power factor of connected loads.
 a. Larger-capacity units shall be provided for systems with larger connected loads.
 b. UPS shall provide five minutes of battery power.
3. Performance:
 a. Input Voltage: Single phase, 120- or 230-V ac, compatible with field power source.
 b. Load Power Factor Range (Crest Factor): 0.65 to 1.0.
 c. Output Voltage: 101- to 132-V ac, while input voltage varies between 89 and 152-V ac.
 d. On Battery Output Voltage: Sine wave.
 e. Inverter overload capacity shall be minimum 150 percent for 30 seconds.
 f. Recharge time shall be a maximum of six hours to 90 percent capacity after full discharge to cutoff.
 g. Transfer Time: 6 ms.
 h. Surge Voltage Withstand Capacity: IEEE C62.41, Categories A and B; 6 kV/200 and 500 A; 100-kHz ringwave.
4. UPS shall be automatic during fault or overload conditions.
5. Unit with integral line-interactive, power condition topology to eliminate all power contaminants.
6. Include front panel with power switch and visual indication of power, battery, fault and temperature.
7. Unit shall include an audible alarm of faults and front panel silence feature.
8. Unit with four NEMA WD 1, NEMA WD 6 Configuration 5-15R receptacles.
9. UPS shall include dry contacts (digital output points) for low battery condition and battery-on (primary utility power failure) and connect the points to the DDC system.
10. Batteries shall be sealed lead-acid type and be maintenance free. Battery replacement shall be front accessible by user without dropping load.
11. Include tower models installed in ventilated cabinets to the particular installation location.

B. 1000 through 3000 VA:
1. UPS units shall provide continuous, regulated output power without using their batteries during brown-out, surge, and spike conditions.
2. Load served shall not exceed 75 percent of UPS rated capacity, including power factor of connected loads.
 a. Larger-capacity units, or multiple units, shall be provided for systems with larger connected loads.
 b. UPS shall provide five minutes of battery power.
3. Performance:
 a. Input Voltage: Single phase, 120-V ac, plus 20 to minus 30 percent.
 b. Power Factor: Minimum 0.97 at full load.
 c. Output Voltage: Single phase, 120-V ac, within 3 percent, steady state with rated output current of 10.0 A, 30.0-A peak.
 d. Inverter overload capacity shall be minimum 150 percent for 30 seconds.
 e. Recharge time shall be a maximum of eight hours to 90 percent capacity.
4. UPS bypass shall be automatic during fault or overload conditions.
5. UPS shall include dry contacts (digital output points) for low battery condition and battery-on (primary utility power failure).
6. Batteries shall be sealed lead-acid type and be maintenance free.
7. Include tower models installed in ventilated cabinets or rack models installed on matching racks, as applicable to the particular installation location and space availability/configuration.

2.24 CONTROL WIRE AND CABLE

A. Wire: Single conductor control wiring above 24 V.
 1. Wire size shall be at least No. 18 AWG.
 2. Conductor shall be 7/24 soft annealed copper strand with 2- to 2.5-inch lay.
 3. Conductor insulation shall be 600 V, Type THWN or Type THHN, and 90 deg C according to UL 83.
 4. Conductor colors shall be black (hot), white (neutral), and green (ground).
 5. Furnish wire on spools.

B. Single Twisted Shielded Instrumentation Cable above 24 V:
1. Wire size shall be a minimum No. 18 AWG.
2. Conductors shall be a twisted, 7/24 soft annealed copper strand with a 2- to 2.5-inch lay.
3. Conductor insulation shall have a Type THHN/THWN or Type TFN rating.
4. Shielding shall be 100 percent type, 0.35/0.5-mil aluminum/Mylar tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
5. Outer jacket insulation shall have a 600-V, 90-deg C rating and shall be Type TC cable.
6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
7. Furnish wire on spools.

C. Single Twisted Shielded Instrumentation Cable 24 V and Less:
 1. Wire size shall be a minimum No. 18 AWG.
 2. Conductors shall be a twisted, 7/24 soft annealed copper stranding with a 2- to 2.5-inch lay.
 3. Conductor insulation shall have a nominal 15-mil thickness, constructed from flame-retardant PVC.
 4. Shielding shall be 100 percent type, 1.35-mil aluminum/polymer tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
 5. Outer jacket insulation shall have a 300-V, 105-deg C rating and shall be Type PLTC cable.
 6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
 7. Furnish wire on spools.

D. LAN and Communication Cable: Comply with DDC system manufacturer requirements for network being installed.
 1. Cable shall be balanced twisted pair.
 2. Cable shall be plenum rated.
 3. Cable shall have a unique color that is different from other cables used on Project.

2.25 RACEWAYS

A. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.

B. Comply with requirements in Section 270528 "Pathways for Communications Systems" for raceways for balanced twisted pair cables and optical fiber cables.

2.26 ACCESSORIES

A. Damper Blade Limit Switches:
 1. Sense positive open and/or closed position of the damper blades.
 2. NEMA 250, Type 13, oil-tight construction.
 3. Arrange for the mounting application.
 4. Additional waterproof enclosure when required by its environment.
5. Arrange to prevent "over-center" operation.

2.27 IDENTIFICATION

A. Control Equipment, Instruments, and Control Devices:

1. Self-adhesive label, Laminated acrylic or melamine plastic sign bearing unique identification.
 a. Include instruments with unique identification identified by equipment being controlled or monitored, followed by point identification.

2. Letter size shall be as follows:
 a. Servers: Minimum of 0.5 inch high.
 b. DDC Controllers: Minimum of 0.5 inch high.
 c. Enclosures: Minimum of 0.5 inch high.
 d. Electrical Power Devices: Minimum of 0.25 inch high.
 e. UPS units: Minimum of 0.5 inch high.
 f. Accessories: Minimum of 0.25 inch high.
 g. Instruments: Minimum of 0.25 inch high.
 h. Control Damper and Valve Actuators: Minimum of 0.25 inch high.

3. Legend shall consist of white lettering on black background.

4. Laminated acrylic or melamine plastic sign shall be engraved phenolic consisting of three layers of rigid laminate. Top and bottom layers are color-coded black with contrasting white center exposed by engraving through outer layer and shall be fastened with drive pins.

5. Instruments, control devices and actuators with Project-specific identification tags having unique identification numbers following requirements indicated and provided by original manufacturer do not require additional identification.

B. Raceway and Boxes:

1. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
2. Paint cover plates on junction boxes and conduit same color as the tape banding for conduits. After painting, label cover plate "HVAC Controls," using an engraved phenolic tag.
3. For raceways housing pneumatic tubing, add a phenolic tag labeled "HVAC Instrument Air Tubing."
4. For raceways housing air signal tubing, add a phenolic tag labeled "HVAC Air Signal Tubing."

C. Equipment Warning Labels:

1. Self-adhesive label with pressure-sensitive adhesive back and peel-off protective jacket.
2. Lettering size shall be at least 14-point type with white lettering on red background.
3. Warning label shall read "CAUTION-Equipment operated under remote automatic control and may start or stop at any time without warning. Switch electric power disconnecting means to OFF position before servicing."

4. Lettering shall be enclosed in a white line border. Edge of label shall extend at least 0.25 inch beyond white border.

2.28 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate the following according to industry standards for each product, and to verify DDC system reliability specified in performance requirements:

1. DDC controllers.
2. Routers.
3. Operator workstations.

B. Product(s) and material(s) will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

1. Verify compatibility with and suitability of substrates.

B. Examine roughing-in for products to verify actual locations of connections before installation.

1. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.
2. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.

C. Examine walls, floors, roofs, and ceilings for suitable conditions where product will be installed.

D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 DDC SYSTEM INTERFACE WITH OTHER SYSTEMS AND EQUIPMENT

A. Communication Interface to Equipment with Integral Controls:
1. DDC system shall have communication interface with equipment having integral controls and having a communication interface for remote monitoring or control.

2. Equipment to Be Connected:
 a. Air-terminal units specified in Section 233600 "Air Terminal Units."
 b. Heat wheels and heat exchangers specified in Section 237223.23 "Air-to-Air Energy Recovery Equipment."
 c. Roof-top units specified in Section 237416.11 "Packaged, Small-Capacity, Roof top Air-Conditioning Units."

B. Communication Interface to Other Building Systems:

1. DDC system shall have a communication interface with systems having a communication interface.

2. Systems to Be Connected:
 a. Fire-alarm system specified in Section 284621.11 "Addressable Fire-Alarm Systems."

3.3 CONTROL DEVICES FOR INSTALLATION BY INSTALLERS

A. Deliver selected control devices, specified in indicated HVAC instrumentation and control device Sections, to identified equipment and systems manufacturers for factory installation and to identified installers for field installation.

B. Deliver the following to duct fabricator and Installer for installation in ductwork. Include installation instructions to Installer and supervise installation for compliance with requirements.

 1. DDC control dampers, which are specified in Section 230923 "DDC Control Dampers."

3.4 CONTROL DEVICES FOR EQUIPMENT MANUFACTURER FACTORY INSTALLATION

A. Deliver the following to air-handling unit manufacturer for factory installation. Include installation instructions to air-handling unit manufacturer.

 1. Programmable application or application-specific controller.
 2. Unit-mounted DDC control dampers and actuators.
 3. Unit-mounted airflow sensors, switches and transmitters.
 4. Unit-mounted speed sensors, switches and transmitters.
 5. Unit-mounted pressure sensors, switches and transmitters.
 7. Relays.

B. Deliver the following to terminal unit manufacturer for factory installation. Include installation instructions to terminal unit manufacturer.

 1. Programmable application or application-specific controller.
2. Electric damper actuator. Dampers actuators.
3. Unit-mounted flow and pressure sensors, transmitters and transducers. Flow sensors, transmitters, and transducers.
4. Pressure sensors, switches, and transmitters.
6. Relays.

3.5 GENERAL INSTALLATION REQUIREMENTS

A. Install products to satisfy more stringent of all requirements indicated.

B. Install products level, plumb, parallel, and perpendicular with building construction.

C. Support products, tubing, piping, wiring and raceways. Brace products to prevent lateral movement and sway or a break in attachment.

D. If codes and referenced standards are more stringent than requirements indicated, comply with requirements in codes and referenced standards.

E. Fabricate openings and install sleeves in ceilings, floors, roof, and walls required by installation of products. Before proceeding with drilling, punching, and cutting, check for concealed work to avoid damage. Patch, flash, grout, seal, and refinish openings to match adjacent condition.

F. Firestop Penetrations Made in Fire-Rated Assemblies: Comply with requirements in Section 078400 "Penetration Firestoppping."

G. Welding Requirements:

1. Restrict welding and burning to supports and bracing.
2. No equipment shall be cut or welded without approval. Welding or cutting will not be approved if there is risk of damage to adjacent Work.
3. Welding, where approved, shall be by inert-gas electric arc process and shall be performed by qualified welders according to applicable welding codes.
4. If requested on-site, show satisfactory evidence of welder certificates indicating ability to perform welding work intended.

H. Fastening Hardware:

1. Stillson wrenches, pliers, and other tools that damage surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening fasteners.
2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
3. Lubricate threads of bolts, nuts and screws with graphite and oil before assembly.

I. If product locations are not indicated, install products in locations that are accessible and that will permit service and maintenance from floor, equipment platforms, or catwalks without removal of permanently installed furniture and equipment.
3.6 POT INSTALLATION
 A. Install one portable operator terminal(s).
 B. Turn over POTs to Owner at Substantial Completion.
 C. Install software on each POT and verify that software functions properly.

3.7 SERVER INSTALLATION
 A. Install one server(s) at location(s) directed by Owner.
 B. Install number of servers required to suit requirements indicated. Review Project requirements and indicate layout of proposed location in Shop Drawings.
 C. Install software indicated on server(s) and verify that software functions properly.
 D. Develop Project-specific graphics, trends, reports, logs, and historical database.
 E. Power servers through dedicated UPS unit. Locate UPS adjacent to server.

3.8 ROUTER INSTALLATION
 A. Install routers if required for DDC system communication interface requirements indicated.
 B. Test router to verify that communication interface functions properly.

3.9 CONTROLLER INSTALLATION
 A. Install controllers in enclosures to comply with indicated requirements.
 B. Connect controllers to field power supply.
 C. Install controller with latest version of applicable software and configure to execute requirements indicated.
 D. Test and adjust controllers to verify operation of connected I/O to achieve performance indicated requirements while executing sequences of operation.
 E. Installation of Network Controllers:
 1. Quantity and location of network controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
 2. Install controllers in a protected location that is easily accessible by operators.
 3. Top of controller shall be within 72 inches of finished floor.
 F. Installation of Programmable Application Controllers:
1. Quantity and location of programmable application controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
2. Install controllers in a protected location that is easily accessible by operators.
3. Top of controller shall be within 72 inches of finished floor.

G. Application-Specific Controllers:
1. Quantity and location of application-specific controllers shall be determined by DDC system manufacturer to satisfy requirements indicated.
2. For controllers not mounted directly on equipment being controlled, install controllers in a protected location that is easily accessible by operators.

3.10 INSTALLATION OF WIRELESS ROUTERS FOR OPERATOR INTERFACE
A. Install wireless routers to achieve optimum performance and best possible coverage.
B. Mount wireless routers in a protected location that is within 60 inches of floor and easily accessible by operators.
C. Connect wireless routers to field power supply and to UPS units if network controllers are powered through UPS units.
D. Install wireless router with latest version of applicable software and configure wireless router with WPA2 security and password protection. Create access password with not less than 12 characters consisting of letters and numbers and at least one special character. Document password in operations and maintenance manuals for reference by operators.
E. Test and adjust wireless routers for proper operation with portable workstation and other wireless devices intended for use by operators.

3.11 ENCLOSURES INSTALLATION
A. Install the following items in enclosures, to comply with indicated requirements:
 1. Routers.
 2. Controllers.
 3. Electrical power devices.
 4. UPS units.
 5. Relays.
 6. Accessories.
 7. Instruments.
 8. Actuators

3.12 ELECTRIC POWER CONNECTIONS
A. Connect electrical power to DDC system products requiring electrical power connections.
B. Design of electrical power to products not indicated with electric power is delegated to DDC system provider and installing trade. Work shall comply with NFPA 70 and other requirements indicated.

C. Comply with requirements in Section 262816 "Enclosed Switches and Circuit Breakers" for electrical power circuit breakers.

D. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical power conductors and cables.

E. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.

3.13 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements in Section 260553 "Identification for Electrical Systems" for identification products and installation.

B. Install self-adhesive labels, laminated acrylic or melamine plastic signs with unique identification on face for each of the following:

1. Operator workstation.
2. Server.
3. Router.
5. DDC controller.
7. Electrical power device.
8. UPS unit.

C. Install unique instrument identification on face of each instrument connected to a DDC controller.

D. Install unique identification on face of each control damper actuator connected to a DDC controller.

E. Where product is installed above accessible tile ceiling, also install matching identification on face of ceiling grid located directly below.

F. Where product is installed above an inaccessible ceiling, also install identification on face of access door directly below.

G. Warning Labels and Signs:

1. Shall be permanently attached to equipment that can be automatically started by DDC control system.
2. Shall be located in highly visible location near power service entry points.
3.14 NETWORK INSTALLATION

A. Install optical fiber cable when connecting between the following network devices and when located in different buildings on campus:
 1. Network controllers.

B. Install balanced twisted pair or copper cable (as required by equipment) when connecting between the following:
 1. Routers.
 2. Routers and network controllers or programmable application controllers.
 3. Network controllers and programmable application controllers.
 4. Programmable application controllers.
 5. Programmable application controllers and application-specific controllers.
 6. Application-specific controllers.

C. Install cable in continuous raceway.
 1. Where indicated on Drawings, cable trays may be used for copper cable in lieu of conduit.

3.15 NETWORK NAMING AND NUMBERING

A. Coordinate with Owner and provide unique naming and addressing for networks and devices.

B. ASHRAE 135 Networks:
 1. MAC Address:
 a. Every network device shall have an assigned and documented MAC address unique to its network.
 b. Ethernet Networks: Document MAC address assigned at its creation.
 c. ARCNET or MS/TP networks: Assign from 00 to 64.
 2. Network Numbering:
 a. Assign unique numbers to each new network.
 b. Provide ability for changing network number through device switches or operator interface.
 c. DDC system, with all possible connected LANs, can contain up to 65,534 unique networks.
 3. Device Object Identifier Property Number:
 a. Assign unique device object identifier property numbers or device instances for each device network.
 b. Provide for future modification of device instance number by device switches or operator interface.
 c. LAN shall support up to 4,194,302 unique devices.
4. Device Object Name Property Text:
 a. Device object name property field shall support 32 minimum printable characters.
 b. Assign unique device "Object Name" property names with plain-English descriptive names for each device.

 1) Example 1: Device object name for device controlling boiler plant at Building 1000 would be "HW System B1000."
 2) Example 2: Device object name for a VAV terminal unit controller could be "VAV unit 102."

5. Object Name Property Text for Other Than Device Objects:
 a. Object name property field shall support 32 minimum printable characters.
 b. Assign object name properties with plain-English names descriptive of application.

 1) Example 1: "Zone 1 Temperature."
 2) Example 2 "Fan Start and Stop."

6. Object Identifier Property Number for Other Than Device Objects:
 a. Assign object identifier property numbers according to Drawings indicated.
 b. If not indicated, object identifier property numbers may be assigned at Installer's discretion but must be approved by Owner in advance, be documented and be unique for like object types within device.

3.16 CONTROL WIRE, CABLE AND RACEWAYS INSTALLATION

A. Comply with NECA 1.

B. Wire and Cable Installation:
 1. Comply with installation requirements in Section 260523 "Control-Voltage Electrical Power Cables."
 2. Install cables with protective sheathing that is waterproof and capable of withstanding continuous temperatures of 90 deg C with no measurable effect on physical and electrical properties of cable.
 a. Provide shielding to prevent interference and distortion from adjacent cables and equipment.
 3. Terminate wiring in a junction box.
 a. Clamp cable over jacket in junction box.
 b. Individual conductors in the stripped section of the cable shall be slack between the clamping point and terminal block.
 4. Terminate field wiring and cable not directly connected to instruments and control devices having integral wiring terminals using terminal blocks.
5. Install signal transmission components according to IEEE C2, REA Form 511a, NFPA 70, and as indicated.
6. Use shielded cable to transmitters.
7. Use shielded cable to temperature sensors.
8. Perform continuity and meager testing on wire and cable after installation.

C. Conduit Installation:

1. Comply with Section "260533 "Raceways and Boxes for Electrical Systems" for control-voltage conductors.
2. Comply with Section 270528 "Pathways for Communications Systems" for balanced twisted pair cabling and optical fiber installation.

3.17 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and installations, including connections.

C. Perform the following tests and inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
3. Testing of Pneumatic and Air-Signal Tubing:

 a. Test for leaks and obstructions.
 b. Disconnect each pipe and tubing line before a test is performed, and blowout dust, dirt, trash, condensate and other foreign materials with compressed air. Use commercially pure compressed air or nitrogen as distributed in gas cylinders. Air from an oil-free compressor with an air dryer is an acceptable alternative for the test.
 c. After foreign matter is expelled and line is free from obstructions, plug far end of tubing run.
 d. Connect a pressure source to near end of run with a needle valve between air supply and tubing run.
 e. Connect a pressure gage accurate to within 0.5 percent of test between the shutoff needle valve and tubing run under test.
 f. For system pressures above 30 psig, apply a pressure of 1.5 times operating pressure. Record pressure in tubing run every 10 minutes for one hour. Allowable drop in pressure in one-hour period shall not exceed 1 psig.
 g. For system pressures 30 psig and below, apply a pressure of 2.0 times operating pressure to piping and tubing run. Record pressure in tubing run every 5 minutes for one hour. Allowable drop in pressure in one-hour period shall not exceed 0.5 psig.

D. Testing:
1. Perform preinstallation, in-progress, and final tests, supplemented by additional tests, as necessary.
2. Preinstallation Cable Verification: Verify integrity and serviceability for new cable lengths before installation. This assurance may be provided by using vendor verification documents, testing, or other methods. As a minimum, furnish evidence of verification for cable attenuation and bandwidth parameters.
3. In-Progress Testing: Perform standard tests for correct pair identification and termination during installation to ensure proper installation and cable placement. Perform tests in addition to those specified if there is any reason to question condition of material furnished and installed. Testing accomplished is to be documented by agency conducting tests. Submit test results for Project record.
4. Final Testing: Perform final test of installed system to demonstrate acceptability as installed. Testing shall be performed according to a test plan supplied by DDC system manufacturer. Defective Work or material shall be corrected and retested. As a minimum, final testing for cable system, including spare cable, shall verify conformance of attenuation, length, and bandwidth parameters with performance indicated.
5. Test Equipment: Use an optical fiber time domain reflectometer for testing of length and optical connectivity.
6. Test Results: Record test results and submit copy of test results for Project record.

3.18 DDC SYSTEM I/O CHECKOUT PROCEDURES

A. Check installed products before continuity tests, leak tests and calibration.

B. Check instruments for proper location and accessibility.

C. Check instruments for proper installation on direction of flow, elevation, orientation, insertion depth, or other applicable considerations that will impact performance.

D. Check instrument tubing for proper isolation, fittings, slope, dirt legs, drains, material and support.

E. Control Damper Checkout:
 1. Verify that control dampers are installed correctly for flow direction.
 2. Verify that proper blade alignment, either parallel or opposed, has been provided.
 3. Verify that damper frame attachment is properly secured and sealed.
 4. Verify that damper actuator and linkage attachment is secure.
 5. Verify that actuator wiring is complete, enclosed and connected to correct power source.
 6. Verify that damper blade travel is unobstructed.

F. Instrument Checkout:
 1. Verify that instrument is correctly installed for location, orientation, direction and operating clearances.
 2. Verify that attachment is properly secured and sealed.
 3. Verify that conduit connections are properly secured and sealed.
 4. Verify that wiring is properly labeled with unique identification, correct type and size and is securely attached to proper terminals.
 5. Inspect instrument tag against approved submittal.
6. For instruments with tubing connections, verify that tubing attachment is secure and isolation valves have been provided.
7. For flow instruments, verify that recommended upstream and downstream distances have been maintained.
8. For temperature instruments:
 a. Verify sensing element type and proper material.
 b. Verify length and insertion.

3.19 DDC SYSTEM I/O ADJUSTMENT, CALIBRATION AND TESTING:

A. Calibrate each instrument installed that is not factory calibrated and provided with calibration documentation.

B. Provide a written description of proposed field procedures and equipment for calibrating each type of instrument. Submit procedures before calibration and adjustment.

C. For each analog instrument, make a three-point test of calibration for both linearity and accuracy.

D. Equipment and procedures used for calibration shall comply with instrument manufacturer's written instructions.

E. Provide diagnostic and test equipment for calibration and adjustment.

F. Field instruments and equipment used to test and calibrate installed instruments shall have accuracy at least twice the instrument accuracy being calibrated. An installed instrument with an accuracy of 1 percent shall be checked by an instrument with an accuracy of 0.5 percent.

G. Calibrate each instrument according to instrument instruction manual supplied by manufacturer.

H. If after calibration indicated performance cannot be achieved, replace out-of-tolerance instruments.

I. Comply with field testing requirements and procedures indicated by ASHRAE's Guideline 11, "Field Testing of HVAC Control Components," in the absence of specific requirements, and to supplement requirements indicated.

J. Analog Signals:
 1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.
 2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.
 3. Check resistance signals for temperature sensors at zero, 50, and 100 percent of operating span using a precision-resistant source.

K. Digital Signals:
 1. Check digital signals using a jumper wire.
2. Check digital signals using an ohmmeter to test for contact making or breaking.

L. Control Dampers:
 1. Stroke and adjust control dampers following manufacturer's recommended procedure, from 100 percent open to 100 percent closed and back to 100 percent open.
 2. Stroke control dampers with pilot positioners. Adjust damper and positioner following manufacturer's recommended procedure, so damper is 100 percent closed, 50 percent closed and 100 percent open at proper air pressure.
 3. Check and document open and close cycle times for applications with a cycle time less than 30 seconds.
 4. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

M. Meters: Check sensors at zero, 50, and 100 percent of Project design values.

N. Sensors: Check sensors at zero, 50, and 100 percent of Project design values.

O. Switches: Calibrate switches to make or break contact at set points indicated.

P. Transmitters:
 1. Check and calibrate transmitters at zero, 50, and 100 percent of Project design values.
 2. Calibrate resistance temperature transmitters at zero, 50, and 100 percent of span using a precision-resistant source.

3.20 DDC SYSTEM CONTROLLER CHECKOUT

A. Verify power supply.
 1. Verify voltage, phase and hertz.
 2. Verify that protection from power surges is installed and functioning.
 3. Verify that ground fault protection is installed.
 4. If applicable, verify if connected to UPS unit.
 5. If applicable, verify if connected to a backup power source.
 6. If applicable, verify that power conditioning units, transient voltage suppression and high-frequency noise filter units are installed.

B. Verify that wire and cabling is properly secured to terminals and labeled with unique identification.

C. Verify that spare I/O capacity is provided.

3.21 DDC CONTROLLER I/O CONTROL LOOP TESTS

A. Testing:
1. Test every I/O point connected to DDC controller to verify that safety and operating control set points are as indicated and as required to operate controlled system safely and at optimum performance.
2. Test every I/O point throughout its full operating range.
3. Test every control loop to verify operation is stable and accurate.
4. Adjust control loop proportional, integral and derivative settings to achieve optimum performance while complying with performance requirements indicated. Document testing of each control loop's precision and stability via trend logs.
5. Test and adjust every control loop for proper operation according to sequence of operation.
6. Test software and hardware interlocks for proper operation. Correct deficiencies.
7. Operate each analog point at the following:
 a. Upper quarter of range.
 b. Lower quarter of range.
 c. At midpoint of range.
8. Exercise each binary point.
9. For every I/O point in DDC system, read and record each value at operator workstation, at DDC controller and at field instrument simultaneously. Value displayed at operator workstation, at DDC controller and at field instrument shall match.
10. Prepare and submit a report documenting results for each I/O point in DDC system and include in each I/O point a description of corrective measures and adjustments made to achieve desire results.

3.22 DDC SYSTEM VALIDATION TESTS

A. Perform validation tests before requesting final review of system. Before beginning testing, first submit Pretest Checklist and Test Plan.

B. After approval of Test Plan, execute all tests and procedures indicated in plan.

C. After testing is complete, submit completed test checklist.

D. Pretest Checklist: Submit the following list with items checked off once verified:
 1. Detailed explanation for any items that are not completed or verified.
 2. Required mechanical installation work is successfully completed and HVAC equipment is working correctly.
 3. HVAC equipment motors operate below full-load amperage ratings.
 4. Required DDC system components, wiring, and accessories are installed.
 5. Installed DDC system architecture matches approved Drawings.
 6. Control electric power circuits operate at proper voltage and are free from faults.
 7. Required surge protection is installed.
 8. DDC system network communications function properly, including uploading and downloading programming changes.
 9. Using BACnet protocol analyzer, verify that communications are error free.
 10. Each controller's programming is backed up.
 11. Equipment, products, tubing, wiring cable and conduits are properly labeled.
12. All I/O points are programmed into controllers.
13. Testing, adjusting and balancing work affecting controls is complete.
14. Dampers and actuators zero and span adjustments are set properly.
15. Each control damper and actuator goes to failed position on loss of power.
16. Valves and actuators zero and span adjustments are set properly.
17. Each control valve and actuator goes to failed position on loss of power.
18. Meter, sensor and transmitter readings are accurate and calibrated.
19. Control loops are tuned for smooth and stable operation.
20. View trend data where applicable.
21. Each controller works properly in standalone mode.
22. Safety controls and devices function properly.
23. Interfaces with fire-alarm system function properly.
24. Electrical interlocks function properly.
25. Operator workstations and other interfaces are delivered, all system and database software is installed, and graphic are created.
26. Record Drawings are completed.

E. Test Plan:

1. Prepare and submit a validation test plan including test procedures for performance validation tests.
2. Test plan shall address all specified functions of DDC system and sequences of operation.
3. Explain detailed actions and expected results to demonstrate compliance with requirements indicated.
4. Explain method for simulating necessary conditions of operation used to demonstrate performance.
5. Include a test checklist to be used to check and initial that each test has been successfully completed.
6. Submit test plan documentation 10 business days before start of tests.

F. Validation Test:

1. Verify operating performance of each I/O point in DDC system.
 a. Verify analog I/O points at operating value.
 b. Make adjustments to out-of-tolerance I/O points.
 1) Identify I/O points for future reference.
 2) Simulate abnormal conditions to demonstrate proper function of safety devices.
 3) Replace instruments and controllers that cannot maintain performance indicated after adjustments.
 2. Simulate conditions to demonstrate proper sequence of control.
 3. Readjust settings to design values and observe ability of DDC system to establish desired conditions.
 4. After 24 Hours following Initial Validation Test:
 a. Re-check I/O points that required corrections during initial test.
b. Identify I/O points that still require additional correction and make corrections necessary to achieve desired results.

5. After 24 Hours of Second Validation Test:
 a. Re-check I/O points that required corrections during second test.
 b. Continue validation testing until I/O point is normal on two consecutive tests.

6. Completely check out, calibrate, and test all connected hardware and software to ensure that DDC system performs according to requirements indicated.

7. After validation testing is complete, prepare and submit a report indicating all I/O points that required correction and how many validation re-tests it took to pass. Identify adjustments made for each test and indicate instruments that were replaced.

G. DDC System Response Time Test:

1. Simulate HLC.
 a. Heavy load shall be an occurrence of 50 percent of total connected binary COV, one-half of which represent an "alarm" condition, and 50 percent of total connected analog COV, one-half of which represent an "alarm" condition, that are initiated simultaneously on a one-time basis.

2. Initiate 10 successive occurrences of HLC and measure response time to typical alarms and status changes.

3. Measure with a timer having at least 0.1-second resolution and 0.01 percent accuracy.

4. Purpose of test is to demonstrate DDC system, as follows:
 a. Reaction to COV and alarm conditions during HLC.
 b. Ability to update DDC system database during HLC.

5. Passing test is contingent on the following:
 a. Alarm reporting at printer beginning no more than two seconds after the initiation (time zero) of HLC.
 b. All alarms, both binary and analog, are reported and printed; none are lost.
 c. Compliance with response times specified.

6. Prepare and submit a report documenting HLC tested and results of test including time stamp and print out of all alarms.

H. DDC System Network Bandwidth Test:

1. Test network bandwidth usage on all DDC system networks to demonstrate bandwidth usage under DDC system normal operating conditions and under simulated HLC.

2. To pass, none of DDC system networks shall use more than 70 percent of available bandwidth under normal and HLC operation.
3.23 DDC SYSTEM WIRELESS NETWORK VERIFICATION

A. DDC system Installer shall design wireless DDC system networks to comply with performance requirements indicated.

B. Installer shall verify wireless network performance through field testing and shall document results in a field test report.

C. Testing and verification of all wireless devices shall include, but not be limited to, the following:
 1. Speed.
 2. Online status.
 3. Signal strength.

3.24 FINAL REVIEW

A. Submit written request to Architect and Construction Manager when DDC system is ready for final review. Written request shall state the following:
 1. DDC system has been thoroughly inspected for compliance with contract documents and found to be in full compliance.
 2. DDC system has been calibrated, adjusted and tested and found to comply with requirements of operational stability, accuracy, speed and other performance requirements indicated.
 3. DDC system monitoring and control of HVAC systems results in operation according to sequences of operation indicated.
 4. DDC system is complete and ready for final review.

B. Review by Construction Manager shall be made after receipt of written request. A field report shall be issued to document observations and deficiencies.

C. Take prompt action to remedy deficiencies indicated in field report and submit a second written request when all deficiencies have been corrected. Repeat process until no deficiencies are reported.

D. Should more than two reviews be required, DDC system manufacturer and Installer shall compensate entity performing review for total costs, labor and expenses, associated with third and subsequent reviews. Estimated cost of each review shall be submitted and approved by DDC system manufacturer and Installer before making the review.

E. Prepare and submit closeout submittals when no deficiencies are reported.

F. A part of DDC system final review shall include a demonstration to parties participating in final review.
 1. Provide staff familiar with DDC system installed to demonstrate operation of DDC system during final review.
2. Provide testing equipment to demonstrate accuracy and other performance requirements of DDC system that is requested by reviewers during final review.

3. Demonstration shall include, but not be limited to, the following:

 a. Accuracy and calibration of 10 I/O points randomly selected by reviewers. If review finds that some I/O points are not properly calibrated and not satisfying performance requirements indicated, additional I/O points may be selected by reviewers until total I/O points being reviewed that satisfy requirements equals quantity indicated.

 b. HVAC equipment and system hardwired, and software safeties and life-safety functions are operating according to sequence of operation. Up to 10 I/O points shall be randomly selected by reviewers. Additional I/O points may be selected by reviewers to discover problems with operation.

 c. Correct sequence of operation after electrical power interruption and resumption after electrical power is restored for randomly selected HVAC systems.

 d. Operation of randomly selected dampers and valves in normal-on, normal-off and failed positions.

 e. Reporting of alarm conditions for randomly selected alarms, including different classes of alarms, to ensure that alarms are properly received by operators and operator workstations.

 f. Trends, summaries, logs and reports set-up for Project.

 g. For up to three HVAC systems randomly selected by reviewers, use graph trends to show that sequence of operation is executed in correct manner and that HVAC systems operate properly through complete sequence of operation including different modes of operations indicated. Show that control loops are stable and operating at set points and respond to changes in set point of 20 percent or more.

 h. Software's ability to communicate with controllers, operator workstations, uploading and downloading of control programs.

 i. Software's ability to edit control programs off-line.

 j. Data entry to show Project-specific customizing capability including parameter changes.

 k. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.

 l. Execution of digital and analog commands in graphic mode.

 m. Spreadsheet and curve plot software and its integration with database.

 n. Online user guide and help functions.

 o. Multitasking by showing different operations occurring simultaneously on four quadrants of split screen.

 p. System speed of response compared to requirements indicated.

 q. For Each Network and Programmable Application Controller:

 1) Memory: Programmed data, parameters, trend and alarm history collected during normal operation is not lost during power failure.

 2) Operator Interface: Ability to connect directly to each type of digital controller with a portable workstation and mobile device. Show that maintenance personnel interface tools perform as indicated in manufacturer's technical literature.

 3) Standalone Ability: Demonstrate that controllers provide stable and reliable standalone operation using default values or other method for values normally read over network.
4) Electric Power: Ability to disconnect any controller safely from its power source.
5) Wiring Labels: Match control drawings.
6) Network Communication: Ability to locate a controller's location on network and communication architecture matches Shop Drawings.
7) Nameplates and Tags: Accurate and permanently attached to control panel doors, instrument, actuators and devices.

r. For Each Operator Workstation:

1) I/O points lists agree with naming conventions.
2) Graphics are complete.
3) UPS unit, if applicable, operates.

s. Communications and Interoperability: Demonstrate proper interoperability of data sharing, alarm and event management, trending, scheduling, and device and network management. Requirements must be met even if only one manufacturer's equipment is installed.

1) Data Presentation: On each operator workstation, demonstrate graphic display capabilities.
2) Reading of Any Property: Demonstrate ability to read and display any used readable object property of any device on network.
3) Set Point and Parameter Modifications: Show ability to modify set points and tuning parameters indicated.
4) Peer-to-Peer Data Exchange: Network devices are installed and configured to perform without need for operator intervention to implement Project sequence of operation and to share global data.
5) Alarm and Event Management: Alarms and events are installed and prioritized according to Owner. Demonstrate that time delays and other logic are set up to avoid nuisance tripping. Show that operators with sufficient privileges are permitted.
6) Schedule Lists: Schedules are configured for start and stop, mode change, occupant overrides, and night setback as defined in sequence of operations.
7) Schedule Display and Modification: Ability to display any schedule with start and stop times for calendar year. Show that all calendar entries and schedules are modifiable from any connected operator workstation by an operator with sufficient privilege.
8) Archival Storage of Data: Data archiving is handled by operator workstation and server and local trend archiving and display is accomplished.
9) Modification of Trend Log Object Parameters: Operator with sufficient privilege can change logged data points, sampling rate, and trend duration.
10) Device and Network Management:
 a) Display of network device status.
 b) Display of BACnet Object Information.
 c) Silencing devices transmitting erroneous data.
 d) Time synchronization.
 e) Remote device re-initialization.
3.25 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.26 MAINTENANCE SERVICE

A. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months’ full maintenance by DDC system manufacturer's authorized service representative. Include monthly preventive maintenance, repair or replacement of worn or defective components, cleaning, calibration and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.27 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two year(s).

B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within one Insert number year(s) from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule and access system and to upgrade computer equipment if necessary.

3.28 DEMONSTRATION

A. Engage a factory-authorized service representative with complete knowledge of Project-specific system installed to train Owner's maintenance personnel to adjust, operate, and maintain DDC system.

B. Extent of Training:

1. Base extent of training on scope and complexity of DDC system indicated and training requirements indicated. Provide extent of training required to satisfy requirements indicated even if more than minimum training requirements are indicated.

2. Inform Owner of anticipated training requirements if more than minimum training requirements are indicated.

3. Minimum Training Requirements:
C. Training Schedule:

1. Schedule training with Owner 20 business days before expected Substantial Completion.
2. Schedule training to provide Owner with at least 20 business days of notice in advance of training.
3. Training shall occur within normal business hours at a mutually agreed on time. Unless otherwise agreed to, training shall occur Monday through Friday, except on U.S. Federal holidays, with two morning sessions and two afternoon sessions. Each morning session and afternoon session shall be split in half with 15-minute break between sessions. Morning and afternoon sessions shall be separated by 60-minute lunch period. Training, including breaks and excluding lunch period, shall not exceed eight hours per day.
4. Provide staggered training schedule as requested by Owner.

D. Training Attendee List and Sign-in Sheet:

1. Request from Owner in advance of training a proposed attendee list with name, phone number and e-mail address.
2. Provide a preprinted sign-in sheet for each training session with proposed attendees listed and no fewer than six blank spaces to add additional attendees.
3. Preprinted sign-in sheet shall include training session number, date and time, instructor name, phone number and e-mail address, and brief description of content to be covered during session. List attendees with columns for name, phone number, e-mail address and a column for attendee signature or initials.
4. Circulate sign-in sheet at beginning of each session and solicit attendees to sign or initial in applicable location.
5. At end of each training day, send Owner an e-mail with an attachment of scanned copy (PDF) of circulated sign-in sheet for each session.

E. Training Attendee Headcount:

1. Plan in advance of training for two or three attendees.
2. Make allowance for Owner to add up to five attendees at time of training.
3. Headcount may vary depending on training content covered in session. Attendee access may be restricted to some training content for purposes of maintaining system security.

F. Training Attendee Prior Knowledge: For guidance in planning required training and instruction, assume attendees have the following:

1. High school education and degree.
2. Basic user knowledge of computers and office applications.
3. Basic knowledge of HVAC systems.
4. Basic knowledge of DDC systems.
5. Basic knowledge of DDC system and products installed.

G. Attendee Training Manuals:

1. Provide each attendee with a color hard copy of all training materials and visual presentations.
2. Hard-copy materials shall be organized in a three-ring binder with table of contents and individual divider tabs marked for each logical grouping of subject matter. Organize material to provide space for attendees to take handwritten notes within training manuals.

3. In addition to hard-copy materials included in training manual, provide each binder with a sleeve or pocket that includes a DVD or flash drive with PDF copy of all hard-copy materials.

H. Instructor Requirements:

1. One or multiple qualified instructors, as required, to provide training.
2. Instructors shall have not less than five years of providing instructional training on not less than five past projects with similar DDC system scope and complexity to DDC system installed.

I. Organization of Training Sessions:

1. Organize training sessions into logical groupings of technical content and to reflect different levels of operators having access to system. Plan training sessions to accommodate the following three levels of operators:
 a. Daily operators.
 b. Advanced operators.
 c. System managers and administrators.

2. Plan and organize training sessions to group training content to protect DDC system security. Some attendees may be restricted to some training sessions that cover restricted content for purposes of maintaining DDC system security.

J. Training Outline:

1. Submit training outline for Owner review at least 10 business day before scheduling training.
2. Outline shall include a detailed agenda for each training day that is broken down into each of four training sessions that day, training objectives for each training session and synopses for each lesson planned.

K. On-Site Training:

1. Owner will provide conditioned classroom or workspace with ample desks or tables, chairs, power and data connectivity for instructor and each attendee.
2. Instructor shall provide training materials, projector and other audiovisual equipment used in training.
3. Provide as much of training located on-site as deemed feasible and practical by Owner.
4. On-site training shall include regular walk-through tours, as required, to observe each unique product type installed with hands-on review of operation, calibration and service requirements.
5. Operator workstation provided with DDC system shall be used in training. If operator workstation is not indicated, provide a temporary workstation to convey training content.

L. Off-Site Training:
1. Provide conditioned training rooms and workspace with ample tables desks or tables, chairs, power and data connectivity for each attendee.
2. Provide capability to remotely access to Project DDC system for use in training.
3. Provide a workstation for use by each attendee.

M. Training Content for Daily Operators:

1. Basic operation of system.
2. Understanding DDC system architecture and configuration.
3. Understanding each unique product type installed including performance and service requirements for each.
4. Understanding operation of each system and equipment controlled by DDC system including sequences of operation, each unique control algorithm and each unique optimization routine.
5. Operating operator workstations, printers and other peripherals.
6. Logging on and off system.
7. Accessing graphics, reports and alarms.
8. Adjusting and changing set points and time schedules.
9. Recognizing DDC system malfunctions.
10. Understanding content of operation and maintenance manuals including control drawings.
11. Understanding physical location and placement of DDC controllers and I/O hardware.
12. Accessing data from DDC controllers.
14. Review of DDC testing results to establish basic understanding of DDC system operating performance and HVAC system limitations as of Substantial Completion.
15. Running each specified report and log.
16. Displaying and demonstrating each data entry to show Project-specific customizing capability. Demonstrating parameter changes.
17. Stepping through graphics penetration tree, displaying all graphics, demonstrating dynamic updating, and direct access to graphics.
18. Executing digital and analog commands in graphic mode.
19. Demonstrating control loop precision and stability via trend logs of I/O for not less than 10 percent of I/O installed.
20. Demonstrating DDC system performance through trend logs and command tracing.
22. Demonstrating spreadsheet and curve plot software, and its integration with database.
23. Demonstrating on-line user guide and help function and mail facility.
24. Demonstrating multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
25. Demonstrating the following for HVAC systems and equipment controlled by DDC system:

 a. Operation of HVAC equipment in normal-off, -on and failed conditions while observing individual equipment, dampers and valves for correct position under each condition.
 b. For HVAC equipment with factory-installed software, show that integration into DDC system is able to communicate with DDC controllers or gateways, as applicable.
Using graphed trends, show that sequence of operation is executed in correct manner, and HVAC systems operate properly through complete sequence of operation including seasonal change, occupied and unoccupied modes, warm-up and cool-down cycles and other modes of operation indicated.

d. Hardware interlocks and safeties function properly and DDC system performs correct sequence of operation after electrical power interruption and resumption after power is restored.

e. Reporting of alarm conditions for each alarm, and confirm that alarms are received at assigned locations, including operator workstations.

f. Each control loop responds to set point adjustment and stabilizes within time period indicated.

g. Sharing of previously graphed trends of all control loops to demonstrate that each control loop is stable and set points are being maintained.

N. Training Content for Advanced Operators:

1. Making and changing workstation graphics.
2. Creating, deleting and modifying alarms including annunciation and routing.
3. Creating, deleting and modifying point trend logs including graphing and printing on an ad-hoc basis and operator-defined time intervals.
4. Creating, deleting and modifying reports.
5. Creating, deleting and modifying points.
6. Creating, deleting and modifying programming including ability to edit control programs off-line.
7. Creating, deleting and modifying system graphics and other types of displays.
8. Adding DDC controllers and other network communication devices such as gateways and routers.
10. Performing DDC system checkout and diagnostic procedures.
11. Performing DDC controllers operation and maintenance procedures.
12. Performing operator workstation operation and maintenance procedures.
13. Configuring DDC system hardware including controllers, workstations, communication devices and I/O points.
14. Maintaining, calibrating, troubleshooting, diagnosing and repairing hardware.
15. Adjusting, calibrating and replacing DDC system components.

O. Training Content for System Managers and Administrators:

1. DDC system software maintenance and backups.
2. Uploading, downloading and off-line archiving of all DDC system software and databases.
3. Interface with Project-specific, third-party operator software.
4. Understanding password and security procedures.
5. Adding new operators and making modifications to existing operators.
6. Operator password assignments and modification.
7. Operator authority assignment and modification.
8. Workstation data segregation and modification.

P. Video of Training Sessions:
1. Provide a digital video and audio recording of each training session. Create a separate recording file for each session.
2. Stamp each recording file with training session number, session name and date.
3. Provide Owner with two copies of digital files on DVDs or flash drives for later reference and for use in future training.
4. Owner retains right to make additional copies for intended training purposes without having to pay royalties.

END OF SECTION 230923
SECTION 231123 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pipes, tubes, and fittings.
2. Piping specialties.
3. Piping and tubing joining materials.
5. Pressure regulators.
6. Dielectric fittings.

1.3 DEFINITIONS

A. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of the following:

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

B. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.
1.6 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:

1. Piping and Valves: 100 psig minimum unless otherwise indicated.
2. Service Regulators: 65 psig minimum unless otherwise indicated.

B. Natural-Gas System Pressure within Buildings: 0.5 psig or less.

C. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 0.5 psig but not more than 2 psig, and is reduced to secondary pressure of 0.5 psig or less.

D. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

2.2 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A53/A53M, black steel, Schedule 40, Type E or S, Grade B.

4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:

 b. End Connections: Threaded or butt welding to match pipe.
 c. Lapped Face: Not permitted underground.
 e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.

B. Corrugated, Stainless-Steel Tubing: Comply with ANSI/IAS LC 1.
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. FlashShield Products; Gastite, a division of Titeflex Corp.
 b. TracPipe CounterStrike; Omega Flex, Inc.
 c. Tru-Flex Metal Hose Corp.
 d. Ward Manufacturing LLC.

3. Coating: PE with flame retardant.
 a. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1) Flame-Spread Index: 25 or less.
 2) Smoke-Developed Index: 50 or less.

4. Fittings: Copper-alloy mechanical fittings with ends made to fit and listed for use with corrugated stainless-steel tubing and capable of metal-to-metal seal without gaskets. Include brazing socket or threaded ends complying with ASME B1.20.1.

5. Striker Plates: Steel, designed to protect tubing from penetrations.

6. Manifolds: Malleable iron or steel with factory-applied protective coating. Threaded connections shall comply with ASME B1.20.1 for pipe inlet and corrugated tubing outlets.

7. Operating-Pressure Rating: 5 psig.

C. Drawn-Temper Copper Tube: Comply with ASTM B88, Type L.
 b. Bolts and Nuts: ASME B18.2.1, carbon steel or stainless steel.

D. Annealed-Temper Copper Tube: Comply with ASTM B88, Type L.
 a. Copper fittings with long nuts.
 b. Metal-to-metal compression seal without gasket.
 c. Dryseal threads complying with ASME B1.20.3.

E. Tin-Lined Copper Tube: ASTM B280, seamless, annealed, with interior tin-plated lining.
 a. Copper fittings with long nuts.
b. Metal-to-metal compression seal without gasket.
c. Dryseal threads complying with ASME B1.20.3.

2. PVC Pipe: ASTM D2513, SDR 11.
 1. PVC Fittings: ASTM D2683, socket-fusion type or ASTM D3261, butt-fusion type with dimensions matching PVC pipe.
 2. PVC Transition Fittings: Factory-fabricated fittings with PVC pipe complying with ASTM D2513, SDR 11; and steel pipe complying with ASTM A53/A53M, black steel, Schedule 40, Type E or S, Grade B.
 b. Casing: Steel pipe complying with ASTM A53/A53M, Schedule 40, black steel, Type E or S, Grade B, with corrosion-protective coating covering. Vent casing aboveground.
 c. Aboveground Portion: PVC transition fitting.
 d. Outlet shall be threaded or flanged or suitable for welded connection.
 e. Tracer wire connection.
 f. Ultraviolet shield.
 g. Stake supports with factory finish to match steel pipe casing or carrier pipe.

2.3 PIPING SPECIALTIES

A. Appliance Flexible Connectors:
 3. Corrugated stainless-steel tubing with polymer coating.
 4. Operating-Pressure Rating: 0.5 psig.
 5. End Fittings: Zinc-coated steel.
 7. Maximum Length: 72 inches

B. Quick-Disconnect Devices: Comply with ANSI Z21.41.
 1. Copper-alloy convenience outlet and matching plug connector.
 2. Nitrile seals.
 3. Hand operated with automatic shutoff when disconnected.
 4. For indoor applications.
 5. Adjustable, retractable restraining cable.

C. Y-Pattern Strainers:
 1. Body: ASTM A126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

D. Basket Strainers:
 1. Body: ASTM A126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

E. T-Pattern Strainers:
 1. Body: Ductile or malleable iron with removable access coupling and end cap for strainer maintenance.
 2. End Connections: Grooved ends.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 57 percent free area.
 4. CWP Rating: 750 psig.

F. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.4 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.5 MANUAL GAS SHUTOFF VALVES

A. See "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.

B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 1. CWP Rating: 125 psig.
 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

C. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.
 1. CWP Rating: 125 psig.
 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
 4. Service Mark: Initials "WOG" shall be permanently marked on valve body.

D. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Apollo Flow Controls; Conbraco Industries, Inc.
 b. BrassCraft Manufacturing Co.; a Masco company.
 c. Lyall, R. W. & Company, Inc.
 d. Perfection Corporation.
 3. Ball: Chrome-plated bronze.
 4. Stem: Bronze; blowout proof.
 5. Seats: Reinforced TFE; blowout proof.
 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 8. CWP Rating: 600 psig.
 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

E. Valve Boxes:
 1. Cast-iron, two-section box.
 2. Top section with cover with "GAS" lettering.
 3. Bottom section with base to fit over valve and barrel a minimum of 5 inches in diameter.
 4. Adjustable cast-iron extensions of length required for depth of bury.
 5. Include tee-handle, steel operating wrench with socket end fitting valve nut or flat head, and with stem of length required to operate valve.

2.6 PRESSURE REGULATORS

A. General Requirements:
 1. Single stage and suitable for natural gas.
2. Steel jacket and corrosion-resistant components.
3. Elevation compensator.
4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Canadian Meter Company Inc.
 b. Eaton.
 c. Harper Wyman Co.
 d. Maxitrol Company.

5. Seat Disc: Nitrile rubber.
8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.

2.7 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. Matco-Norca.
 d. WATTS.
 e. Zurn Industries, LLC.

2. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Central Plastics Company.
 c. Matco-Norca.
 d. WATTS.

2. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 125 psig minimum at 180 deg F.
 d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:
 1. <Double click here to find, evaluate, and insert list of manufacturers and products.>
 2. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Close equipment shutoff valves before turning off natural gas to premises or piping section.

B. Inspect natural-gas piping according to the International Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.

C. Comply with the International Fuel Gas Code requirements for prevention of accidental ignition.
3.3 INDOOR PIPING INSTALLATION

A. Comply with the International Fuel Gas Code for installation and purging of natural-gas piping.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

G. Locate valves for easy access.

H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Verify final equipment locations for roughing-in.

L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

M. Drips and Sediment Traps: Install drips at points where condensate may collect. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.

1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
P. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.

1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.
2. In Floors: Install natural-gas piping with welded or brazed joints and protective coating in cast-in-place concrete floors. Cover piping to be cast in concrete slabs with minimum of 1-1/2 inches of concrete. Piping may not be in physical contact with other metallic structures such as reinforcing rods or electrically neutral conductors. Do not embed piping in concrete slabs containing quick-set additives or cinder aggregate.
3. In Floor Channels: Install natural-gas piping in floor channels. Channels must have cover and be open to space above cover for ventilation.
4. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
 a. Exception: Tubing passing through partitions or walls does not require striker barriers.
5. Prohibited Locations:
 a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
 b. Do not install natural-gas piping in solid walls or partitions.

Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

R. Connect branch piping from top or side of horizontal piping.

S. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

T. Do not use natural-gas piping as grounding electrode.

U. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

V. Install pressure gage downstream from each line regulator. Pressure gages are specified in Section 220519 "Meters and Gages for Plumbing Piping."

W. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

X. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
Y. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.4 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing or copper connector.

B. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

C. Install earthquake valves aboveground outside buildings according to listing.

3.5 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
 2. Bevel plain ends of steel pipe.
 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.

F. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.

G. Flared Joints: Cut tubing with roll cutting tool. Flare tube end with tool to result in flare dimensions complying with SAE J513. Tighten finger tight, then use wrench. Do not overtighten.
H. **PE Piping Heat-Fusion Joints:** Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D2657.

1. Plain-End Pipe and Fittings: Use butt fusion.
2. Plain-End Pipe and Socket Fittings: Use socket fusion.

3.6 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Install hangers for steel piping and copper tubing, with maximum horizontal spacing and minimum rod diameters, to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

C. Install hangers for corrugated stainless-steel tubing, with maximum horizontal spacing and minimum rod diameters, to comply with manufacturer's written instructions, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

D. Support horizontal piping within 12 inches of each fitting.

E. Support vertical runs of steel piping and copper tubing to comply with MSS-58, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

F. Support vertical runs of corrugated stainless-steel tubing to comply with manufacturer's written instructions, locally enforced codes, and authorities having jurisdiction requirements, whichever are most stringent.

3.7 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.8 LABELING AND IDENTIFYING

A. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for piping and valve identification.
B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.9 **PAINTING**

A. Comply with requirements in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting" for painting interior and exterior natural-gas piping.

B. Paint exposed, interior metal piping, valves, service regulators and piping specialties, except components, with factory-applied paint or protective coating.

1. **Latex Over Alkyd Primer System: MPI INT 5.1Q.**

 a. **Prime Coat:** Alkyd anticorrosive metal primer.

 b. **Intermediate Coat:** Interior latex matching topcoat.

 c. **Topcoat:** Interior latex (low sheen).

 d. **Color:** Gray.

2. **Alkyd System: MPI INT 5.1E.**

 a. **Prime Coat:** Alkyd anticorrosive metal primer.

 b. **Intermediate Coat:** Interior alkyd matching topcoat.

 c. **Topcoat:** Interior alkyd (semigloss).

 d. **Color:** Gray.

C. **Damage and Touchup:** Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.10 **FIELD QUALITY CONTROL**

A. Perform tests and inspections.

B. **Tests and Inspections:**

 1. Test, inspect, and purge natural gas according to the International Fuel Gas Code and authorities having jurisdiction.

C. Natural-gas piping will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.11 **DEMONSTRATION**

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain earthquake valves.
3.12 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG

A. Aboveground, branch piping NPS 1 and smaller shall be the following:
 1. Corrugated stainless-steel tubing with mechanical fittings having socket or threaded ends to match adjacent piping.

B. Aboveground, distribution piping shall be the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.

C. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

D. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints.

3.13 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Distribution piping valves for pipe sizes NPS 2 and smaller shall be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

B. Distribution piping valves for pipe sizes NPS 2-1/2 and larger shall be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

C. Valves in branch piping for single appliance shall be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION 231123
SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Single-wall round ducts and fittings.
 4. Duct liner.
 5. Sealants and gaskets.
 6. Hangers and supports.

B. Related Sections:
 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of the following products:
 1. Liners and adhesives.
 2. Sealants and gaskets.

B. Sustainable Design Submittals:
 1. Product Data: For adhesives, indicating VOC content.
 2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.
 3. Product Data: For sealants, indicating VOC content.
 4. Laboratory Test Reports: For sealants, indicating compliance with requirements for low-emitting materials.
5. Laboratory Test Reports: For antimicrobial coatings, indicating compliance with requirements for low-emitting materials.

C. Shop Drawings:
 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 2. Factory- and shop-fabricated ducts and fittings.
 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 4. Elevation of top of ducts.
 5. Dimensions of all duct runs from building grid lines.
 6. Fittings.
 7. Reinforcement and spacing.
 8. Seam and joint construction.
 9. Penetrations through fire-rated and other partitions.
 10. Equipment installation based on equipment being used on Project.
 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
 12. Hangers and supports, including methods for duct and building attachment and vibration isolation.

D. Delegated-Design Submittal:
 1. Sheet metal thicknesses.
 2. Joint and seam construction and sealing.
 3. Reinforcement details and spacing.
 4. Materials, fabrication, assembly, and spacing of hangers and supports.
 5. Design Calculations: Calculations for selecting hangers and supports.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: A single set of plans or BIM model, drawn to scale, showing the items described in this Section, and coordinated with all building trades.

B. Welding certificates.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel in accordance with the following:
2.1 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and with performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible".

C. Airstream Surfaces: Surfaces in contact with airstream shall comply with requirements in ASHRAE 62.1.

D. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment," and Section 7 - "Construction and System Startup."

E. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

F. Duct Dimensions: Unless otherwise indicated, all duct dimensions indicated on Drawings are inside clear dimensions and do not include insulation or duct wall thickness.

2.2 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

 1. Construct ducts of galvanized sheet steel unless otherwise indicated.
 2. For ducts exposed to weather, construct of Type 304 or Type 316 stainless steel indicated by manufacturer to be suitable for outdoor installation.

B. Transverse Joints: Fabricate joints in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
Flexible," Ch. 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SINGLE-WALL ROUND DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Ch. 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

1. Construct ducts of galvanized sheet steel unless otherwise indicated.
2. For ducts exposed to weather, construct of Type 304 or Type 316 stainless steel indicated by manufacturer to be suitable for outdoor installation.

B. Transverse Joints: Select joint types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

D. Tees and Laterals: Select types and fabricate in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.4 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A653/A653M.

2. Finishes for Surfaces Exposed to View: Mill phosphatized.
C. Carbon-Steel Sheets: Comply with ASTM A1008/A1008M, with oiled, matte finish for exposed ducts.

D. Stainless-Steel Sheets: Comply with ASTM A480/A480M, Type 304 or 316, as indicated in "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in "Duct Schedule" Article.

E. Aluminum Sheets: Comply with ASTM B209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.

F. Factory- or Shop-Applied Antimicrobial Coating:

1. Apply to the surface of sheet metal that will form the interior surface of the ducts. An untreated clear coating shall be applied to the exterior surface.
2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested in accordance with ASTM D3363.
4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested in accordance with UL 723; certified by an NRTL.
5. Shop-Applied Coating Color: Black.
6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.

G. Reinforcement Shapes and Plates: ASTM A36/A36M, steel plates, shapes, and bars; black and galvanized.

1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

H. Tie Rods: Galvanized steel, 1/4-inch-minimum diameter for lengths 36 inches or less; 3/8-inch-minimum diameter for lengths longer than 36 inches.

2.5 DUCT LINER

A. Fibrous-Glass Duct Liner: Comply with ASTM C1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Knauf Insulation.
 d. Owens Corning.
2. Maximum Thermal Conductivity:
 a. Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
b. Type II, Rigid: 0.23 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.

3. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.

4. Solvent-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C916.
 a. Adhesive shall have a VOC content of 80 g/L or less.
 b. Adhesive shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

B. Insulation Pins and Washers:
 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- 0.135-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick galvanized steel, aluminum, or stainless steel; with beveled edge sized as required to hold insulation securely in place, but not less than 1-1/2 inches in diameter.

C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."
 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
 3. Butt transverse joints without gaps, and coat joint with adhesive.
 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
 6. Apply adhesive coating on longitudinal seams in ducts with air velocity of 2500 fpm or greater.
 7. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
 8. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 a. Fan discharges.
 b. Intervals of lined duct preceding unlined duct.
c. Upstream edges of transverse joints in ducts where air velocities are higher than 2500 fpm or where indicated.

9. Secure insulation between perforated sheet metal inner duct of same thickness as specified for outer shell. Use mechanical fasteners that maintain inner duct at uniform distance from outer shell without compressing insulation.

a. Sheet Metal Inner Duct Perforations: 3/32-inch diameter, with an overall open area of 23 percent.

10. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.6 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested in accordance with UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:

1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
2. Tape Width: 3 inches 4 inches 6 inches.
5. Mold and mildew resistant.
6. Maximum Static-Pressure Class: 10 inch wg, positive and negative.
7. Service: Indoor and outdoor.
8. Service Temperature: Minus 40 to plus 200 deg F.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
10. Sealant shall have a VOC content of 420 g/L or less.
11. Sealant shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

C. Water-Based Joint and Seam Sealant:

1. Application Method: Brush on.
2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10 inch wg, positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Solvent-Based Joint and Seam Sealant:

1. Application Method: Brush on.
2. Base: Synthetic rubber resin.
4. Solids Content: Minimum 60 percent.
5. Shore A Hardness: Minimum 60.
7. Mold and mildew resistant.
8. Sealant shall have a VOC content of 420 g/L or less.
9. Sealant shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
10. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
11. Service: Indoor or outdoor.
12. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

E. Flanged Joint Sealant: Comply with ASTM C920.

2. Type: S.
3. Grade: NS.
5. Use: O.
6. Sealant shall have a VOC content of 420 g/L or less.
7. Sealant shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

G. Round Duct Joint O-Ring Seals:

1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.
2.7 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Galvanized-steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A492.

F. Steel Cable End Connections: Galvanized-steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and coordination drawings.

B. Install ducts in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install ducts in maximum practical lengths with fewest possible joints.

D. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

E. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
F. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

G. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

H. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

I. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

J. Install fire, combination fire/smoke, and smoke dampers where indicated on Drawings and as required by code, and by local authorities having jurisdiction. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers and specific installation requirements of the damper UL listing.

K. Install heating coils, cooling coils, air filters, dampers, and all other duct-mounted accessories in air ducts where indicated on Drawings.

L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials both before and after installation. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCTWORK EXPOSED TO WEATHER

A. All external joints are to be welded. Seal all openings to provide weatherproof construction.
B. Construct ductwork to resist external loads of wind, snow, ice, and other effects of weather. Provide necessary supporting structures.

C. Single Wall:
 1. Ductwork shall be Type 304 or Type 316 stainless steel.
 2. Ductwork shall be galvanized steel.
 a. If duct outer surface is uninsulated, protect outer surface with suitable paint. Paint materials and application requirements are specified in Section 099113 "Exterior Painting."
 3. Where ducts have external insulation, provide weatherproof aluminum jacket. See Section 230713 "Duct Insulation."

D. Double Wall:
 1. Ductwork shall comply with requirements in "Double-Wall Rectangular Ducts and Fittings" or "Double-Wall Round Ducts and Fittings" Article.
 2. Ductwork outer wall shall be Type 304 or Type 316 stainless steel indicated by manufacturer to be suitable for outdoor installation.
 3. Provide interstitial insulation.

3.4 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts at a minimum to the following seal classes in accordance with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

 1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 2. Outdoor, Supply-Air Ducts: Seal Class A.
 3. Outdoor, Exhaust Ducts: Seal Class C.
 4. Outdoor, Return-Air Ducts: Seal Class C.
 5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
 6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
 7. Unconditioned Space, Exhaust Ducts: Seal Class C.
 8. Unconditioned Space, Return-Air Ducts: Seal Class B.
 9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
 10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
 11. Conditioned Space, Exhaust Ducts: Seal Class B.
 12. Conditioned Space, Return-Air Ducts: Seal Class C.
3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Where practical, install concrete inserts before placing concrete.
 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:

2. Test the following systems:
 a. Ducts with a Pressure Class Higher Than 3-Inch wg: Test representative duct sections, selected by Architect from sections installed, totaling no less than 25 percent of total installed duct area for each designated pressure class.
 b. Supply Ducts with a Pressure Class of 4-Inch wg or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 c. Return Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 d. Exhaust Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 e. Outdoor-Air Ducts with a Pressure Class of 2-Inch wg or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.

3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.

4. Testing of each duct section is to be performed with access doors, coils, filters, dampers, and other duct-mounted devices in place as designed. No devices are to be removed or blanked off so as to reduce or prevent additional leakage.

5. Test for leaks before applying external insulation.

6. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.

7. Give seven days' advance notice for testing.

C. Duct System Cleanliness Tests:

1. Visually inspect duct system to ensure that no visible contaminants are present.

2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness in accordance with "Description of Method 3 - NADCA Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.
E. Prepare test and inspection reports.

3.9 DUCT CLEANING

A. Clean new duct system(s) before testing, adjusting, and balancing.

B. Use duct cleaning methodology as indicated in NADCA ACR.

C. Use service openings for entry and inspection.

1. Provide openings with access panels appropriate for duct static-pressure and leakage class at dampers, coils, and any other locations where required for inspection and cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.

2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.

3. Remove and reinstall ceiling to gain access during the cleaning process.

D. Particulate Collection and Odor Control:

1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.

2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

E. Clean the following components by removing surface contaminants and deposits:

1. Air outlets and inlets (registers, grilles, and diffusers).

2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.

3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.

5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.

7. Dedicated exhaust and ventilation components and makeup air systems.

F. Mechanical Cleaning Methodology:

1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.

2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.

4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.

5. Clean coils and coil drain pans in accordance with NADCA ACR. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.

6. Provide drainage and cleanup for wash-down procedures.

7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents in accordance with manufacturer's written instructions after removal of surface deposits and debris.

3.10 STARTUP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.11 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

1. Fabricate all ducts to achieve SMACNA pressure class, seal class, and leakage class as indicated below.

B. Supply Ducts:

1. Ducts Connected to Terminal Units:
 a. Pressure Class: Positive 1-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Constant-Volume Air-Handling Units:
 a. Pressure Class: Positive 3-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 4.
 d. SMACNA Leakage Class for Round and Flat Oval: 4.

3. Ducts Connected to Variable-Air-Volume Air-Handling Units:
 a. Pressure Class: Positive 4-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 3.
 d. SMACNA Leakage Class for Round and Flat Oval: 3.
4. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

C. Return Ducts:

1. Ducts Connected to Terminal Units:
 a. Pressure Class: Positive or negative 1-inch wg.
 b. Minimum SMACNA Seal Class: C.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

3. Ducts Connected to Equipment Not Listed above:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

D. Exhaust Ducts:

1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 12.

3. Ducts Connected to Equipment Not Listed above:
a. Pressure Class: Positive or negative 2-inch wg.
b. Minimum SMACNA Seal Class: B if negative pressure; A if positive pressure.
c. SMACNA Leakage Class for Rectangular: 6.
d. SMACNA Leakage Class for Round and Flat Oval: 6.

E. Intermediate Reinforcement:

2. PVC-Coated Ducts:
3. Stainless-Steel Ducts:
 a. Exposed to Airstream: Match duct material.
 b. Not Exposed to Airstream: Match duct material.
4. Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

F. Liner:

1. Supply-Air Ducts: Fibrous glass, Type I, 1-1/2 inches thick.
2. Return-Air Ducts: Fibrous glass, Type I, 1 inch thick.
3. Exhaust-Air Ducts: Fibrous glass, Type I, 1 inch thick.
4. Supply Fan Plenums: Fibrous glass, Type II, 2 inches thick.
5. Return- and Exhaust-Fan Plenums: Fibrous glass, Type II, 2 inches thick.
6. Transfer Ducts: Fibrous glass, Type I, 1 inch(es) thick.

G. Elbow Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Velocity 1000 fpm or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.
 b. Velocity 1000 to 1500 fpm:
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 c. Velocity 1500 fpm or Higher:
 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 4) Radius-to-Diameter Ratio: 1.5.
 b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam Welded.

H. Branch Configuration:

1. Rectangular Duct: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Conical spin in.

2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 a. Velocity 1000 fpm or Lower: 90-degree tap.
 b. Velocity 1000 to 1500 fpm: Conical tap.
 c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 233113
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Backdraft and pressure relief dampers.
2. Barometric relief dampers.
4. Control dampers.
5. Fire dampers.
7. Combination fire and smoke dampers.
8. Flange connectors.
10. Remote damper operators.
11. Duct-mounted access doors.
12. Flexible connectors.
13. Duct accessory hardware.

B. Related Requirements:

1. Section 233346 "Flexible Ducts" for insulated and non-insulated flexible ducts.
2. Section 233723 "HVAC Gravity Ventilators" for roof-mounted ventiler caps.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

B. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:

 a. Special fittings.
 c. Control-damper installations.
 d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mouted access doors and remote damper operators.
 e. Duct security bars.
 f. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.

B. Source quality-control reports.

1.5 MAINTENANCE MATERIAL SUBMITTALS

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

B. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
2.2 MATERIALS

A. Galvanized Sheet Steel: Comply with ASTM A653/A653M.
 2. Exposed-Surface Finish: Mill phosphatized.

B. Stainless-Steel Sheets: Comply with ASTM A480/A480M, Type 304, and having a No. 2 finish for concealed ducts and No. 4 finish for exposed ducts.

C. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. American Warming and Ventilating; a Mestek Architectural Group company.
 2. Greenheck Fan Corporation.
 3. Nailor Industries Inc.
 4. Ruskin Company.
 5. Vent Products Co., Inc.

B. Description: Gravity balanced.

C. Maximum Air Velocity: 1250 fpm.

D. Maximum System Pressure: 2-inch wg.

E. Frame: Hat-shaped, 0.05-inch-thick, galvanized sheet steel 0.03-inch-thick stainless steel, with welded corners or mechanically attached and mounting flange.

F. Blades: Multiple single-piece blades, off-center pivoted, maximum 6-inch width, 0.025-inch-thick, roll-formed aluminum 0.050-inch-thick aluminum sheet with sealed edges.

G. Blade Action: Parallel.

H. Blade Seals: Neoprene, mechanically locked.

I. Blade Axles:
 2. Diameter: 0.20 inch.

J. Tie Bars and Brackets: Galvanized steel.
K. Return Spring: Adjustable tension.

L. Bearings: Steel ball.

M. Accessories:

1. Adjustment device to permit setting for varying differential static pressure.
2. Counterweights and spring-assist kits for vertical airflow installations.
3. Electric actuators.
4. Chain pulls.
5. Screen Mounting: Front mounted in sleeve.
 a. Sleeve Thickness: 20 gauge minimum.
 b. Sleeve Length: 6 inches minimum.

6. Screen Mounting: Rear mounted.
7. Screen Material: Galvanized steel.
8. Screen Type: Bird or Insect.
9. 90-degree stops.

2.4 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Nailor Industries Inc.
 b. Pottorff.
 c. Ruskin Company.

2. Standard leakage rating, with linkage outside airstream.
3. Suitable for horizontal or vertical applications.
4. Frames:
 a. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel 0.05-inch-thick stainless steel.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.

5. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized or Stainless-steel, 0.064 inch thick.

7. Bearings:
a. Oil-impregnated bronze or Oil-impregnated stainless-steel sleeve.
b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

8. Tie Bars and Brackets: Galvanized steel.

B. Jackshaft:
 1. Size: 0.5-inch diameter.
 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

C. Damper Hardware:
 2. Include center hole to suit damper operating-rod size.
 3. Include elevated platform for insulated duct mounting.

2.5 CONTROL DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. American Warming and Ventilating; a Mestek Architectural Group company.
 2. Greenheck Fan Corporation.
 3. McGill AirFlow LLC.
 4. Nailor Industries Inc.
 5. Ruskin Company.
 6. Vent Products Co., Inc.
 7. Young Regulator Company.

B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.

C. Frames:
 1. Hat or U or Angle shaped.
 2. 0.094-inch-thick, galvanized sheet steel 0.05-inch-thick stainless steel.
 3. Mitered and welded corners.

D. Blades:
 1. Multiple blade with maximum blade width of 6 inches.
 2. Parallel- and opposed-blade design.
 3. Galvanized-steel or Stainless steel.
 4. 0.0747-inch-thick dual skin.

E. Blade Axles: 1/2-inch-diameter; galvanized steel or stainless steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.

1. Operating Temperature Range: From minus 40 to plus 200 deg F.

F. Bearings:

1. Oil-impregnated bronze or Oil-impregnated stainless-steel sleeve.
2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
3. Thrust bearings at each end of every blade.

2.6 FIRE DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Nailor Industries Inc.
3. Pottorff.
4. Ruskin Company.
5. Vent Products Co., Inc.

B. Type: Static and dynamic; rated and labeled according to UL 555 by an NRTL.

C. Closing rating in ducts up to 4-inch static pressure class and minimum 2000-fpm velocity.

D. Fire Rating: 1-1/2 and 3 hours.

E. Frame: Curtain type with blades outside airstream Multiple-blade type; fabricated with roll-formed galvanized steel; with mitered and interlocking corners; gauge in accordance with UL listing.

F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel; gauge in accordance with UL listing.

G. Mounting Orientation: Vertical or horizontal as indicated.

H. Blades: Roll-formed, interlocking, galvanized sheet steel; gauge in accordance with UL listing.

I. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

2.7 COMBINATION FIRE AND SMOKE DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following provide products by one of the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 2. Nailor Industries Inc.
 3. Ruskin Company.

B. Type: Dynamic; rated and labeled according to UL 555 and UL 555S by an NRTL.

C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.

D. Fire Rating: 1-1/2 and 3 hours.

E. Frame: Hat-shaped, galvanized sheet steel, with welded corners and mounting flange; gauge in accordance with UL listing.

G. Smoke Detector: Integral, factory wired for single-point connection.

H. Blades: Roll-formed, horizontal, interlocking or overlapping, galvanized sheet steel; gauge in accordance with UL listing.

I. Leakage: Class I.

J. Rated pressure and velocity to exceed design airflow conditions.

K. Mounting Sleeve: Factory-installed, galvanized sheet steel; length to suit wall or floor application with factory-furnished silicone caulking; gauge in accordance with UL listing.

L. Master control panel for use in dynamic smoke-management systems.

M. Damper Motors: two-position action.

N. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."
 3. Permanent-Split-Capacitor or Shaded-Pole Motors: With oil-immersed and sealed gear trains.
 4. Spring-Return Motors: Equip with an integral spiral-spring mechanism where indicated. Enclose entire spring mechanism in a removable housing designed for service or
adjustments. Size for running torque rating of 150 in. x lbf and breakaway torque rating of 150 in. x lbf.
5. Outdoor Motors and Motors in Outdoor-Air Intakes: Equip with O-ring gaskets designed to make motors weatherproof. Equip motors with internal heaters to permit normal operation at minus 40 deg F.
6. Nonspring-Return Motors: For dampers larger than 25 sq. ft., size motor for running torque rating of 150 in. x lbf and breakaway torque rating of 300 in. x lbf.
7. Electrical Connection: 115 V, single phase, 60 Hz.

O. Accessories:
1. Auxiliary switches for signaling or position indication.
2. Test and reset switches, remote mounted.

2.8 FLANGE CONNECTORS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ductmate Industries, Inc.
 2. Nexus PDQ.
 3. Ward Industries; a brand of Hart & Cooley, Inc.
B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
C. Material: Galvanized steel.
D. Gauge and Shape: Match connecting ductwork.

2.9 TURNING VANES
A. Manufacturers: Subject to compliance with requirements, provide products by the following available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
 3. METALAIRE, Inc.
 4. SEMCO, LLC; part of FlaktGroup.
 5. Ward Industries; a brand of Hart & Cooley, Inc.
B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
C. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

D. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."

E. Vane Construction: Double wall.

F. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.10 DUCT-MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. American Warming and Ventilating; a Mestek Architectural Group company.
2. Ductmate Industries, Inc.
3. Flexmaster U.S.A., Inc.
5. McGill AirFlow LLC.
6. Nailor Industries Inc.
7. Ward Industries; a brand of Hart & Cooley, Inc.

1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.

2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.

3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Continuous and two compression latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches: Continuous and two compression latches with outside and inside handles.
2.11 DUCT ACCESS PANEL ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. 3M.
 2. CL WARD & Family Inc.
 3. Ductmate Industries, Inc.

B. Labeled according to UL 1978 by an NRTL.

C. Panel and Frame: Minimum thickness 0.0428-inch stainless steel.

D. Fasteners: Stainless steel. Panel fasteners shall not penetrate duct wall.

E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.

F. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.12 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
 3. Ventfabrics, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch-wide or 0.028-inch-thick galvanized sheet steel. Provide metal compatible with connected ducts.

 1. Minimum Weight: 26 oz./sq. yd.
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.

 1. Minimum Weight: 24 oz./sq. yd.
 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
3. Service Temperature: Minus 50 to plus 250 deg F.

G. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.

1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.13 FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flexmaster U.S.A., Inc.
2. CASCO.
3. McGill AirFlow LLC.

B. Non-insulated, Flexible Duct: UL 181, Class 1, multiple layers of aluminized laminate supported by helically wound, spring-steel wire.

1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 20 to plus 210 deg F.

C. Insulated, Flexible Duct: UL 181, Class 1, 2-ply spun bond nylon fabric supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor-barrier film.

1. Pressure Rating: 6-inch wg positive and 1.0-inch wg negative.
3. Temperature Range: Minus 10 to plus 160 deg F.

D. Insulated, Flexible Metal Duct: UL 181, Class 1, flexible metal inner duct, fibrous-glass insulation; aluminized vapor-barrier film.

1. Pressure Rating: 10-inch wg positive and 4.0-inch wg negative.
3. Temperature Range: Minus 20 to plus 175 deg F.
E. Flexible Duct Connectors:
 1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a
 worm-gear action in sizes 3 through 18 inches, to suit duct size.

2.14 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap
 and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to
 suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline
 and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct
 Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in
 galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and
 aluminum accessories in aluminum ducts.

C. Install backdraft control dampers at inlet of exhaust fans or exhaust ducts as close as possible to
 exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend
 from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with
 hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 1. Install steel volume dampers in steel ducts.
 2. Install aluminum volume dampers in aluminum ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire and smoke dampers according to UL listing.

H. Install duct security bars. Construct duct security bars from 0.164-inch steel sleeve, continuously
 welded at all joints and 1/2-inch-diameter steel bars, 6 inches o.c. in each direction in center of
 sleeve. Weld each bar to steel sleeve and each crossing bar. Weld 2-1/2-by-2-1/2-
 by-1/4-inch steel angle to 4 sides and both ends of sleeve. Connect duct security bars to ducts.
with flexible connections. Provide 12-by-12-inch hinged access panel with cam lock in duct in each side of sleeve.

I. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

1. On both sides of duct coils.
2. Upstream from duct filters.
3. At outdoor-air intakes and mixed-air plenums.
4. At drain pans and seals.
5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
7. At each change in direction and at maximum 50-foot spacing.
8. Upstream and downstream from turning vanes.
9. Upstream or downstream from duct silencers.
10. Control devices requiring inspection.
11. Elsewhere as indicated.

J. Install access doors with swing against duct static pressure.

K. Access Door Sizes:

1. One-Hand or Inspection Access: 8 by 5 inches.
2. Two-Hand Access: 12 by 6 inches.

L. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

M. Install flexible connectors to connect ducts to equipment.

N. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

O. Install duct test holes where required for testing and balancing purposes.

P. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.
3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Operate dampers to verify full range of movement.
2. Inspect locations of access doors and verify that purpose of access door can be performed.
3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
4. Inspect turning vanes for proper and secure installation.
5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 233300
SECTION 233423 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Ceiling-mounted ventilators.
 2. Centrifugal ventilators - roof upblast and sidewall.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes for fans.
 2. Rated capacities, operating characteristics, and furnished specialties and accessories.
 3. Certified fan performance curves with system operating conditions indicated.
 4. Certified fan sound-power ratings.
 5. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 6. Material thickness and finishes, including color charts.
 7. Dampers, including housings, linkages, and operators.
 8. Prefabricated roof curbs.

B. Shop Drawings:
 1. Include plans, elevations, sections, and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.
 4. Design Calculations: Calculate requirements for selecting vibration isolators.

C. Delegated-Design Submittal: For unit hangars and supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
1. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans, reflected ceiling plans, and other details, or BIM model, drawn to scale, showing the items described in this Section and coordinated with all building trades.

B. Seismic Qualification Data: For fans, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For HVAC power ventilators to include in normal and emergency operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Belts: One set for each belt-driven unit.

1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

C. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

1.8 COORDINATION

A. Coordinate size and location of structural-steel support members.
B. Coordinate sizes and locations of concrete bases with actual equipment provided.

C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL ROOF VENTILATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Loren Cook Company.
3. PennBarry.

B. Housing: Removable, spun-aluminum, dome top and outlet baffle extruded-aluminum or rectangular top; square, one-piece, aluminum base with venturi inlet cone, as scheduled.

1. Upblast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains.
2. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.

C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.

D. Belt Drives:

1. Resiliently mounted to housing.
2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
5. Fan and motor isolated from exhaust airstream.

E. Accessories:

1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted outside fan housing, factory wired through an internal conduit.
3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.
4. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.

F. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch- thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.
1. Configuration: Self-flashing without a cant strip, with mounting flange or Built-in cant and mounting flange.
2. Overall Height: 18 inches
3. Sound Curb: Curb with sound-absorbing insulation.
5. Metal Liner: Galvanized steel.
6. Mounting Pedestal: Galvanized steel with removable access panel.

G. Capacities and Characteristics: As Scheduled.

2.2 CEILING-MOUNTED VENTILATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Loren Cook Company.
 3. PennBarry.

B. Housing: Steel, lined with acoustical insulation.

C. Fan Wheel: Centrifugal wheels directly mounted on motor shaft. Fan shrouds, motor, and fan wheel shall be removable for service.

D. Grille: Stainless steel or Aluminum, louvered grille with flange on intake and thumbscrew attachment to fan housing.

E. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.

F. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 4. Manufacturer’s standard roof jack or wall cap, and transition fittings.

G. Capacities and Characteristics: As Scheduled.

2.3 IN-LINE CENTRIFUGAL FANS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Loren Cook Company.
 3. PennBarry.
B. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.

C. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing; with wheel, inlet cone, and motor on swing-out service door.

D. Belt-Driven Units: Motor mounted on adjustable base, with adjustable sheaves, enclosure around belts within fan housing, and lubricating tubes from fan bearings extended to outside of fan housing.

E. Fan Wheels: Aluminum, airfoil blades welded to aluminum hub.

F. Accessories:
 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 2. Companion Flanges: For inlet and outlet duct connections.
 3. Fan Guards: 1/2- by 1-inch mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
 4. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.

G. Capacities and Characteristics: As Scheduled.
 1. Vibration Isolators:
 a. Type: Elastomeric hangers.

2.4 PROPELLER FANS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Aerovent; a division of Twin City Fan Companies, Ltd.
 2. Carnes Company.
 3. Chicago Blower Corporation.
 5. Loren Cook Company.
 7. PennBarry.

B. Housing: Galvanized-steel sheet with flanged edges and integral orifice ring with baked-enamel finish coat applied after assembly.

C. Steel Fan Wheels: Formed-steel blades riveted to heavy-gage steel spider bolted to cast-iron hub.

D. Fan Wheel: Replaceable, cast or extruded-aluminum, airfoil blades fastened to cast-aluminum hub; factory set pitch angle of blades.
E. Fan Drive: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing.

F. Fan Drive:
 1. Resiliently mounted to housing.
 2. Statically and dynamically balanced.
 3. Selected for continuous operation at maximum rated fan speed and motor horsepower, with final alignment and belt adjustment made after installation.
 4. Extend grease fitting to accessible location outside of unit.
 5. Service Factor Based on Fan Motor Size: 1.2.
 6. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 a. Ball-Bearing Rating Life: ABMA 9, L₁₀ of 100,000 hours.
 8. Pulleys: Cast iron with split, tapered bushing; dynamically balanced at factory.
 9. Motor Pulleys: Adjustable pitch for use with motors through 5 hp; fixed pitch for use with larger motors. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions.
10. Belts: Oil resistant, non-sparking, and non-static; matched sets for multiple belt drives.

G. Accessories:
 1. Gravity Shutters: Aluminum blades in aluminum frame; interlocked blades with nylon bearings.
 3. Wall Sleeve: Galvanized steel to match fan and accessory size.
 4. Weathershield Hood: Galvanized steel to match fan and accessory size.
 5. Weathershield Front Guard: Galvanized steel with expanded metal screen.
 6. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 7. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.

H. Capacities and Characteristics: As Scheduled.

1. Vibration Isolators:
 a. Type: Elastomeric hangers Manufacturers and products listed in SpecAgent and MasterWorks Paragraph Builder are neither recommended nor endorsed by the AIA or ARCOM. Before inserting names, verify that manufacturers and products listed there comply with requirements retained or revised in descriptions and are both available and suitable for the intended applications.
2.5 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.6 SOURCE QUALITY CONTROL

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

B. AMCA Certification: Fans shall comply with AMCA 11 and bear the AMCA-Certified Ratings Seal.

C. Fan Sound Ratings: Comply with AMCA 311, and label fans with the AMCA-Certified Ratings Seal. Sound ratings shall comply with AMCA 301. The fans shall be tested according to AMCA 300.

D. Fan Performance Ratings: Comply with AMCA 211 and label fans with AMCA-Certified Rating Seal. The fans shall be tested for air performance - flow rate, fan pressure, power, fan efficiency, air density, speed of rotation, and fan efficiency - according to AMCA 210/ASHRAE 51.

E. Operating Limits: Classify according to AMCA 99.

F. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

PART 3 - EXECUTION

3.1 INSTALLATION OF HVAC POWER VENTILATORS

A. Install power ventilators level and plumb.

B. Equipment Mounting:

1. Install power ventilators on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."

C. Secure roof-mounted fans to roof curbs with zinc-plated hardware. See Section 077200 "Roof Accessories" for installation of roof curbs.

D. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
E. Support suspended units from structure using threaded steel rods and elastomeric hangers or spring hangers having a static deflection of 1 inch. Vibration-control devices per manufacturer.

F. Install units with clearances for service and maintenance.

3.2 DUCTWORK CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

3.3 ELECTRICAL CONNECTIONS

A. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.

1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."

2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.4 CONTROL CONNECTIONS

A. Install control and electrical power wiring to field-mounted control devices.

B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections.

E. Tests and Inspections:
1. Verify that shipping, blocking, and bracing are removed.
2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
3. Verify that there is adequate maintenance and access space.
4. Verify that cleaning and adjusting are complete.
5. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
6. Adjust belt tension.
7. Adjust damper linkages for proper damper operation.
8. Verify lubrication for bearings and other moving parts.
9. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
10. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
11. Shut unit down and reconnect automatic temperature-control operators.
12. Remove and replace malfunctioning units and retest as specified above.

F. Test and adjust controls and safeties. Controls and equipment will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports.

3.6 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

END OF SECTION 233423
SECTION 233600 - AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Shutoff, single-duct air terminal units.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of air terminal unit.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for air terminal units.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For air terminal units.
 1. Include plans, elevations, sections, and mounting details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.
 4. Hangers and supports, including methods for duct and building attachment and vibration isolation.

C. Delegated-Design Submittal:
 1. Materials, fabrication, assembly, and spacing of hangers and supports.
 2. Include design calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Ceiling suspension assembly members.
2. Size and location of initial access modules for acoustic tile.
3. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air terminal units to include in emergency, operation, and maintenance manuals.

B. Include the following:
 a. Instructions for resetting minimum and maximum air volumes.
 b. Instructions for adjusting software set points.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

B. Fan-Powered-Unit Filters: Furnish one spare filter for each filter installed.

1.7 QUALITY ASSURANCE

A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up."

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SHUTOFF, SINGLE-DUCT AIR TERMINAL UNITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Carrier Corporation; a unit of United Technologies Corp.
 2. Price Industries.
 3. Titus.
 4. Trane.
 5. Nailor Industries Inc.
B. Configuration: Volume-damper assembly inside unit casing with control components inside a protective metal shroud.

C. Casing: 0.040-inch-thick galvanized steel, single wall.
 2. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
 3. Air Outlet: S-slip and drive connections.
 4. Access: Removable panels for access to parts requiring service, adjustment, or maintenance; with airtight gasket.
 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

D. Regulator Assembly: System-air-powered bellows section incorporating polypropylene bellows for volume regulation and thermostatic control. Bellows shall operate at temperatures from zero to 140 deg F, shall be impervious to moisture and fungus, shall be suitable for 10-inch wg static pressure, and shall be factory tested for leaks.

E. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.
 1. Maximum Damper Leakage: AHRI 880 rated, 2 percent of nominal airflow at 6-inch wg inlet static pressure.

F. Attenuator Section: 0.034-inch steel sheet.
 1. Attenuator Section Liner: Comply with requirements in "Casing Liner" Article for fibrous-glass duct liner.
 2. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

 1. Stage(s): 1.
 2. SCR controlled.
 3. Access door interlocked disconnect switch.
 4. Downstream air temperature sensor with local connection to override discharge-air temperature to not exceed a maximum temperature set point (adjustable).
 5. Nickel chrome 80/20 heating elements.
 6. Airflow switch for proof of airflow.
 7. Fan interlock contacts.
 8. Fuses in terminal box for overcurrent protection (for coils more than 48 A).
 10. Pneumatic-electric switches and relays.
 11. Magnetic contactor for each step of control (for three-phase coils).
H. Control devices shall be compatible with temperature controls system specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."

1. Electronic Damper Actuator: 24 V, powered open, spring return.
2. Terminal Unit Controller: Pressure-independent, variable-air-volume (VAV) controller with electronic airflow transducer with multipoint velocity sensor at air inlet, factory calibrated to minimum and maximum air volumes, and having the following features:

 a. Occupied and unoccupied operating mode.
 b. Remote reset of airflow or temperature set points.
 c. Adjusting and monitoring with portable terminal.
 d. Communication with temperature-control system specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."

3. Room Sensor: Wall mounted with temperature set-point adjustment and access for connection of portable operator terminal.

2.3 SOURCE QUALITY CONTROL

A. Factory Tests: Test assembled air terminal units according to AHRI 880.

 1. Label each air terminal unit with plan number, nominal airflow, maximum and minimum factory-set airflows, coil type, and AHRI certification seal.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Ch. 5, "Hangers and Supports" and with Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

 1. Where practical, install concrete inserts before placing concrete.
 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches thick.
 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches thick.
 5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hangers Exposed to View: Threaded rod and angle or channel supports.

D. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
3.2 TERMINAL UNIT INSTALLATION

A. Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."

B. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.

C. Install wall-mounted thermostats.

3.3 CONNECTIONS

A. Comply with requirements in Section 233113 "Metal Ducts" for connecting ducts to air terminal units.

B. Make connections to air terminal units with flexible connectors complying with requirements in Section 233300 "Air Duct Accessories."

3.4 IDENTIFICATION

A. Label each air terminal unit with plan number, nominal airflow, and maximum and minimum factory-set airflows. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for equipment labels and warning signs and labels.

3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.
2. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Air terminal unit will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.
3.6 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Verify that inlet duct connections are as recommended by air terminal unit manufacturer to achieve proper performance.
3. Verify that controls and control enclosure are accessible.
4. Verify that control connections are complete.
5. Verify that nameplate and identification tag are visible.
6. Verify that controls respond to inputs as specified.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air terminal units.

END OF SECTION 233600
SECTION 233713.13 - AIR DIFFUSERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Rectangular and square ceiling diffusers.
 2. Perforated diffusers.
 3. Louver face diffusers.

B. Related Requirements:
 1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers.
 2. Section 233713.23 "Air Registers and Grilles" for adjustable-bar register and grilles, fixed-face registers and grilles, and linear bar grilles.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Method of attaching hangers to building structure.
 3. Size and location of initial access modules for acoustical tile.
 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 5. Duct access panels.

B. Source quality-control reports.
PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

A. Square Ceiling Diffusers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Nailor Industries Inc.
 b. Price Industries.
 c. Titus.

2. Devices shall be specifically designed for variable-air-volume flows.
3. Material: Steel or Aluminum.
4. Finish: Baked enamel, white unless otherwise indicated.
5. Face Size: 24 by 24 inches.
7. Mounting: As Scheduled.

B. Perforated Diffuser:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Nailor Industries Inc.
 b. Price Industries.
 c. Titus.

2. Devices shall be specifically designed for variable-air-volume flows.
3. Material: Steel backpan and pattern controllers, with steel or aluminum face.
4. Finish: Baked enamel, white unless otherwise indicated.
5. Face Size: 24 by 24 inches.
6. Duct Inlet: Round.
7. Face Style: As Scheduled.
8. Mounting: As Scheduled.
9. Pattern Controller: Four louvered deflector patches or Adjustable with louvered pattern modules at inlet.

C. Louver Face Diffuser:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Nailor Industries Inc.
 b. Price Industries.
c. Titus.

2. Devices shall be specifically designed for variable-air-volume flows.
3. Material: Steel, Aluminized Steel, or Aluminum.
4. Finish: Baked enamel, white unless otherwise indicated.
5. Face Size: As Scheduled.
8. Dampers: As Scheduled.

2.2 REGISTERS AND GRILLES

A. Adjustable Bar Register:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Nailor Industries Inc.
 b. Price Industries.
 c. Titus.

2. Material: Steel or Aluminum.
3. Finish: Baked enamel, white unless otherwise indicated.
7. Frame: 1 inch wide.
9. Damper Type: Adjustable opposed blade.
10. Accessories:
 a. Front and Rear-blade gang operator.

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install diffusers level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713.13
SECTION 233713.23 - REGISTERS AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Adjustable blade face registers and grilles.
2. Fixed face grilles.

B. Related Requirements:

1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to registers and grilles.
2. Section 233713.13 "Air Diffusers" for various types of air diffusers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
2. Register and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Ceiling suspension assembly members.
2. Method of attaching hangers to building structure.
3. Size and location of initial access modules for acoustical tile.
4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
5. Duct access panels.

B. Source quality-control reports.
PART 2 - PRODUCTS

2.1 REGISTERS AND GRILLES

A. Adjustable Bar Register:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Price Industries.
 b. Titus.
 c. Nailor Industries Inc.
 2. Material: Steel or Aluminum.
 3. Finish: Baked enamel, white unless otherwise indicated.
 7. Frame: 1 inch wide.
 9. Damper Type: Adjustable opposed blade.
 10. Accessories:
 a. Front and Rear-blade gang operator.

B. Adjustable Bar Grille:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. a. Nailor Industries Inc.
 b. Price Industries.
 c. Titus.
 3. Material: Steel or Aluminum.
 4. Finish: Baked enamel, white unless otherwise indicated.
 8. Frame: 1 inch wide.

2.2 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets.”
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where registers and grilles are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install registers and grilles level and plumb.

B. Outlets and Inlets Locations: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install registers and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust registers and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713.23
SECTION 235513.16 - GAS-FIRED DUCT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes gas-fired duct heaters.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of gas-fired duct heater.
 1. Include rated capacities, operating characteristics, and accessories.
 B. Shop Drawings: For gas-fired duct heaters. Include plans, elevations, sections, and attachment details.
 1. Prepare by or under the supervision of a qualified professional engineer detailing fabrication and assembly of gas-fired duct heaters, as well as procedures and diagrams.
 2. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.
 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 4. Include diagrams for signal and control wiring.

1.4 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Plans, elevations, and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Structural members to which equipment will be attached.
 2. Items penetrating roof and the following:
 a. Duct, vent, and gas piping rough-ins and connections.
 3. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
4. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
5. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Field quality-control reports.

C. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For gas-fired duct heaters to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace heat exchanger of gas-fired duct heater that fails in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. REZNOR, a brand of Nortek Global HVAC.
3. Sterling HVAC Products; a Mestek company.

2.2 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. Capacities and Characteristics:

a. Concentric, Terminal Vent Assembly: Combined combustion-air inlet and power-vent outlet with wall or roof caps. Include adapter assembly for connection to inlet and outlet pipes, and flashing for wall or roof penetration.

2.3 MANUFACTURED UNITS

A. Description: Factory assembled, piped, and wired; and complying with ANSI Z83.8/CSA 2.6.

B. Fuel Type: Design burner for natural gas having characteristics same as those of gas available at Project site.

C. Indoor External Housing: Steel cabinet with integral support inserts and removable bottom arranged to serve as drain pan.

1. External Casings and Cabinets: Baked enamel or Powder coating over corrosion-resistant-treated surface.

D. Outdoor External Housing: Weatherproof steel cabinet with integral support inserts and removable bottom arranged to serve as drain pan.

1. External Casings and Cabinets: Baked enamel or Powder coating over corrosion-resistant-treated surface.

E. Internal Casing: Aluminized steel, arranged to contain airflow, with duct flanges at inlet and outlet.

F. Power Venter: Integral, motorized centrifugal fan interlocked with gas valve.

G. Controls: Regulated redundant gas valve containing pilot solenoid valve, electric gas valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff all in one body.

1. Gas Ignition: Electronically controlled electric spark with flame sensor.
2. Fan Thermal Switch: Operates fan on heat-exchanger temperature.
4. Control transformer.
5. High Limit: Thermal switch or fuse to stop burner.
6. Thermostat: Single-stage, wall-mounted type with 50 to 90 deg F operating range and fan on switch.
7. Thermostat: Two-stage, wall-mounted type with 50 to 90 deg F operating range and fan on switch.

H. Capacities and Characteristics:
1. **Flue Outlet:** As Scheduled or Indicated.
2. **Gas Input:** As Scheduled
3. **Minimum Combustion Efficiency:** 80 percent, or As Scheduled.
4. **Minimum Airflow:** As Scheduled.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install and connect gas-fired duct heaters and associated fuel and vent features and systems according to NFPA 54, applicable local codes and regulations, and manufacturer's written instructions.

B. **Suspended Units:** Suspend from substrate using threaded rods, spring hangers, and building attachments. Secure rods to unit hanger attachments. Adjust hangers so unit is level and plumb.

 1. **Spring hangers** are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
 2. **Restrain the unit** to resist code-required horizontal acceleration.

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to gas-fired duct heaters, allow space for service and maintenance.

C. **Gas Piping:** Comply with Section 231123 "Facility Natural-Gas Piping." Connect gas piping to gas train inlet; provide union with enough clearance for burner removal and service.

D. **Duct Connections:** Comply with Section 233113 "Metal Ducts."

E. **Electrical Connections:** Comply with applicable requirements in electrical Sections.

 1. Install electrical devices furnished with heaters but not specified to be factory mounted.

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections:

 1. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 2. Verify bearing lubrication.
3. Verify proper motor rotation.
4. Test Reports: Prepare a written report to record the following:
 a. Test procedures used.
 b. Test results that comply with requirements.
 c. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

C. Gas-fired duct heater will be considered defective if it does not pass tests and inspections.

D. Remove and replace malfunctioning units and retest as specified above.

E. Prepare test and inspection reports.

3.4 ADJUSTING

A. Adjust initial temperature and humidity set points.

B. Adjust burner and other unit components for optimum heating performance and efficiency.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain gas-fired duct heaters.

END OF SECTION 235513.16
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes gas-fired unit heaters.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of gas-fired unit heater.
 1. Include rated capacities, operating characteristics, and accessories.

B. Shop Drawings: For gas-fired unit heaters. Include plans, elevations, sections, and attachment details.
 1. Prepare by or under the supervision of a qualified professional engineer detailing fabrication and assembly of gas-fired unit heaters, as well as procedures and diagrams.
 2. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration isolation bases.
 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 4. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, elevations, and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Structural members to which equipment will be attached.
 2. Items penetrating roof and the following:
 a. Vent and gas piping rough-ins and connections.

B. Field quality-control reports.
C. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For gas-fired unit heaters to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fan Belts: One for each belt-driven fan size.

1.7 QUALITY ASSURANCE

A. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

1.8 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace heat exchanger of gas-fired unit heater that fails in materials or workmanship within specified warranty period.
 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Modine Manufacturing Company.
 2. REZNOR, a brand of Nortek Global HVAC.
 3. Lennox Industries Inc.

2.2 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2.3 MANUFACTURED UNITS

A. Description: Factory assembled, piped, and wired, and complying with ANSI Z83.8/CSA 2.6.

B. Gas Type: Design burner for natural gas having characteristics same as those of gas available at Project site.

C. Type of Venting: Gravity or Power vented, as scheduled or indicated.

D. Housing: Steel, with integral draft hood and inserts for suspension mounting rods.
 1. External Casings and Cabinets: Baked enamel or Powder coating over corrosion-resistant-treated surface.
 2. Discharge Louvers: Independently adjustable, horizontal and vertical blades.

E. Accessories:
 1. Four-point suspension kit.
 2. Power Venter: Centrifugal aluminized-steel fan, with stainless-steel shaft; 120-V ac motor.
 3. Concentric, Terminal Vent Assembly: Combined combustion-air inlet and power-vent outlet with wall or roof caps. Include adapter assembly for connection to inlet and outlet pipes, and flashing for wall or roof penetration.

F. Heat Exchanger: Aluminized or Stainless steel.

G. Burner Material: Aluminized steel with stainless-steel inserts or Stainless steel.

H. Propeller Unit Fan:
 1. Formed-steel or Aluminum propeller blades riveted to heavy-gage steel spider bolted to cast-iron hub, dynamically balanced, and resiliently mounted.
 2. Fan-Blade Guard: Galvanized steel, complying with OSHA specifications, removable for maintenance.

I. Centrifugal Unit Fan:
 1. Steel, centrifugal fan dynamically balanced and resiliently mounted.
 2. Belt-Driven Drive Assembly:
 a. Resiliently mounted to housing, with the following features:
 1) Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 2) Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 3) Pulleys: Cast-iron, adjustable-pitch motor pulley.

J. Motors:
1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

2. Enclosure Materials: Rolled steel.

K. Electrical Connection: Factory wire motors and controls for a single electrical connection.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install and connect gas-fired unit heaters and associated gas and vent features and systems according to NFPA 54, applicable local codes and regulations, and manufacturer's written instructions.

3.2 EQUIPMENT MOUNTING

A. Suspended Units: Suspend from substrate using threaded rods, spring hangers, and building attachments. Secure rods to unit hanger attachments. Adjust hangers so unit is level and plumb.

B. Substrate-Mounted Units: Provide supports connected to substrate. Secure units to supports.

1. Spring hangers are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to gas-fired unit heater, allow space for service and maintenance.

C. Gas Piping: Comply with Section 231123 "Facility Natural-Gas Piping." Connect gas piping to gas train inlet; provide union with enough clearance for burner removal and service.

D. Vent Connections: Comply with Section 235123 "Gas Vents."

E. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

F. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections:

1. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
2. Verify bearing lubrication.
3. Verify proper motor rotation.
4. Test Reports: Prepare a written report to record the following:
 a. Test procedures used.
 b. Test results that comply with requirements.
 c. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

C. Gas-fired unit heater will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust initial temperature and humidity set points.

B. Adjust burner and other unit components for optimum heating performance and efficiency.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain gas-fired unit heaters.

END OF SECTION 235533.16
SECTION 237223.23 - PACKAGED, OUTDOOR, HEAT WHEEL ENERGY RECOVERY UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Heat wheels in packaged, outdoor, total energy-recovery units.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include packaged, outdoor, heat-wheel, energy-recovery-unit rated capacities, operating characteristics, furnished specialties, and accessories.

B. Sustainable Design Submittals:

1. Product Data for Prerequisite IEQ 1: Documentation indicating that units comply with ASHRAE 62.1, Section 5 - "Systems and Equipment."

C. Shop Drawings: For packaged, outdoor, heat-wheel, energy-recovery units.

1. Include plans, elevations, sections, details, and mounting details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, lifting requirements, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.

D. Delegated-Design Submittal: For packaged, outdoor, heat-wheel, energy-recovery units indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of heat-wheel, energy-recovery equipment.
2. Vibration-Isolation Roof Curb Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include rails and frames for equipment mounting.
3. Design Calculations: Calculate requirements for selecting vibration isolators and for designing vibration-isolation roof curbs.
1.4 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Floor plans, roof plans, elevations, and other details, drawn to scale and coordinated with each other, using input from installers of items involved.
 B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For packaged, outdoor, heat-wheel, energy-recovery equipment to include in maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed. Package with protective covering for storage and identify with labels describing contents.
 1. Filters: One set of each type of filter specified.
 2. Fan Belts: One set of belts for each belt-driven fan in energy-recovery units.
 3. Wheel Belts: One set of belts for each heat wheel.

1.7 COORDINATION
 A. Coordinate sizes and locations of building openings and duct connections with actual equipment provided.

1.8 WARRANTY
 A. Special Warranty: Manufacturer agrees to repair or replace components of packaged, outdoor, heat-wheel, energy-recovery units that fail in materials or workmanship within specified warranty period.
 1. Warranty Period for Packaged Energy-Recovery Units: Two years from date of Substantial Completion.
 2. Warranty Period for Energy-Recovery Wheel: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of air-handling units and components.
 B. ASHRAE Compliance:
1. Applicable requirements in ASHRAE 62.1.

C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1 and ASHRAE 62.1, Section 5.

D. UL Compliance:

E. Comply with ASTM E84 or UL 723.

F. Delegated Design: Engage a qualified professional engineer to design vibration-isolation controls, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

G. NRCA Compliance: Roof curbs for roof-mounted equipment shall be constructed according to recommendations of NRCA.

H. AHRI Compliance:

2.2 CAPACITIES AND CHARACTERISTICS

A. Type: Heat-wheel total energy-recovery unit.

B. Exhaust Air: As scheduled.

C. Supply Air: As scheduled

D. Effectiveness: As scheduled

E. Filters: As scheduled

2.3 PACKAGED, OUTDOOR, HEAT-WHEEL, ENERGY-RECOVERY UNITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Loren Cook Company.
4. YORK; a Johnson Controls company.

B. Source Limitations: Obtain packaged, outdoor, heat-wheel, energy-recovery units from single manufacturer.

C. Surfaces in Contact with Airstream: Comply with requirements in ASHRAE 62.1.

D. Housing: Manufacturer's standard construction with corrosion-protection coating and exterior finish, gasketed hinged access doors or removable panels with neoprene gaskets for inspection and access to internal parts, minimum 2 inches thick, thermal insulation, knockouts for electrical connections, exterior drain connection, and lifting lugs.

E. Heat Wheel:
 1. Casing:
 a. Manufacturer's standard construction with standard factory finish.
 b. Slide-in, slide-out cassette style.
 c. Provide unit with integral purge section, limiting carryover of exhaust air to between 0.05 percent at 1.6-inch wg and 0.2 percent at 4-inch wg differential pressure.
 d. Provide casing seals on periphery of rotor and on duct divider and purge section.
 e. Support vertical rotors on grease-lubricated ball bearings having extended grease fittings or permanently lubricated bearings. Support horizontal rotors on tapered roller bearing.

 2. Rotor: Aluminum or polymer segmented wheel, strengthened with radial spokes.
 3. Rotor: Aluminum or polymer segmented wheel, strengthened with radial spokes, with nontoxic, noncorrosive, silica-gel coating.
 4. Rotor: Aluminum, metallic, or polymer segmented wheel, strengthened with radial spokes impregnated with nonmigrating, water-selective, four-angstrom, molecular-sieve desiccant coating.
 5. Drive: Electric motor, with speed changed by variable-frequency motor controller and self-adjusting multilink belt around outside of rotor.
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 220.513 “Common Motor Requirements for HVAC Equipment.”
 b. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

F. Filters:
 1. Description: Cleanable wire mesh at outside air intake, factory-fabricated, self-supported, disposable air filters with holding frames.
 2. UL Compliance: Comply with UL 900.
4. Filter Media Frame: Galvanized steel with perforated metal retainer or metal grid on outlet side.
5. Filter-Mounting Frames: Arranged with access doors or panels on one or both sides of unit. Design unit with filters removable from one side, or lift out from access plenum.

G. Wiring: Fabricate units with space within housing for electrical conduits. Wire motors and controls, so only external connections are required during installation.

1. Outdoor Enclosure: NEMA 250, Type 3R enclosure contains relays, starters, and terminal strip.

2.4 CONTROLS

A. Control Panel: Solid-state, programmable, microprocessor-based control unit.
B. Starting relay, factory mounted and wired, and manual motor starter for field wiring.
C. Rotation sensor and alarm.
D. Dirty filter switch.
E. Variable-Speed Control: Factory mounted and wired, permitting input of field-connected, 4- to 20-mA or 1- to 10-V control signal.
F. Variable-Speed Control: Factory mounted and wired, with exhaust-air sensor to vary rotor speed and maintain exhaust temperature above freezing.
G. Variable-Speed Control: Factory mounted and wired, with exhaust- and outdoor-air sensors, automatic changeover thermostat, and set-point adjuster, to vary rotor speed and maintain exhaust temperature above freezing and air differential temperature above set point. Increase rotor speed to maximum when exhaust-air temperature is less than outdoor-air temperature.

2.5 SOURCE QUALITY CONTROL

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended application.
B. AHRI Compliance: Capacity ratings for air-to-air energy-recovery equipment certified as complying with AHRI 1060 (IP).
C. Fan Performance Rating: Comply with AMCA 211, and label fans with AMCA-certified rating seal. Factory test fan performance for airflow, pressure, power, air density, rotation speed, and efficiency in accordance with AMCA 210 and ASHRAE 51.
D. Fan Sound Rating: Comply with AMCA 301 or AHRI 260 (IP).
E. UL Compliance:

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine casing insulation materials and filter media before packaged, outdoor, heat wheel energy-recovery unit installation. Replace insulation materials and filter media that are wet, moisture damaged, or mold contaminated.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF PACKAGED, OUTDOOR, HEAT-WHEEL, ENERGY-RECOVERY UNITS

A. Install packaged, outdoor, heat-wheel, energy-recovery units, so supply and exhaust airstreams flow in opposite directions, and rotation is away from exhaust side to purge section to supply side.

1. Install access doors in both supply and exhaust ducts, both upstream and downstream, for access to wheel surfaces, drive motor, and seals.
2. Install removable panels or access doors between supply and exhaust ducts on building side for bypass during startup.
3. Access doors and panels are specified in Section 233 300"Air Duct Accessories."

B. Equipment Mounting:

1. Install deck-mounted packaged, outdoor, heat-wheel, energy-recovery units on 4-inch cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033 000 "Cast-in-Place Concrete."
2. Install roof-mounted packaged, outdoor, heat-wheel, energy-recovery units on manufacturer's-recommended-height equipment roof curbs. Comply with requirements for equipment curbs specified in Section 077 200 "Roof Accessories."

C. Install units with clearances for service and maintenance.

D. Do not operate equipment fans until temporary or permanent filters are in place. Replace temporary filters used during construction and testing with new, clean filters prior to final inspection.
3.3 DUCTWORK CONNECTIONS
 A. Comply with requirements for ductwork in accordance with Section 233.113 "Metal Ducts."

3.4 PIPING CONNECTIONS
 A. Condensate Drain Piping: Install copper condensate drain piping from drain pans to nearest roof drain, same size as condensate drain connection.

3.5 ELECTRICAL CONNECTIONS
 A. Install electrical devices furnished by manufacturer, but not factory mounted, in accordance with NFPA 70 and NECA 1.

3.6 CONTROL CONNECTIONS
 A. Install control and electrical power wiring to field-mounted control devices.
 B. Connect control wiring in accordance with "Control-Voltage Electrical Power Cables."

3.7 STARTUP SERVICE
 A. Engage factory-authorized service representative to perform startup service.
 1. Complete installation and startup check in accordance with manufacturer's written instructions.

3.8 ADJUSTING
 A. Adjust moving parts to function smoothly and lubricate as recommended by manufacturer.
 B. Adjust initial temperature and humidity set points.
 C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

3.9 FIELD QUALITY CONTROL
 A. Testing Agency: Owner will engage qualified testing agency to perform tests and inspections.
 B. Testing Agency: Engage qualified testing agency to perform tests and inspections.
 C. Manufacturer's Field Service: Engage factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
 D. Perform tests and inspections with assistance of factory-authorized service representative.
E. Tests and Inspections:
 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

F. Packaged, outdoor, heat-wheel, energy-recovery equipment will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

3.10 DEMONSTRATION

A. Engage factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-to-air energy-recovery units.

END OF SECTION 237223.23
SECTION 23 7416.11 - PACKAGED, SMALL-CAPACITY, ROOFTOP AIR-CONDITIONING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes packaged, small-capacity, rooftop air-conditioning units (RTUs) with the following components and accessories:

1. Casings.
2. Fans.
3. Motors.
5. Refrigerant circuit components.
6. Air filtration.
7. Gas furnaces.
8. Dampers.
9. Electrical power connections.
10. Controls.
11. Accessories.
12. Roof curbs.

1.3 DEFINITIONS

A. DDC: Direct digital controls.

B. ECM: Electronically commutated motor.

C. MERV: Minimum efficiency reporting value.

D. Outdoor-Air Refrigerant Coil: Refrigerant coil in the outdoor-air stream to reject heat during cooling operations and to absorb heat during heating operations. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.

E. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, small-capacity, rooftop air-conditioning units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.
F. Supply-Air Fan: The fan providing supply air to conditioned space. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.

G. Supply-Air Refrigerant Coil: Refrigerant coil in the supply-air stream to absorb heat (provide cooling) during cooling operations and to reject heat (provide heating) during heating operations. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.

1.4 ACTION SUBMITTALS

A. Product Data: For each RTU.
 1. Include manufacturer's technical data.
 2. Include rated capacities, dimensions, required clearances, characteristics, and furnished specialties and accessories.

B. Shop Drawings:
 1. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For RTU supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail mounting, securing, and flashing of roof curb to roof structure. Indicate coordinating requirements with roof membrane system.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Structural members to which RTUs will be attached.
 2. Roof openings.
 3. Roof curbs and flashing.

B. Field quality-control reports.

C. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For RTUs to include in emergency, operation, and maintenance manuals.
1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fan Belts: One set for each belt-driven fan.
2. Filters: One set of filters for each unit.

1.8 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of RTUs that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion.
2. Warranty Period for Gas Furnace Heat Exchangers: Manufacturer's standard, but not less than five years from date of Substantial Completion.
3. Warranty Period for Solid-State Ignition Modules: Manufacturer's standard, but not less than three years from date of Substantial Completion.
4. Warranty Period for Control Boards: Manufacturer's standard, but not less than three years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 DESCRIPTION

A. AHRI Compliance:

1. Comply with AHRI 210/240 for testing and rating energy efficiencies for RTUs.
2. Comply with AHRI 340/360 for testing and rating energy efficiencies for RTUs.
3. Comply with AHRI 270 for testing and rating sound performance for RTUs.
4. Comply with AHRI 1060 for testing and rating performance for air-to-air exchanger.

B. AMCA Compliance:

1. Comply with AMCA 11 and bear the AMCA-Certified Ratings Seal for air and sound performance according to AMCA 211 and AMCA 311.
2. Damper leakage tested according to AMCA 500-D.
3. Operating Limits: Classify according to AMCA 99.

C. ASHRAE Compliance:

1. Comply with ASHRAE 15 for refrigeration system safety.
2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
3. Comply with applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."
D. ASHRAE/IES Compliance: Comply with applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

E. NFPA Compliance: Comply with NFPA 90A or NFPA 90B.

G. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Carrier Corporation; a unit of United Technologies Corp.
2. Trane.
3. YORK; a Johnson Controls company.

2.3 CAPACITIES AND CHARACTERISTICS

A. Refer to the Schedule on the drawings.

B. Supply-Air Fan:
 1. Fan Type: Double width, forward curved, belt driven, centrifugal.
 2. Enclosure Type: Open, dripproof.

C. Supply-Air Refrigerant Coil:
 1. Coating: Corrosion resistant.

D. Outdoor-Air Refrigerant Coil:
 1. Coating: Corrosion resistant.

E. Gas Furnace:
 1. Gas Control Valve: Modulating.

F. Dampers:
 1. Outdoor- and Return-Air Mixing Dampers: Opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect so dampers operate simultaneously.
 2. Relief-Air Damper: Gravity actuated or motorized, as required by ASHRAE/IES 90.1.

G. Recirculating-Air Filters:
 1. Thickness: 2 inches.
 2. Pleated with minimum 90 percent arrestance, and MERV 13.
H. RTU Electrical for Single-Point Connection.

2.4 CASINGS

A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.

B. Double-Wall Construction: Fill space between walls with 2-inch foam insulation and seal moisture tight for R-13 performance.

C. Exterior Casing Material: Galvanized steel with factory-painted finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.

D. Inner Casing Fabrication Requirements:

1. Inside Casing: G-90-coated galvanized steel, 0.034 inch thick.

E. Corrosion-Resistant Coating: Apply a corrosion-resistant coating capable of withstanding a 3,000-hour salt-spray test according to ASTM B117.

1. Standards:
 a. ASTM B117 for salt spray.
 b. ASTM D2794 for minimum impact resistance of 100 in-lb
 c. ASTM B3359 for cross-hatch adhesion of 5B.

F. Casing Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.

1. Materials: ASTM C1071, Type I.
2. Thickness: 1 inch.
3. Liner materials shall have airstream surface coated with erosion- and temperature-resistant coating or faced with a plain or coated fibrous mat or fabric.
4. Liner Adhesive: Comply with ASTM C916, Type I.

G. Condensate Drain Pans: Fabricated using stainless-steel sheet 0.025-inch thick, a minimum of 2 inches deep, and complying with ASHRAE 62.1 for design and construction of drain pans.

1. Double-Wall Construction: Fill space between walls with foam insulation and seal moisture tight.
2. Drain Connections: Threaded nipple.

H. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
2.5 FANS

A. Supply-Air Fans: Aluminum or painted-steel wheels, and galvanized- or painted-steel fan scrolls.
 1. Belt-Driven Supply-Air Fans: Motors shall be installed on an adjustable fan base resiliently mounted in the casing.

B. Condenser-Coil Fan: Variable-speed propeller, mounted on shaft of permanently lubricated ECM motors.

2.6 MOTORS

A. Comply with Section 230513 "Common Motor Requirements for HVAC Equipment" and the requirements of this Article.

B. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

C. Service Factor: 1.15.

D. Efficiency: Premium efficient.

2.7 COILS

A. Supply-Air Refrigerant Coil:
 1. Aluminum-plate fin and seamless copper tube in steel casing with equalizing-type vertical distributor.
 2. Polymer strip shall prevent all copper coils from contacting steel coil frame or condensate pan.
 4. Corrosion-Resistant Coating: Apply a corrosion-resistant coating capable of withstanding a 3,000-hour salt-spray test according to ASTM B117.

 a. Standards:
 1) ASTM B117 for salt spray.
 2) ASTM D2794 for minimum impact resistance of 100 in-lb
 3) ASTM B3359 for cross-hatch adhesion of 5B.

B. Outdoor-Air Refrigerant Coil:
 1. **Aluminum**-plate fin and seamless copper tube in steel casing with equalizing-type vertical distributor.
 2. Polymer strip shall prevent all copper coils from contacting steel coil frame or condensate pan.
 3. Corrosion-Resistant Coating: Apply a corrosion-resistant coating capable of withstanding a 3,000-hour salt-spray test according to ASTM B117.
a. Standards:

1) ASTM B117 for salt spray.
2) ASTM D2794 for minimum impact resistance of 100 in-lb
3) ASTM B3359 for cross-hatch adhesion of 5B.

2.8 REFRIGERANT CIRCUIT COMPONENTS

A. Compressor: Hermetic, scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater.

B. Refrigeration Specialties:

1. Refrigerant: R-410A.
2. Expansion valve with replaceable thermostatic element.
3. Refrigerant filter/dryer.
5. Automatic-reset low-pressure safety switch.
8. Brass service valves installed in compressor suction and liquid lines.
9. Low-ambient kit high-pressure sensor.
10. Hot-gas bypass solenoid valve with a replaceable magnetic coil.

2.9 AIR FILTRATION

A. Minimum arrestance and MERV according to ASHRAE 52.2.

2.10 GAS FURNACE

A. Description: Factory assembled, piped, and wired; complying with ANSI Z21.47/CSA 2.3 and NFPA 54.

1. CSA Approval: Designed and certified by and bearing label of CSA.

B. Burners: Stainless steel.

1. Fuel: Natural gas.
2. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.
3. High-Altitude Kit: For Project elevations more than 2000 feet above sea level.

C. Heat-Exchanger and Drain Pan: Stainless steel.

D. Venting: Gravity vented.

2.11 DAMPERS
 A. Leakage Rate: Comply with ASHRAE/IES 90.1.
 B. Damper Motor: Modulating with adjustable minimum position.

2.12 ELECTRICAL POWER CONNECTIONS
 A. RTU shall have a single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

2.13 CONTROLS
 A. DDC Controller:
 1. Controller shall have volatile-memory backup.
 2. Safety Control Operation:
 a. Smoke Detectors: Stop fan and close outdoor-air damper if smoke is detected. Provide additional contacts for alarm interface to fire-alarm control panel.
 b. Low-Discharge Temperature: Stop fan and close outdoor-air damper if supply-air temperature is less than 40 deg F.
 c. Defrost Control for Condenser Coil: Pressure differential switch to initiate defrost sequence.
 d. High and low filter pressure drop: alarm when filter pressure drop is outside of pressure drop high and low range (both adjustable).
 3. Scheduled Operation: Occupied and unoccupied periods on 365-day clock with a minimum of four programmable periods per day.
 4. Outdoor Air Operation:
 a. Unoccupied Period: Outdoor air damper 100% closed and return air damper 100% open.
 b. Occupied Period: Outside of economizer period, modulate outside air and return air dampers to maintain minimum scheduled outdoor airflow (CFM) at all times, as sensed by airflow monitoring station.
 5. Supply Fan Operation:
 a. Modulate fan speed to maintain duct static temperature setpoint as determined by balancer.
 6. Refrigerant Circuit Operation:
 a. Cycle or stage compressors and operate hot-gas bypass to match compressor output to cooling load to maintain discharge temperature setpoint (adj). Cycle condenser fans to maintain maximum hot-gas pressure. Operate low-ambient control kit to maintain minimum hot-gas pressure.
7. Gas Furnace Operation:
 a. Modulate burner to maintain discharge air temperature setpoint (adj).

8. Economizer Outdoor-Air Damper Operation:
 a. Modulate outside air and return air dampers to maintain supply air temperature setpoint as sensed by mixed air temperature sensor. Controller shall permit air-side economizer operation when outdoor air is less than 60 deg F. Use outdoor-air temperature to adjust mixing dampers during economizer cycle operation, lock out cooling. Outdoor airflow (CFM) shall not drop below scheduled value during economizer.

9. VAV Terminal Operation:
 a. Modulate airflow to maintain occupied or unoccupied space temperature cooling setpoint (adj).
 b. Upon airflow going to scheduled minimum and space temperature remaining below heating setpoint, stage reheat coil as required to maintain space setpoint (adj).

B. Interface Requirements for HVAC Instrumentation and Control System:
 1. Interface relay for scheduled operation.
 2. Interface relay to provide indication of fault at the central workstation and diagnostic code storage.
 3. Provide BACnet compatible interface for central HVAC control workstation for the following:
 a. Adjusting set points.
 b. Monitoring supply fan start, stop, and operation.
 c. Inquiring data to include outdoor-air damper position, supply- and room-air temperature.
 d. Monitoring occupied and unoccupied operations.
 e. Monitoring constant and variable motor loads.
 f. Monitoring variable-frequency drive operation.
 g. Monitoring cooling load.
 h. Monitoring economizer cycles.

C. Provide 5 degrees dead-band between occupied and unoccupied cooling and heating setpoints.

2.14 ACCESSORIES

A. Electric heater with integral thermostat maintains minimum 50 deg F temperature in gas burner compartment.

B. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.

C. Low-ambient kit using variable-speed condenser fans for operation down to 35 deg F.
D. Remote potentiometer to adjust minimum economizer damper position.

E. Factory- or field-installed, demand-controlled ventilation.

F. Safeties:
 1. Smoke detector.
 2. Condensate overflow switch.
 3. Phase-loss and reversal protection.
 4. High and low pressure control.
 5. Gas furnace airflow-proving switch.

G. Coil guards of painted, galvanized-steel wire.

H. Hail guards of galvanized steel, painted to match casing.

I. Outdoor-air intake weather hood.

J. Oil separator.

K. Service Lights and Switch: Factory installed in each accessible section with weatherproof cover. Factory wire lights to a single-point field connection.

L. Outdoor-Airflow Monitor: Accuracy maximum plus or minus 5 percent within 15 and 100 percent of total outdoor air. Monitor microprocessor shall adjust for temperature, and output shall range from 4 to 20 mA.

2.15 ROOF CURBS

A. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.

1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 a. Materials: ASTM C1071, Type I or II.
 b. Thickness: 1 inch.

2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 a. Liner Adhesive: Comply with ASTM C916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have airstream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 d. Liner Adhesive: Comply with ASTM C916, Type I.
B. Curb Dimensions: Height of 14 inches. Adaptable horizontal dimensions as required for existing roof openings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of RTUs.

B. Examine roughing-in for RTUs to verify actual locations of piping and duct connections before equipment installation.

C. Examine roofs for suitable conditions where RTUs will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Roof Curb: Install on roof structure, level and secure, according to NRCA's "NRCA Roofing Manual: Membrane Roof Systems." Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 077200 "Roof Accessories." Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.

3.3 CONNECTIONS

A. Comply with duct installation requirements specified in other HVAC Sections. Drawings indicate general arrangement of ducts. The following are specific connection requirements:

 1. Install ducts to termination at top of roof curb.
 2. Connect supply ducts to RTUs with flexible duct connectors specified in Section 233300 "Air Duct Accessories."
 3. Install return-air duct continuously through roof structure.

B. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain.

C. Where installing piping adjacent to RTUs, allow space for service and maintenance.

 1. Gas Piping: Comply with applicable requirements in Section 231123 "Facility Natural-Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.

D. Connect electrical wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
E. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

F. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.

1. Nameplate shall be laminated acrylic or melamine plastic signs as specified in Section 260553 "Identification for Electrical Systems."
2. Nameplate shall be laminated acrylic or melamine plastic signs as layers of black with engraved white letters at least 1/2 inch high.
3. Locate nameplate where easily visible.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections with the assistance of a factory-authorized service representative.

C. Tests and Inspections:

1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. RTU will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Inspect for visible damage to unit casing.
3. Inspect for visible damage to furnace combustion chamber.
4. Inspect for visible damage to compressor, coils, and fans.
5. Inspect internal insulation.
6. Verify that labels are clearly visible.
7. Verify that clearances have been provided for servicing.
8. Verify that controls are connected and operable.
9. Verify that filters are installed.
10. Clean condenser coil and inspect for construction debris.
11. Clean furnace flue and inspect for construction debris.
12. Connect and purge gas line.
13. Remove packing from vibration isolators.
15. Verify lubrication on fan and motor bearings.
16. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
17. Adjust fan belts to proper alignment and tension.
18. Start unit according to manufacturer's written instructions.
 a. Start refrigeration system.
 b. Do not operate below recommended low-ambient temperature.
 c. Complete startup sheets and attach copy with Contractor's startup report.
20. Operate unit for an initial period as recommended or required by manufacturer.
21. Perform the following operations for both minimum and maximum firing. Adjust burner for peak efficiency:
 a. Measure gas pressure on manifold.
 b. Measure combustion-air temperature at inlet to combustion chamber.
 c. Measure flue-gas temperature at furnace discharge.
 e. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
22. Calibrate thermostats.
23. Adjust and inspect high-temperature limits.
24. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers.
25. Start refrigeration system and measure and record the following when ambient is a minimum of 15 deg F above return-air temperature:
 a. Coil leaving-air, dry- and wet-bulb temperatures.
 b. Coil entering-air, dry- and wet-bulb temperatures.
 c. Outdoor-air, dry-bulb temperature.
 d. Outdoor-air-coil, discharge-air, dry-bulb temperature.
26. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
27. Measure and record the following minimum and maximum airflows. Plot fan volumes on fan curve.
 a. Supply-air volume.
 b. Return-air volume.
 c. Relief-air volume.
 d. Outdoor-air intake volume.
28. Simulate maximum cooling demand and inspect the following:
 a. Compressor refrigerant suction and hot-gas pressures.
b. Short circuiting of air through condenser coil or from condenser fans to outdoor-air intake.

29. Verify operation of remote panel including pilot-light operation and failure modes. Inspect the following:
 b. Low-temperature safety operation.
 c. Economizer to minimum outdoor-air changeover.
 d. Smoke alarms.

30. After startup and performance testing and prior to Substantial Completion, replace existing filters with new filters.

3.6 CLEANING AND ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

B. After completing system installation and testing, adjusting, and balancing RTU and air-distribution systems, clean filter housings and install new filters.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain RTUs.

END OF SECTION 237416.11
SECTION 260513 - MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes cables and related cable splices, terminations, and accessories for medium-voltage (2001 to 35,000 V) electrical distribution systems.

1.3 DEFINITIONS

A. Jacket: A continuous nonmetallic outer covering for conductors or cables.

C. Sheath: A continuous metallic covering for conductors or cables.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of cable. Include splices and terminations for cables and cable accessories.

B. Samples: 16-inch lengths for each type of cable specified.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Indicate location of each cable, splice, and termination.

B. Qualification Data: For Installer.

C. Material Certificates: For each type of cable and accessory.

D. Design Data: Cable pulling calculations, including conduit size and fill percentage, pulling tensions, cable sidewall pressure, jam probability, voltage drop, and ground wire sizing for each cable.

E. Source quality-control reports.

F. Field quality-control reports.
1.6 QUALITY ASSURANCE

A. Installer: Engage a cable splicer, trained and certified by splice material manufacturer, to install, splice, and terminate medium-voltage cable.

B. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.7 FIELD CONDITIONS

A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Construction Manager no fewer than five days in advance of proposed interruption of electric service.
 2. Do not proceed with interruption of electric service without Construction Manager's written permission.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with IEEE C2 and NFPA 70.

C. Source Limitations: Obtain cables and accessories from single source from single manufacturer.

2.2 CABLES

A. **Manufacturers**: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. Aetna Insulated Wire, Inc.
 2. General Cable; General Cable Corporation.
 4. Okonite Company (The).
 5. Prysmian Power Cables and Systems USA, LLC.
 6. Rome Cable Corporation.
 7. Southwire Company.
 8. Superior Essex Inc.

B. Cable Type: Type MV 105.
C. Conductor Insulation: Ethylene-propylene rubber.

 1. Voltage Rating: 15 kV.
 2. Insulation Thickness: 133 percent insulation level.

D. Conductor: Copper.

E. Comply with UL 1072, AEIC CS8, ICEA S-93-639/NEMA WC 74, and ICEA S-97-682.

F. Conductor Stranding: Compact round, concentric lay, Class B.

G. Strand Filling: Conductor interstices are filled with impermeable compound.

H. Shielding: Copper tape, helically applied over semiconducting insulation shield.

I. Shielding and Jacket: Corrugated copper drain wires embedded in extruded, chlorinated, polyethylene jacket.

J. Cable Sheath: Interlocked galvanized steel applied over cable.

K. Cable Jacket: Sunlight-resistant PVC.

2.3 CONNECTORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 1. 3M.
 3. Raychem; a brand of nVent.

B. Comply with ANSI C119.4 for connectors between aluminum conductors or for connections between aluminum to copper conductors.

C. Copper-Conductor Connectors: Copper barrel crimped connectors.

2.4 SOLID TERMINATIONS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 1. 3M.
 3. Raychem; a brand of nVent.

B. Multiconductor Cable Sheath Seals: Type recommended by seal manufacturer for type of cable and installation conditions, including orientation.
1. Compound-filled, cast-metal-body, metal-clad cable terminator for metal-clad cable with external plastic jacket.
2. Cold-shrink sheath seal kit with preformed sleeve openings sized for cable and insulated conductors.
3. Heat-shrink sheath seal kit with phase- and ground-conductor rejacketing tubes, cable-end sealing boot, and sealing plugs for unused ground-wire openings in boot.
4. Cast-epoxy-resin sheath seal kit with wraparound mold and packaged, two-part, epoxy-resin casting material.

C. Shielded-Cable Terminations: Comply with the following classes of IEEE 48. Insulation class shall be equivalent to that of cable. Include shield ground strap for shielded cable terminations.
1. Class 1 Terminations: Heat-shrink type with heat-shrink inner stress control and outer nontracking tubes; multiple, molded, nontracking skirt modules; and compression-type connector.
2. Class 2 Terminations, Indoors: Kit with stress-relief tube, nontracking insulator tube, shield ground strap, and compression-type connector. Include silicone-rubber tape; cold-shrink-rubber sleeve; or heat-shrink, plastic-sleeve moisture seal for end of insulation whether or not supplied with kits.
3. Class 3 Terminations: Kit with stress cone and compression-type connector.

2.5 SEPARABLE INSULATED CONNECTORS

A. Description: Modular system, complying with IEEE 386, with disconnecting, single-pole, cable terminators and with matching, stationary, plug-in, dead-front terminals designed for cable voltage and for sealing against moisture.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
1. 3M.
3. Raychem; a brand of nVent.

C. Terminations at Distribution Points: Modular type, consisting of terminators installed on cables and modular, dead-front, terminal junctions for interconnecting cables.

D. Dead-Break Cable Terminators: Elbow-type unit with 600-A continuous-current rating; designed for de-energized disconnecting and connecting; coordinated with insulation diameter, conductor size, and material of cable being terminated. Include test point on terminator body that is capacitance coupled.

E. Dead-Front Terminal Junctions: Modular bracket-mounted groups of dead-front stationary terminals that mate and match with above cable terminators. Two-, three-, or four-terminal units as indicated, with fully rated, insulated, watertight conductor connection between terminals and complete with grounding lug, manufacturer's standard accessory stands, stainless-steel mounting brackets, and attaching hardware.
1. Protective Cap: Insulating, electrostatic-shielding, water-sealing cap with drain wire.
2. Portable Feed-Through Accessory: Two-terminal, dead-front junction arranged for removable mounting on accessory stand of stationary terminal junction.
3. Grounding Kit: Jumpered elbows, portable feed-through accessory units, protective caps, test rods suitable for concurrently grounding three phases of feeders, and carrying case.

F. Test-Point Fault Indicators: Applicable current-trip ratings and arranged for installation in test points of load-break separable connectors, and complete with self-resetting indicators capable of being installed with shotgun hot stick and tested with test tool.

G. Tool Set: Shotgun hot stick with energized terminal indicator, fault-indicator test tool, and carrying case.

2.6 SPLICE KITS

A. Description: For connecting medium voltage cables; type as recommended by cable or splicing kit manufacturer for the application.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. 3M.
 3. Raychem; a brand of nVent.

C. Standard: Comply with IEEE 404.

D. Splicing Products: As recommended, in writing, by splicing kit manufacturer for specific sizes, materials, ratings, and configurations of cable conductors. Include all components required for complete splice, with detailed instructions.
 1. Combination tape and cold-shrink-rubber sleeve kit with re jacketing by cast-epoxy-resin encasement or other waterproof, abrasion-resistant material.
 4. Premolded, EPDM splicing body kit with cable joint sealed by interference fit of mating parts and cable.
 5. Separable multiway splice system with all components for the required splice configuration.

2.7 MEDIUM-VOLTAGE TAPES

A. Description: Electrical grade, insulating tape rated for medium voltage application.
B. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. 3M.
3. Raychem; a brand of nVent.

C. Ethylene/propylene rubber-based, 30-mil splicing tape, rated for 130 deg C operation. Minimum 3/4 inch wide.

D. Silicone rubber-based, 12-mil self-fusing tape, rated for 130 deg C operation. Minimum 1-1/2 inches (38 mm) wide.

E. Insulating-putty, 125-mil elastic filler tape. Minimum 1-1/2 inches wide.

2.8 **ARC-PROOFING MATERIALS**

A. Description: Fire retardant, providing arc flash protection.

B. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. 3M.
3. Raychem; a brand of nVent.

C. Tape for First Course on Metal Objects: 10-mil-thick, corrosion-protective, moisture-resistant, PVC pipe-wrapping tape.

D. Arc-Proofing Tape: Fireproof tape, flexible, conformable, intumescent to 0.3 inch thick, and compatible with cable jacket.

E. Glass-Cloth Tape: Pressure-sensitive adhesive type, 1 inch wide.

2.9 **FAULT INDICATORS**

A. Indicators: Automatically reset fault indicator with inrush restraint feature, arranged to clamp to cable sheath and provide a display after a fault has occurred in cable. Instrument shall not be affected by heat, moisture, and corrosive conditions and shall be recommended by manufacturer for installation conditions.

2.10 **SOURCE QUALITY CONTROL**

A. Test and inspect cables according to ICEA S-97-682 before shipping.

B. Test strand-filled cables for water-penetration resistance according to ICEA T-31-610, using a test pressure of 5 psig.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cables according to IEEE 576.

B. Proof conduits prior to conductor installation by passing a wire brush mandrel and then a rubber duct swab through the conduit. Separate the wire brush and the rubber swab by 48 to 72 inches on the pull rope.

1. Wire Brush Mandrel: Consists of a length of brush approximately the size of the conduit inner diameter with stiff steel bristles and an eye on each end for attaching the pull ropes. If an obstruction is felt, pull the brush back and forth repeatedly to break up the obstruction.

2. Rubber Duct Swab: Consists of a series of rubber discs approximately the size of the conduit inner diameter on a length of steel cable with an eye on each end for attaching the pull ropes. Pull the rubber duct swab through the duct to extract loose debris from the duct.

C. Pull Conductors: Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

1. Where necessary, use manufacturer-approved pulling compound or lubricant that does not deteriorate conductor or insulation.

2. Use pulling means, including fish tape, cable, rope, and basket-weave cable grips, that do not damage cables and raceways. Do not use rope hitches for pulling attachment to cable.

3. Use pull-in guides, cable feeders, and draw-in protectors as required to protect cables during installation.

4. Do not pull cables with ends unsealed. Seal cable ends with rubber tape.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members and follow surface contours where possible.

E. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

F. Install direct-buried cables on leveled and tamped bed of 3-inch-thick, clean sand. Separate cables crossing other cables or piping by a minimum of 2 inches of tamped earth, plus an additional 2 inches of sand. Install permanent markers at ends of cable runs, changes in direction, and buried splices.

G. Install "buried-cable" warning tape 12 inches above cables.

H. In manholes, handholes, pull boxes, junction boxes, and cable vaults, train cables around walls by the longest route from entry to exit; support cables at intervals adequate to prevent sag.

I. Install sufficient cable length to remove cable ends under pulling grips. Remove length of conductor damaged during pulling.
J. Install cable splices at pull points and elsewhere as indicated; use standard kits. Use dead-front separable watertight connectors in manholes and other locations subject to water infiltration.

K. Install terminations at ends of conductors, and seal multiconductor cable ends with standard kits.

L. Install separable insulated-connector components as follows:
 1. Protective Cap: At each terminal junction, with one on each terminal to which no feeder is indicated to be connected.
 2. Portable Feed-Through Accessory: At each terminal junction, with one on each terminal.
 3. Standoff Insulator: At each terminal junction, with one on each terminal.

M. Arc Proofing: Unless otherwise indicated, arc proof medium-voltage cable at locations not protected by conduit, cable tray, direct burial, or termination materials. In addition to arc-proofing tape manufacturer's written instructions, apply arc-proofing as follows:
 1. Clean cable sheath.
 2. Wrap metallic cable components with 10-mil pipe-wrapping tape.
 3. Smooth surface contours with electrical insulation putty.
 4. Apply arc-proofing tape in one half-lapped layer with coated side toward cable.
 5. Band arc-proofing tape with two layers of 1-inch-wide half-lapped, adhesive, glass-cloth tape at each end of the arc-proof tape.

N. Seal around cables passing through fire-rated elements according to Section 078413 "Penetration Firestopping."

O. Install fault indicators on each phase where indicated.

P. Ground shields of shielded cable at terminations, splices, and separable insulated connectors. Ground metal bodies of terminators, splices, cable and separable insulated-connector fittings, and hardware.

Q. Ground shields of shielded cable at one point only. Maintain shield continuity and connections to metal connection hardware at all connection points.

R. Identify cables according to Section 260553 "Identification for Electrical Systems." Identify phase and circuit number of each conductor at each splice, termination, pull point, and junction box. Arrange identification so that it is unnecessary to move the cable or conductor to read the identification.

3.2 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters.
2. After installing medium-voltage cables and before electrical circuitry has been energized, test for compliance with requirements.
3. Perform direct-current High Potential test of each new conductor according to NETA ATS, Ch. 7.3.3. Do not exceed cable manufacturer's recommended maximum test voltage.
4. Perform Partial Discharge test of each new conductor according to NETA ATS, Ch. 7.3.3 and to test equipment manufacturer's recommendations.
5. Perform Dissipation Factor test of each new conductor according to NETA ATS, Ch. 7.3.3 and to test equipment manufacturer's recommendations.

D. Medium-voltage cables will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.

END OF SECTION 260513
SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Copper building wire rated 600 V or less.
2. Aluminum building wire rated 600 V or less.
3. Metal-clad cable, Type MC, rated 600 V or less.
4. Armored cable, Type AC, rated 600 V or less.
5. Photovoltaic cable, Type PV, rated 2000 V or less.
6. Mineral-insulated cable, Type MI, rated 600 V or less.
7. Tray cable, Type TC, rated 600 V or less.
8. Fire-alarm wire and cable.
9. Connectors, splices, and terminations rated 600 V and less.

B. Related Requirements:

1. Section 260513 "Medium-Voltage Cables" for single-conductor and multiconductor cables, cable splices, and terminations for electrical distribution systems with 601 to 35,000 V.
2. Section 260523 "Control-Voltage Electrical Power Cables" for control systems communications cables and Classes 1, 2, and 3 control cables.

1.3 DEFINITIONS

A. PV: Photovoltaic.
B. RoHS: Restriction of Hazardous Substances.
C. VFC: Variable-frequency controller.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Product Schedule: Indicate type, use, location, and termination locations.
1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For manufacturer's authorized service representative.

B. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Alpha Wire Company.
2. American Bare Conductor.
3. Belden Inc.
4. Cerro Wire LLC.
5. Encore Wire Corporation.
6. General Cable Technologies Corporation.
7. Okonite Company (The).
8. Service Wire Co.
10. WESCO.

C. Standards:
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
 2. RoHS compliant.
 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

D. Conductors: Copper, complying with ASTM B3 for bare annealed copper and with ASTM B8 for stranded conductors.

E. Conductor Insulation:
 1. Type NM: Comply with UL 83 and UL 719.
2. Type RHH and Type RHW-2: Comply with UL 44.
3. Type USE-2: Comply with UL 854.
4. Type TC-ER: Comply with NEMA WC 70/ICEA S-95-658 and UL 1277.
5. Type THHN and Type THWN-2: Comply with UL 83.
6. Type THW and Type THW-2: Comply with NEMA WC-70/ICEA S-95-658 and UL 83.
7. Type UF: Comply with UL 83 and UL 493.
8. Type XHHW-2: Comply with UL 44.

F. Shield:

1. Type TC-ER: Cable designed for use with VFCs, with oversized crosslinked polyethylene insulation, dual spirally wrapped copper tape shields and three bare symmetrically applied ground wires, and sunlight- and oil-resistant outer PVC jacket.

2.2 METAL-CLAD CABLE, TYPE MC

A. Description: A factory assembly of one or more current-carrying insulated conductors in an overall metallic sheath.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. AFC Cable Systems; a part of Atkore International.
2. Alpha Wire Company.
3. American Bare Conductor.
4. Belden Inc.
5. Encore Wire Corporation.
6. General Cable Technologies Corporation.
7. Okonite Company (The).
8. Service Wire Co.
10. Wesco.

C. Standards:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
2. Comply with UL 1569.
3. RoHS compliant.
4. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

D. Circuits:

E. Conductors: Copper, complying with ASTM B3 for bare annealed copper and with ASTM B8 for stranded conductors.
F. Ground Conductor: Bare.

G. Conductor Insulation:
 1. Type TFN/THHN/THWN-2: Comply with UL 83.
 2. Type XHHW-2: Comply with UL 44.

H. Armor: Steel, interlocked.

I. Jacket: PVC applied over armor.

2.3 FIRE-ALARM WIRE AND CABLE

A. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Allied Wire & Cable Inc.
 2. CommScope, Inc.
 3. Comtran Corporation.
 4. Draka Cableteq USA; a Prysmian Group company.
 5. Genesis Cable Products; Honeywell International, Inc.
 6. Radix Wire.
 7. Rockbestos-Suprenant Cable Corp.
 8. Superior Essex Inc.
 9. West Penn Wire.

B. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.

C. Signaling Line Circuits: Twisted, shielded pair, not less than No. 18 AWG.
 1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire-alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a two-hour rating.

D. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation, and complying with requirements in UL 2196 for a two-hour rating.
 1. Low-Voltage Circuits: No. 16 AWG, minimum, in pathway.
 2. Line-Voltage Circuits: No. 12 AWG, minimum, in pathway.
 3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor with outer jacket with red identifier stripe, NTRL listed for fire-alarm and cable tray installation, plenum rated.
2.4 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. 3M Electrical Products.
2. AFC Cable Systems; a part of Atkore International.
5. O-Z/Gedney; a brand of Emerson Industrial Automation.
6. Thomas & Betts Corporation; A Member of the ABB Group.

C. Jacketed Cable Connectors: For steel and aluminum jacketed cables, zinc die-cast with set screws, designed to connect conductors specified in this Section.

D. Lugs: One piece, seamless, designed to terminate conductors specified in this Section.

1. Material: Copper.
2. Type: Two hole with standard barrels.
3. Termination: Compression.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Feeders: Copper for feeders smaller than No. 4 AWG; copper or aluminum for feeders No. 4 AWG and larger. Conductors shall be solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

C. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

D. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.

E. VFC Output Circuits Cable: Extra-flexible stranded for all sizes.

G. PV Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type THHN/THWN-2, single conductors in raceway.

B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.

C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspace: Metal-clad cable, Type MC.

D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type XHHN/XHWN-2, single conductors in raceway.

E. Exposed Branch Circuits: Type THHN/THWN-2, single conductors in raceway.

F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Metal-clad cable, Type MC.

G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

H. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

I. VFC Output Circuits: Type TC-ER cable with dual tape shield.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.

C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

G. Complete cable tray systems installation according to Section 260536 "Cable Trays for Electrical Systems" prior to installing conductors and cables.
3.4 INSTALLATION OF FIRE-ALARM WIRING

A. Comply with NECA 1 and NFPA 72.

B.

1. Install plenum cable in environmental airspaces, including plenum ceilings.
2. Fire-alarm circuits and equipment control wiring associated with fire-alarm system shall be installed in a dedicated pathway system. This system shall not be used for any other wire or cable.

C.

D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with fire-alarm system to terminal blocks. Mark each terminal according to system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

E.

F. Color-Coding: Color-code fire-alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire-alarm system junction boxes and covers red.

G.

H. Wiring to Remote Alarm Transmitting Device: 1-inch conduit between the fire-alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.
3.5 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

 1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches of slack.

D. Comply with requirements in Section 283111 "Digital, Addressable Fire-Alarm System" for connecting, terminating, and identifying wires and cables.

3.6 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.7 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.8 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.9 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections with the assistance of a factory-authorized service representative.
1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.

2. Perform each of the following visual and electrical tests:
 a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
 b. Test bolted connections for high resistance using one of the following:
 1) A low-resistance ohmmeter.
 2) Calibrated torque wrench.
 3) Thermographic survey.
 c. Inspect compression-applied connectors for correct cable match and indentation.
 d. Inspect for correct identification.
 e. Inspect cable jacket and condition.
 f. Insulation-resistance test on each conductor for ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
 g. Continuity test on each conductor and cable.
 h. Uniform resistance of parallel conductors.

3. Initial Infrared Scanning: After Substantial Completion, but before Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 b. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

4. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.

E. Cables will be considered defective if they do not pass tests and inspections.

F. Prepare test and inspection reports to record the following:
 1. Procedures used.
 2. Results that comply with requirements.
 3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION 260519
SECTION 260523 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Backboards.
2. Category 5e balanced twisted pair cable.
3. Category 6 balanced twisted pair cable.
4. Category 6a balanced twisted pair cable.
5. Balanced twisted pair cabling hardware.
6. RS-485 cabling.
7. Low-voltage control cabling.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.

B. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.

C. Plenum: A space forming part of the air distribution system to which one or more air ducts are connected. An air duct is a passageway, other than a plenum, for transporting air to or from heating, ventilating, or air-conditioning equipment.

D. RCDD: Registered Communications Distribution Designer.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency, RCDD, layout technician, installation supervisor, and field inspector.
1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.

1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Flame Travel and Smoke Density in Plenums: As determined by testing identical products according to NFPA 262, by a qualified testing agency. Identify products for installation in plenums with appropriate markings of applicable testing agency.

1. Flame Travel Distance: 60 inches or less.
2. Peak Optical Smoke Density: 0.5 or less.
3. Average Optical Smoke Density: 0.15 or less.

C. Flame Travel and Smoke Density for Riser Cables in Non-Plenum Building Spaces: As determined by testing identical products according to UL 1666.

D. Flame Travel and Smoke Density for Cables in Non-Riser Applications and Non-Plenum Building Spaces: As determined by testing identical products according to UL 1685.

E. RoHS compliant.

2.2 BACKBOARDS

A. Description: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches. Comply with requirements for plywood backing panels in Section 061000 "Rough Carpentry."

B. Painting: Paint plywood on all sides and edges with flat black latex paint. Comply with requirements in Section 099123 "Interior Painting."

2.3 LOW-VOLTAGE CONTROL CABLE

A. Paired Cable: NFPA 70, Type CMG.
1. Multi-pair, twisted, No. 16 AWG, stranded (19x29) tinned-copper conductors.
2. PVC insulation, 600 volt.
3. Unshielded.
4. PVC jacket.
5. Flame Resistance: Comply with UL 1685.

B. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
 1. Multi-pair, twisted, No. 16 AWG, stranded (19x29) tinned-copper conductors.
 2. PVC insulation.
 3. Unshielded.
 4. PVC jacket.
 5. Flame Resistance: Comply with NFPA 262.

2.4 CONTROL-CIRCUIT CONDUCTORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. Encore Wire Corporation.
 2. General Cable; General Cable Corporation.
 3. Service Wire Co.

B. Class 1 Control Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.
C. Class 2 Control Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.
D. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.
E. Class 2 Control Circuits and Class 3 Remote-Control and Signal Circuits That Supply Critical Circuits: Circuit Integrity (CI) cable.
 1. Smoke control signaling and control circuits.

2.5 FIRE-ALARM WIRE AND CABLE

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Allied Wire & Cable Inc.
 2. CommScope, Inc.
 3. Contran Corporation.
 4. Draka Cableteq USA; a Prysmian Group company.
5. Genesis Cable Products; Honeywell International, Inc.
6. Radix Wire.
7. Rockbestos-Suprenant Cable Corp.
8. Superior Essex Inc.
9. West Penn Wire.

B. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.

C. Signaling Line Circuits: Twisted, shielded pair, not less than No. 18 AWG.
 1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire-alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a two-hour rating.

D. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation, and complying with requirements in UL 2196 for a two-hour rating.
 1. Low-Voltage Circuits: No. 16 AWG, minimum, in pathway.
 2. Line-Voltage Circuits: No. 12 AWG, minimum, in pathway.
 3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor[with outer jacket] with red identifier stripe, NTRL listed for fire-alarm and cable tray installation, plenum rated.

2.6 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate cables.

B. Factory test twisted pair cables according to TIA-568-C.2.

C. Cable will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Test cables on receipt at Project site.
 1. Test each pair of twisted pair cable for open and short circuits.
3.2 INSTALLATION OF RACEWAYS AND BOXES

A. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for raceway selection and installation requirements for boxes, conduits, and wireways as supplemented or modified in this Section.

1. Outlet boxes shall be no smaller than 2 inches wide, 3 inches high, and 2-1/2 inches deep.
2. Outlet boxes for cables shall be no smaller than 4 inches square by 2-1/8 inches deep with extension ring sized to bring edge of ring to within 1/8 inch of the finished wall surface.
3. Flexible metal conduit shall not be used.

B. Comply with TIA-569-D for pull-box sizing and length of conduit and number of bends between pull points.

C. Install manufactured conduit sweeps and long-radius elbows if possible.

D. Raceway Installation in Equipment Rooms:

1. Position conduit ends adjacent to a corner on backboard if a single piece of plywood is installed, or in the corner of the room if multiple sheets of plywood are installed around perimeter walls of the room.
2. Install cable trays to route cables if conduits cannot be located in these positions.
3. Secure conduits to backboard if entering the room from overhead.
5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

E. Backboards: Install backboards with 96-inch dimension vertical. Butt adjacent sheets tightly and form smooth gap-free corners and joints.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Comply with NECA 1.

B. General Requirements for Cabling:

2. Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems."
3. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
4. Cables may not be spliced and shall be continuous from terminal to terminal. Do not splice cable between termination, tap, or junction points.
5. Cables serving a common system may be grouped in a common raceway. Install network cabling and control wiring and cable in separate raceway from power wiring. Do not group conductors from different systems or different voltages.
6. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems." Install lacing bars and distribution spools.
8. Do not install bruised, kinked, scored, deformed, or abraded cable. Remove and discard cable if damaged during installation and replace it with new cable.
11. Support: Do not allow cables to lie on removable ceiling tiles.
12. Secure: Fasten securely in place with hardware specifically designed and installed so as to not damage cables.
13. Provide strain relief.
14. Keep runs short. Allow extra length for connecting to terminals. Do not bend cables in a radius less than 10 times the cable OD. Use sleeves or grommets to protect cables from vibration at points where they pass around sharp corners and through penetrations.
15. Ground wire shall be copper, and grounding methods shall comply with IEEE C2. Demonstrate ground resistance.

C. Balanced Twisted Pair Cable Installation:

2. Install termination hardware as specified in Section 271513 "Communications Copper Horizontal Cabling" unless otherwise indicated.
3. Do not untwist balanced twisted pair cables more than 1/2 inch at the point of termination to maintain cable geometry.

D. Installation of Control-Circuit Conductors:

1. Install wiring in raceways.
2. Use insulated spade lugs for wire and cable connection to screw terminals.
3. Comply with requirements specified in Section 260533 "Raceways and Boxes for Electrical Systems."

E. Open-Cable Installation:

1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches above ceilings by cable supports not more than 30 inches apart.
3. Cable shall not be run through or on structural members or in contact with pipes, ducts, or other potentially damaging items. Do not run cables between structural members and corrugated panels.

F. Separation from EMI Sources:

1. Comply with BICSI TDMM and TIA-569-D recommendations for separating unshielded copper voice and data communications cable from potential EMI sources including electrical power lines and equipment.
2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 a. Electrical Equipment or Circuit Rating Less Than 2 kVA: A minimum of 5 inches.
 b. Electrical Equipment or Circuit Rating between 2 and 5 kVA: A minimum of 12 inches.
 c. Electrical Equipment or Circuit Rating More Than 5 kVA: A minimum of 24 inches.

3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 a. Electrical Equipment or Circuit Rating Less Than 2 kVA: A minimum of 2-1/2 inches.
 b. Electrical Equipment or Circuit Rating between 2 and 5 kVA: A minimum of 6 inches.
 c. Electrical Equipment or Circuit Rating More Than 5 kVA: A minimum of 12 inches.

4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 a. Electrical Equipment or Circuit Rating Less Than 2 kVA: No requirement.
 b. Electrical Equipment or Circuit Rating between 2 and 5 kVA: A minimum of 3 inches.
 c. Electrical Equipment or Circuit Rating More Than 5 kVA: A minimum of 6 inches.

5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or 5 HP and Larger: A minimum of 48 inches.

6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.4 CONTROL-CIRCUIT CONDUCTORS

A. Minimum Conductor Sizes:
 1. Class 1 remote-control and signal circuits; No 14 AWG.
 2. Class 2 low-energy, remote-control, and signal circuits; No. 16 AWG.
 3. Class 3 low-energy, remote-control, alarm, and signal circuits; No 12 AWG.

3.5 FIRESTOPPING

A. Comply with requirements in Section 078413 "Penetration Firestopping."

B. Comply with TIA-569-D, Annex A, "Firestopping."
C. Comply with BICSI TDMM, "Firestopping" Chapter.

3.6 GROUNDING

A. For data communication wiring, comply with TIA-607-B and with BICSI TDMM, "Bonding and Grounding (Earthing)" Chapter.

B. For low-voltage control wiring and cabling, comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

3.7 IDENTIFICATION

A. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Identify data and communications system components, wiring, and cabling according to TIA-606-B; label printers shall use label stocks, laminating adhesives, and inks complying with UL 969.

C. Identify each wire on each end and at each terminal with a number-coded identification tag. Each wire shall have a unique tag.

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections with the assistance of a factory-authorized service representative.

E. Tests and Inspections:

1. Visually inspect cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA-568-C.1.

2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.

3. Test cabling for direct-current loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination, but not after cross-connection.

a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.2. Perform tests with a tester that complies with performance requirements in its "Test Instruments (Normative)" Annex, complying with measurement accuracy
specified in its "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

F. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.

G. End-to-end cabling will be considered defective if it does not pass tests and inspections.

H. Prepare test and inspection reports.

END OF SECTION 260523
SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes grounding and bonding systems and equipment.
B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.
 2. Ground bonding common with lightning protection system.
 3. Foundation steel electrodes.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Plans showing dimensioned locations of grounding features specified in "Field Quality Control" Article, including the following:
 1. Test wells.
 2. Ground rods.
 3. Ground rings.
 4. Grounding arrangements and connections for separately derived systems.
B. Qualification Data: For testing agency and testing agency's field supervisor.
C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

 a. Plans showing as-built, dimensioned locations of system described in "Field Quality Control" Article, including the following:

 1) Test wells.
 2) Ground rods.
 3) Ground rings.
 4) Grounding arrangements and connections for separately derived systems.

 b. Instructions for periodic testing and inspection of grounding features at test wells ground rings grounding connections for separately derived systems based on NFPA 70B.

 1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 2) Include recommended testing intervals.

1.6 QUALITY ASSURANCE

 A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

 B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 MANUFACTURERS

 A. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 1. [Advanced Lightning Technology, Ltd.](#)
 2. [Burndy; Part of Hubbell Electrical Systems.](#)
 3. [Dossert; AFL Telecommunications LLC.](#)
 4. [ERICO; a brand of nVent.](#)
 5. [Harger Lightning & Grounding.](#)
 6. [O-Z/Gedney; a brand of Emerson Industrial Automation.](#)
 7. [Siemens Industry, Inc., Energy Management Division.](#)
 8. [Thomas & Betts Corporation; A Member of the ABB Group.](#)
2.3 CONDUCTORS

A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

C. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression exothermic-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

D. Bus-Bar Connectors: Compression type, copper or copper alloy, with two wire terminals.

E. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.

F. Cable-to-Cable Connectors: Compression type, copper or copper alloy.

G. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.

H. Conduit Hubs: Mechanical type, terminal with threaded hub.

I. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.

J. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
K. Lay-in Lug Connector: Mechanical type, copper rated for direct burial terminal with set screw.

L. Service Post Connectors: Mechanical type, bronze alloy terminal, in short- and long-stud lengths, capable of single and double conductor connections.

M. Signal Reference Grid Clamp: Mechanical type, stamped-steel terminal with hex head screw.

N. Straps: Solid copper, cast-bronze clamp. Rated for 600 A.

O. Tower Ground Clamps: Mechanical type, copper or copper alloy, terminal [one] [two]-piece clamp.

P. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.

Q. Water Pipe Clamps:
 1. Mechanical type, two pieces with zinc-plated bolts.
 b. Listed for direct burial.
 2. U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial.

2.5 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 3/4 inch by 10 feet.

B. Chemical-Enhanced Grounding Electrodes: Copper tube, straight or L-shaped, charged with nonhazardous electrolytic chemical salts.
 1. Termination: Factory-attached No. 4/0 AWG bare conductor at least 48 inches long.
 2. Backfill Material: Electrode manufacturer's recommended material.

C. Ground Plates: 1/4 inch thick, hot-dip galvanized.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2/0 AWG minimum.
 1. Bury at least 30 inches below grade.
2. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.

C. Grounding Conductors: Green-colored insulation with continuous yellow stripe.

D. Isolated Grounding Conductors: Green-colored insulation with more than one continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

E. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

F. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Comply with IEEE C2 grounding requirements.

B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.
C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.

D. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches from the foundation.

3.5 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:

1. Feeders and branch circuits.
2. Lighting circuits.
3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.
7. Armored and metal-clad cable runs.
8. Busway Supply Circuits: Install insulated equipment grounding conductor from grounding bus in the switchgear, switchboard, or distribution panel to equipment grounding bar terminal on busway.

C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

E. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

F. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway
fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

G. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

H. Metallic Fences: Comply with requirements of IEEE C2.
 1. Grounding Conductor: Bare, tinned copper, not less than No. 8 AWG.
 2. Gates: Shall be bonded to the grounding conductor with a flexible bonding jumper.
 3. Barbed Wire: Strands shall be bonded to the grounding conductor.

3.6 FENCE GROUNDING

A. Fence Grounding: Install at maximum intervals of 150 except as follows:
 1. Fences within 100 Feet of Buildings, Structures, Walkways, and Roadways: Ground at maximum intervals of 50 feet.
 a. Gates and Other Fence Openings: Ground fence on each side of opening.
 1) Bond metal gates to gate posts.
 2) Bond across openings, with and without gates, except at openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches below finished grade.

B. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a maximum distance of 150 feet on each side of crossing.

C. Fences Enclosing Electrical Power Distribution Equipment: Ground as required by IEEE C2 unless otherwise indicated.

D. Grounding Method: At each grounding location, drive a grounding rod vertically until the top is 6 inches below finished grade. Connect rod to fence with No. 6 AWG conductor. Connect conductor to each fence component at grounding location.

E. Bonding Method for Gates: Connect bonding jumper between gate post and gate frame.

F. Bonding to Lightning-Protection System: If fence terminates at lightning-protected building or structure, ground the fence and bond the fence grounding conductor to lightning-protection down conductor or lightning-protection grounding conductor, complying with NFPA 780.
3.7 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 2. Use exothermic welds for all below-grade connections.
 3. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

D. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Section 260543 "Underground Ducts and Raceways for Electrical Systems," and shall be at least 12 inches deep, with cover.
 1. Install at least one test well for each service unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.

E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

F. Grounding and Bonding for Piping:
 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.

3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

G. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install tinned bonding jumper to bond across flexible duct connections to achieve continuity.

H. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet apart.

I. Ground Ring: Install a grounding conductor, electrically connected to each building structure ground rod and to each steel column, extending around the perimeter of building.

1. Install tinned-copper conductor not less than No. 2/0 AWG for ground ring and for taps to building steel.
2. Bury ground ring not less than 36 inches from building's foundation.

J. Concrete-Encased Grounding Electrode (Ufer Ground): Fabricate according to NFPA 70; use a minimum of 20 feet of bare copper conductor not smaller than No. 4 AWG.

1. If concrete foundation is less than 20 feet long, coil excess conductor within base of foundation.
2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building's grounding grid or to grounding electrode external to concrete.

K. Concrete-Encased Grounding Electrode (Ufer Ground): Fabricate according to NFPA 70; using electrically conductive coated steel reinforcing bars or rods, at least 20 feet long. If reinforcing is in multiple pieces, connect together by the usual steel tie wires or exothermic welding to create the required length.

L. Connections: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact are galvanically compatible.

1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
2. Make connections with clean, bare metal at points of contact.
5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.
3.8 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections with the assistance of a factory-authorized service representative.

E. Tests and Inspections:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.

2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected.

 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.

 b. Perform tests by fall-of-potential method according to IEEE 81.

4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

F. Grounding system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Report measured ground resistances that exceed the following values:

1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.

2. Power and Lighting Equipment or System with Capacity of 500 to 1000 kVA: 5 ohms.

3. Power and Lighting Equipment or System with Capacity More Than 1000 kVA: 3 ohms.

4. Power Distribution Units or Panelboards Serving Electronic Equipment: 1 ohm(s).

I. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Steel slotted support systems.
2. Aluminum slotted support systems.
3. Nonmetallic slotted support systems.
4. Conduit and cable support devices.
5. Support for conductors in vertical conduit.
6. Structural steel for fabricated supports and restraints.
7. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
8. Fabricated metal equipment, support assemblies.

B. Related Requirements:

1. Section 260548.16 "Seismic Controls for Electrical Systems" for products and installation requirements necessary for compliance with seismic criteria.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:

 a. Slotted support systems, hardware, and accessories.
 b. Clamps.
 c. Hangers.
 d. Sockets.
 e. Eye nuts.
 f. Fasteners.
 g. Anchors.
 h. Saddles.
 i. Brackets.
2. Include rated capacities and furnished specialties and accessories.

B. Shop Drawings: Signed and sealed by a qualified professional engineer. For fabrication and installation details for electrical hangers and support systems.

 2. Slotted support systems.
 3. Equipment supports.
 4. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For hangers and supports for electrical systems.

 1. Include design calculations and details of hangers.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

 1. Suspended ceiling components.
 2. Ductwork, piping, fittings, and supports.
 3. Structural members to which hangers and supports will be attached.
 4. Size and location of initial access modules for acoustical tile.
 5. Items penetrating finished ceiling, including the following:

 a. Luminaires.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Projectors.

B. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.
2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.

B. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame Rating: Class 1.
2. Self-extinguishing according to ASTM D635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch-diameter holes at a maximum of 8 inches o.c. in at least one surface.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Allied Tube & Conduit; a part of Atkore International.
 b. B-line, an Eaton business.
 c. CADDY; a brand of nVent.
 d. Flex-Strut Inc.
 e. Gripple Inc.
 f. GS Metals Corp.
 g. G-Strut.
 h. Haydon Corporation.
 i. Metal Ties Innovation.
 j. MIRO Industries.
 k. Thomas & Betts Corporation; A Member of the ABB Group.
 l. Unistrut; Part of Atkore International.
 m. Wesanco, Inc.

2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
4. Channel Width: Selected for applicable load criteria 1-5/8 inches.
5. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
6. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
7. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
8. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

D. Structural Steel for Fabricated Supports and Restraints: ASTM A36/A36M steel plates, shapes, and bars; black and galvanized.

E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1) Hilti, Inc.
 2) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.
 4) Simpson Strong-Tie Co., Inc.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1) B-line, an Eaton business.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti, Inc.
 4) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 5) MKT Fastening, LLC.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM F3125/F3125M, Grade A325.
6. Toggle Bolts: All-steel springhead type.
2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:

1. NECA 1.
2. NECA 101
3. NECA 111.

B. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.

C. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.

E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted [or other] support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps.

F. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings, and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT and RMC may be supported by openings through structure members, according to NFPA 70.
C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts. Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 055000 "Metal Fabrications” for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."
C. Anchor equipment to concrete base as follows:

1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
2. Install anchor bolts to elevations required for proper attachment to supported equipment.
3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements in Section 099113 "Exterior Painting" and Section 099600 "High-Performance Coatings" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780.

END OF SECTION 260529
SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal conduits and fittings.
2. Nonmetallic conduits and fittings.
3. Metal wireways and auxiliary gutters.
4. Nonmetal wireways and auxiliary gutters.
5. Surface raceways.
7. Handholes and boxes for exterior underground cabling.

B. Related Requirements:

1. Section 260543 "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.
2. Section 270528 "Pathways for Communications Systems" for conduits, wireways, surface pathways, innerduct, boxes, faceplate adapters, enclosures, cabinets, and handholes serving communications systems.

1.3 DEFINITIONS

A. ARC: Aluminum rigid conduit.

B. GRC: Galvanized rigid steel conduit.

C. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.
1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:

1. Structural members in paths of conduit groups with common supports.
2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.

B. Qualification Data: For professional engineer.

C. Seismic Qualification Data: Certificates, for enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
4. Detailed description of conduit support devices and interconnections on which the certification is based and their installation requirements.

D. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. Metal Conduit:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. AFC Cable Systems; a part of Atkore International.
b. Allied Tube & Conduit; a part of Atkore International.
c. Anamet Electrical, Inc.
d. Calconduit.
e. Electri-Flex Company.
f. FSR Inc.
g. Korkap.
h. NEC, Inc.
i. Opti-Com Manufacturing Network, Inc (OMNI).
j. O-Z/Gedney; a brand of Emerson Industrial Automation.
k. Patriot Aluminum Products, LLC.
l. Perma-Cote.
m. Southwire Company.
2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

3. GRC: Comply with ANSI C80.1 and UL 6.

4. ARC: Comply with ANSI C80.5 and UL 6A.

5. IMC: Comply with ANSI C80.6 and UL 1242.

 a. Comply with NEMA RN 1.
 b. Coating Thickness: 0.040 inch, minimum.

6. EMT: Comply with ANSI C80.3 and UL 797.

7. FMC: Comply with UL 1; zinc-coated steel.

8. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

B. Metal Fittings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. AFC Cable Systems; a part of Atkore International.
 b. Allied Tube & Conduit; a part of Atkore International.
 c. Anamet Electrical, Inc.
 d. Calconduit.
 e. Electri-Flex Company.
 f. FSR Inc.
 g. Korkap.
 h. NEC, Inc.
 i. NewBasis.
 k. O-Z/Gedney; a brand of Emerson Industrial Automation.
 l. Patriot Aluminum Products, LLC.
 m. Perma-Cote.
 n. Picoma Industries, Inc.
 o. Republic Conduit.
 p. Southwire Company.
 q. Thomas & Betts Corporation; A Member of the ABB Group.
 r. Topaz Electric; a division of Topaz Lighting Corp.
 s. Western Tube and Conduit Corporation.
 t. Wheatland Tube Company.

2. Comply with NEMA FB 1 and UL 514B.

3. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

4. Fittings, General: Listed and labeled for type of conduit, location, and use.
5. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.

6. Fittings for EMT:
 a. Material: Steel or die cast.
 b. Type: compression.

7. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.

8. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

C. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

A. Nonmetallic Conduit:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. **AFC Cable Systems; a part of Atkore International.**
 b. **Anamet Electrical, Inc.**
 c. **Arnco Corporation.**
 d. **CANTEX INC.**
 e. **CertainTeed Corporation.**
 f. **Champion Fiberglass, Inc.**
 g. **Condux International, Inc.**
 h. **Electri-Flex Company.**
 i. **FRE Composites.**
 j. **Kraloy.**
 k. **Lamson & Sessions.**
 l. **Niedax Inc.**
 m. **RACO; Hubbell.**
 n. **Thomas & Betts Corporation; A Member of the ABB Group.**
 o. **Topaz Electric; a division of Topaz Lighting Corp.**
 p. **United Fiberglass.**

2. Listing and Labeling: Nonmetallic conduit shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

3. Fiberglass:
 b. Comply with UL 2515 for aboveground raceways.
c. Comply with UL 2420 for belowground raceways.

4. ENT: Comply with NEMA TC 13 and UL 1653.
5. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
6. LFNC: Comply with UL 1660.
7. Rigid HDPE: Comply with UL 651A.
8. Continuous HDPE: Comply with UL 651A.
9. Coilable HDPE: Preassembled with conductors or cables, and complying with ASTM D3485.
10. RTRC: Comply with UL 2515A and NEMA TC 14.

B. Nonmetallic Fittings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. AFC Cable Systems; a part of Atkore International.
 b. Anamet Electrical, Inc.
 c. Arco Corporation.
 d. CANTEX INC.
 e. CertainTeed Corporation.
 f. Champion Fiberglass, Inc.
 g. Condux International, Inc.
 h. Electri-Flex Company.
 i. FRE Composites.
 j. Kraloy.
 k. Lamson & Sessions.
 l. Niedax Inc.
 m. RACO; Hubbell.
 n. Thomas & Betts Corporation; A Member of the ABB Group.
 o. Topaz Electric; a division of Topaz Lighting Corp.
 p. United Fiberglass.

2. Fittings, General: Listed and labeled for type of conduit, location, and use.
3. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.
 a. Fittings for LFNC: Comply with UL 514B.

4. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. B-line, an Eaton business.
B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.

1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Screw-cover type unless otherwise indicated.

E. Finish: Manufacturer's standard enamel finish.

2.4 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect.

C. Surface Nonmetallic Raceways: Two- or three-piece construction, complying with UL 5A, and manufactured of rigid PVC with texture and color selected by Architect from manufacturer's standard colors. Product shall comply with UL 94 V-0 requirements for self-extinguishing characteristics.

2.5 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Adalet.
3. EGS/Appleton Electric.
5. FSR Inc.
8. Hubbell Incorporated; Wiring Device-Kellems.
9. RACO; Hubbell.
10. Thomas & Betts Corporation; A Member of the ABB Group.
11. Topaz Electric; a division of Topaz Lighting Corp.
12. **Wiremold / Legrand.**

B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

E. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.

F. Metal Floor Boxes:
 1. Material: Cast metal.
 2. Type: Fully adjustable.
 3. Shape: Rectangular.
 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

G. Nonmetallic Floor Boxes: Nonadjustable, rectangular.

 1. Listing and Labeling: Nonmetallic floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

H. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.

I. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb.

 1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

J. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

K. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, galvanized, cast iron with gasketed cover.

L. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

M. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.

N. Gangable boxes are allowed.
O. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.

1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

P. Cabinets:

1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
2. Hinged door in front cover with flush latch and concealed hinge.
3. Key latch to match panelboards.
4. Metal barriers to separate wiring of different systems and voltage.
5. Accessory feet where required for freestanding equipment.
6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.6 HANDHOLES AND BOXES FOR EXTERIOR UNDERGROUND WIRING

A. General Requirements for Handholes and Boxes:

1. Boxes and handholes for use in underground systems shall be designed and identified as defined in NFPA 70, for intended location and application.
2. Boxes installed in wet areas shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Fiberglass Handholes and Boxes: Molded of fiberglass-reinforced polyester resin, with frame and covers of hot-dip galvanized-steel diamond plate.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Armorcast Products Company.
 b. NewBasis.
 c. Nordic Fiberglass, Inc.
 d. Oldecastle Enclosure Solutions.
 e. Oldcastle Enclosure Solutions.
 f. Oldecastle Precast, Inc.
 g. Quazite: Hubbell Power Systems, Inc.

2. Standard: Comply with SCTE 77.
3. Color of Frame and Cover: Green.
4. Configuration: Designed for flush burial with open bottom unless otherwise indicated.
5. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure and handhole location.
6. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
7. Cover Legend: Molded lettering, "ELECTRIC."
8. Conduit Entrance Provisions: Conduit-terminating fittings shall mate with entering ducts for secure, fixed installation in enclosure wall.

2.7 SOURCE QUALITY CONTROL FOR UNDERGROUND ENCLOSURES

A. Handhole and Pull-Box Prototype Test: Test prototypes of handholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.

1. Tests of materials shall be performed by an independent testing agency.
2. Strength tests of complete boxes and covers shall be by either an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
3. Testing machine pressure gages shall have current calibration certification complying with ISO 9000 and ISO 10012 and traceable to NIST standards.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:

1. Exposed Conduit: GRC.
2. Concealed Conduit, Aboveground: GRC.
4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:

1. Exposed, Not Subject to Physical Damage: EMT or RNC.
2. Exposed, Not Subject to Severe Physical Damage: RNC identified for such use.
3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
4. Concealed in Ceilings and Interior Walls and Partitions: EMT or MC.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
6. Damp or Wet Locations: GRC.
C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

G. Install surface raceways only where indicated on Drawings.

H. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

B. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

C. Do not install raceways or electrical items on any "explosion-relief" walls or rotating equipment.

D. Do not fasten conduits onto the bottom side of a metal deck roof.

E. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

F. Complete raceway installation before starting conductor installation.

G. Arrange stub-ups so curved portions of bends are not visible above finished slab.

H. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.
I. Make bends in raceway using large-radius preformed ells. Field bending shall be according to NFPA 70 minimum radii requirements. Use only equipment specifically designed for material and size involved.

J. Conceal conduit within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

K. Support conduit within 12 inches of enclosures to which attached.

L. Raceways Embedded in Slabs:
 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 3. Arrange raceways to keep a minimum of 3 inches of concrete cover in all directions.
 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 5. Change from ENT to GRC before rising above floor.

M. Stub-Ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

N. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

O. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.

P. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

Q. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

R. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

S. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

T. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
U. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

V. Surface Raceways:
 1. Install surface raceway with a minimum 2-inch radius control at bend points.
 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

W. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

X. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where an underground service raceway enters a building or structure.
 3. Conduit extending from interior to exterior of building.
 4. Conduit extending into pressurized duct and equipment.
 5. Conduit extending into pressurized zones that are automatically controlled to maintain different pressure set points.
 6. Where otherwise required by NFPA 70.

Y. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

Z. Expansion-Joint Fittings:
 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 d. Attics: 135 deg F temperature change.
3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.

4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.

5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

AA. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 36 inches of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

1. Use LFMC in damp or wet locations subject to severe physical damage.

2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

BB. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

CC. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

DD. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

EE. Locate boxes so that cover or plate will not span different building finishes.

FF. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

GG. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

HH. Set metal floor boxes level and flush with finished floor surface.

I. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 INSTALLATION OF UNDERGROUND CONDUIT

A. Direct-Buried Conduit:

1. Excavate trench bottom to provide firm and uniform support for conduit. Prepare trench bottom as specified in Section 312000 "Earth Moving" for pipe less than 6 inches in nominal diameter.

2. Install backfill as specified in Section 312000 "Earth Moving."
3. After installing conduit, backfill and compact. Start at tie-in point, and work toward end of conduit run, leaving conduit at end of run free to move with expansion and contraction as temperature changes during this process. Firmly hand tamp backfill around conduit to provide maximum supporting strength. After placing controlled backfill to within 12 inches of finished grade, make final conduit connection at end of run and complete backfilling with normal compaction as specified in Section 312000 "Earth Moving."

4. Install manufactured duct elbows for stub-ups at poles and equipment and at building entrances through floor unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.

5. Install manufactured rigid steel conduit elbows for stub-ups at poles and equipment and at building entrances through floor.
 a. Couple steel conduits to ducts with adapters designed for this purpose, and encase coupling with 3 inches of concrete for a minimum of 12 inches on each side of the coupling.
 b. For stub-ups at equipment mounted on outdoor concrete bases and where conduits penetrate building foundations, extend steel conduit horizontally a minimum of 60 inches from edge of foundation or equipment base. Install insulated grounding bushings on terminations at equipment.

6. Warning Planks: Bury warning planks approximately 12 inches above direct-buried conduits but a minimum of 6 inches below grade. Align planks along centerline of conduit.

7. Underground Warning Tape: Comply with requirements in Section 260553 "Identification for Electrical Systems."

3.4 INSTALLATION OF UNDERGROUND HANDHOLES AND BOXES

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting conduits to minimize bends and deflections required for proper entrances.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas, set so cover surface will be flush with finished grade. Set covers of other enclosures 1 inch above finished grade.

D. Install handholes with bottom below frost line, below grade.

E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables but short enough to preserve adequate working clearances in enclosure.

F. Field-cut openings for conduits according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.
3.5 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.6 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.7 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533
SECTION 260543 - UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal conduits and fittings, including GRC and PVC-coated steel conduit.
2. Rigid nonmetallic duct.
3. Flexible nonmetallic duct.
4. Duct accessories.
5. Precast concrete handholes.
6. Polymer concrete handholes and boxes with polymer concrete cover.
7. Fiberglass handholes and boxes with polymer concrete cover.
8. Fiberglass handholes and boxes.
9. High-density plastic boxes.

1.3 DEFINITIONS

A. Direct Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials such as concrete.

B. Duct: A single duct or multiple ducts. Duct may be either installed singly or as component of a duct bank.

C. Duct Bank:

1. Two or more ducts installed in parallel, with or without additional casing materials.
2. Multiple duct banks.

D. GRC: Galvanized rigid (steel) conduit.

E. Trafficways: Locations where vehicular or pedestrian traffic is a normal course of events.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include duct-bank materials, including spacers and miscellaneous components.
 2. Include duct, conduits, and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
 3. Include accessories for manholes, handholes, boxes, and other utility structures.
 4. Include underground-line warning tape.
 5. Include warning planks.

B. Shop Drawings:
 1. Precast or Factory-Fabricated Underground Utility Structures:
 a. Include plans, elevations, sections, details, attachments to other work, and accessories.
 b. Include duct entry provisions, including locations and duct sizes.
 c. Include reinforcement details.
 d. Include frame and cover design and manhole chimneys.
 e. Include ladder details.
 f. Include grounding details.
 g. Include dimensioned locations of cable rack inserts, pulling-in and lifting irons, and sumps.
 h. Include joint details.
 2. Factory-Fabricated Handholes and Boxes Other Than Precast Concrete:
 a. Include dimensioned plans, sections, and elevations, and fabrication and installation details.
 b. Include duct entry provisions, including locations and duct sizes.
 c. Include cover design.
 d. Include grounding details.
 e. Include dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: For duct and duct bank. Show duct profiles and coordination with other utilities and underground structures.
 1. Include plans and sections, drawn to scale, and show bends and locations of expansion fittings.
 2. Drawings shall be signed and sealed by a qualified professional engineer.

B. Qualification Data: For professional engineer and testing agency responsible for testing nonconcrete handholes and boxes.
C. Product Certificates: For concrete and steel used in precast concrete manholes and handholes, as required by ASTM C858.

D. Source quality-control reports.

E. Field quality-control reports.

1.6 MAINTENANCE MATERIALS SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

B. Furnish cable-support stanchions, arms, insulators, and associated fasteners in quantities equal to 5 percent of quantity of each item installed.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E329 for testing indicated.

1.8 FIELD CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions, and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Notify Construction Manager no fewer than two days in advance of proposed interruption of electrical service.
2. Do not proceed with interruption of electrical service without Construction Manager's written permission.

B. Ground Water: Assume ground-water level is at grade level unless a lower water table is noted on Drawings.

C. Ground Water: Assume ground-water level is 36 inches below ground surface unless a higher water table is noted on Drawings.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND FITTINGS

A. GRC: Comply with ANSI C80.1 and UL 6.

B. Coated Steel Conduit: PVC-coated [GRC] [IMC].

1. Comply with NEMA RN 1.
2. Coating Thickness: 0.040 inch, minimum.
C. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. AFC Cable Systems; a part of Atkore International.
2. Allied Tube & Conduit; a part of Atkore International.
3. Anamet Electrical, Inc.
4. Cal conduit.
5. Electri-Flex Company.
7. NEC, Inc.
8. O-Z/Gedney; a brand of Emerson Industrial Automation.
10. Thomas & Betts Corporation; A Member of the ABB Group.
11. Topaz Electric; a division of Topaz Lighting Corp.
12. Western Tube and Conduit Corporation.

D. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.2 RIGID NONMETALLIC DUCT

A. Underground Plastic Utilities Duct: Type EPC-80-PVC and Type EPC-40-PVC RNC, complying with NEMA TC 2 and UL 651, with matching fittings complying with NEMA TC 3 by same manufacturer as duct.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. ARNCO Corp.
2. Beck Manufacturing.
3. CANTEX INC.
7. ElecSys, Inc.
8. Electri-Flex Company.
9. Endot Industries Inc.
10. IPEX USA LLC.
11. Lamson & Sessions.
12. Manhattan/CDT.
15. Spiraduct/AFC Cable Systems, Inc.

C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
2.3 FLEXIBLE NONMETALLIC DUCTS

A. HDPE Duct: Type EPEC-40 HDPE, complying with NEMA TC 7 and UL 651A.

1. <Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. ARNCO Corp.
 b. Carlon; a brand of Thomas & Betts Corporation.
 d. Opti-Com Manufacturing Network, Inc (OMNI).
 e. Premier Conduit.

2. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.4 DUCT ACCESSORIES

A. Duct Spacers: Factory-fabricated, rigid, PVC interlocking spacers; sized for type and size of duct with which used, and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.

1. <Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Allied Tube & Conduit; a part of Atkore International.
 b. CANTEX INC.
 c. Carlon; a brand of Thomas & Betts Corporation.
 d. IPEX USA LLC.
 e. PenCell Plastics.
 f. Underground Devices, Inc.

B. Underground-Line Warning Tape: Comply with requirements for underground-line warning tape specified in Section 260553 "Identification for Electrical Systems."

C. Concrete Warning Planks: Nominal 12 by 24 by 3 inches in size, manufactured from 6000-psi concrete.

 2. Mark each plank with "ELECTRIC" in 2-inch-high, 3/8-inch-deep letters.

2.5 PRECAST CONCRETE HANDHOLES AND BOXES

A. Description: Factory-fabricated, reinforced-concrete, monolithically poured walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or box.
B. <Manufacturers>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Christy Concrete Products.
2. Elmhurst-Chicago Stone Co.
3. Oldcastle Precast, Inc.
4. Rinker Group, Ltd.
5. Riverton Concrete Products.
6. Utility Concrete Products, LLC.
8. Wausau Tile Inc.

C. Comply with ASTM C858 for design and manufacturing processes.

D. Frame and Cover: Weatherproof cast-iron frame, with cast-iron cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.

E. Frame and Cover: Weatherproof steel frame, with steel cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.

F. Frame and Cover: Weatherproof steel frame, with hinged steel access door assembly with tamper-resistant, captive, cover-securing bolts.

1. Cover Hinges: Concealed, with hold-open ratchet assembly.
2. Cover Handle: Recessed.

G. Frame and Cover: Weatherproof aluminum frame with hinged aluminum access door assembly with tamper-resistant, captive, cover-securing bolts.

1. Cover Hinges: Concealed, with hold-open ratchet assembly.
2. Cover Handle: Recessed.

H. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.

I. Cover Legend: Molded lettering, "ELECTRIC."

J. Configuration: Units shall be designed for flush burial and have open bottom unless otherwise indicated.

K. Extensions and Slabs: Designed to mate with bottom of enclosure. Same material as enclosure.

1. Extension shall provide increased depth of 12 inches.
2. Slab: Same dimensions as bottom of enclosure, and arranged to provide closure.

L. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.
M. Knockout Panels: Precast openings in walls, arranged to match dimensions and elevations of approaching duct, plus an additional 12 inches vertically and horizontally to accommodate alignment variations.

1. Splayed location.
2. Knockout panels shall be located no less than 6 inches from interior surfaces of walls, floors, or frames and covers of handholes, but close enough to corners to facilitate racking of cables on walls.
3. Knockout panel opening shall have cast-in-place, welded-wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct.
4. Knockout panels shall be framed with at least two additional No. 3 steel reinforcing bars in concrete around each opening.
5. Knockout panels shall be 1-1/2 to 2 inches thick.

N. Duct Entrances in Handhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.

1. Type and size shall match fittings to duct to be terminated.
2. Fittings shall align with elevations of approaching duct and be located near interior corners of handholes to facilitate racking of cable.

O. Handholes 12 inches wide by 24 inches long and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.6 FIBERGLASS HANDHOLES AND BOXES WITH POLYMER CONCRETE FRAME AND COVER

A. Description: Sheet-molded, fiberglass-reinforced, polyester resin enclosure joined to polymer concrete top ring or frame.

B. <Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Armorcast Products Company.
2. Christy Concrete Products.
3. NewBasis.
4. Oldcastle Enclosure Solutions.

D. Color: Green.

E. Configuration: Units shall be designed for flush burial and have open bottom unless otherwise indicated.

F. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.

H. Cover Legend: Molded lettering, "ELECTRIC."

I. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or end-bell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.

J. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.

K. Handholes 12 inches wide by 24 inches long and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.7 FIBERGLASS HANDHOLES AND BOXES

A. Description: Molded of fiberglass-reinforced polyester resin, with covers made of polymer concrete.

B. <Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Christy Concrete Products,
2. MacLean Highline,
3. Nordic Fiberglass, Inc.
4. Oldcastle Enclosure Solutions,

D. Color: Green.

E. Configuration: Units shall be designed for flush burial and have open bottom unless otherwise indicated.

F. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.

G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.

H. Cover Legend: Molded lettering, "ELECTRIC."

I. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or end-bell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.

J. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
K. Handholes 12 inches wide by 24 inches long and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.8 HIGH-DENSITY PLASTIC BOXES

A. Description: Injection molded of HDPE or copolymer-polypropylene. Cover shall be made of polymer concrete.

B. <Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Nordic Fiberglass, Inc.
2. Oldcastle Enclosure Solutions.

D. Color: Green.

E. Configuration: Units shall be designed for flush burial and have open bottom unless otherwise indicated.

F. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.

G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.

H. Cover Legend: Molded lettering, "ELECTRIC."

I. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or end-bell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.

J. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.

K. Handholes 12 inches wide by 24 inches long and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.9 PRECAST MANHOLES

A. Description: One-piece units and units with interlocking mating sections, complete with accessories, hardware, and features.

B. <Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
1. Carder Concrete Products.
2. Christy Concrete Products.
3. Elmhurst-Chicago Stone Co.
4. Oldcastle Precast, Inc.
5. Rinker Group, Ltd.
6. Riverton Concrete Products.
7. Utility Concrete Products, LLC.
8. Utility Vault Co.
9. Wausau Tile Inc.

C. Comply with ASTM C858.

D. Structural Design Loading: Comply with requirements in "Underground Enclosure Application" Article.

E. Knockout Panels: Precast openings in walls, arranged to match dimensions and elevations of approaching duct, plus an additional 12 inches vertically and horizontally to accommodate alignment variations.
 1. Splayed location.
 2. Knockout panels shall be located no less than 6 inches from interior surfaces of walls, floors, or roofs of manholes, but close enough to corners to facilitate racking of cables on walls.
 3. Knockout panel opening shall have cast-in-place, welded-wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct.
 4. Knockout panel shall be framed with at least two additional No. 3 steel reinforcing bars in concrete around each opening.
 5. Knockout panels shall be 1-1/2 to 2 inches thick.

F. Duct Entrances in Manhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
 1. Type and size shall match fittings to duct to be terminated.
 2. Fittings shall align with elevations of approaching duct and be located near interior corners of manholes to facilitate racking of cable.

G. Ground Rod Sleeve: Provide a 3-inch PVC sleeve in manhole floors 2 inches from the wall adjacent to, but not underneath, the duct entering the structure.

H. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.

2.10 SOURCE QUALITY CONTROL

A. Test and inspect precast concrete utility structures according to ASTM C1037.

B. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of manholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
1. Tests of materials shall be performed by an independent testing agency.
2. Strength tests of complete boxes and covers shall be by an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
3. Testing machine pressure gages shall have current calibration certification, complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 PREPARATION

A. Coordinate layout and installation of duct, duct bank, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.

B. Coordinate elevations of duct and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct and duct bank will drain to manholes and handholes, and as approved by Architect.

C. Clear and grub vegetation to be removed, and protect vegetation to remain according to Section 311000 "Site Clearing." Remove and stockpile topsoil for reapplication according to Section 311000 "Site Clearing."

3.2 UNDERGROUND DUCT APPLICATION

A. Duct for Electrical Cables More Than 600 V: Type EPC-80-PVC RNC, concrete-encased unless otherwise indicated.

B. Duct for Electrical Feeders 600 V and Less: Type EPC-80-PVC RNC, concrete-encased unless otherwise indicated.

D. Stub-ups: Concrete-encased GRC.

3.3 UNDERGROUND ENCLOSURE APPLICATION

A. Handholes and Boxes for 600 V and Less:

1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-20 structural load rating.
2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Fiberglass enclosures with polymer concrete frame and cover, SCTE 77, Tier 15 structural load rating.

3. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Heavy-duty fiberglass units with polymer concrete frame and cover, SCTE 77, Tier 8 structural load rating.

4. Units Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf vertical loading.

5. Cover design load shall not exceed the design load of the handhole or box.

B. Manholes: Precast concrete.

1. Units Located in Roadways and Other Deliberate Traffic Paths by Heavy or Medium Vehicles: H-20 structural load rating according to AASHTO HB 17.

2. Units Not Located in Deliberate Traffic Paths by Heavy or Medium Vehicles: H-10 load rating according to AASHTO HB 17.

3.4 EARTHWORK

A. Excavation and Backfill: Comply with Section 312000 "Earth Moving," but do not use heavy-duty, hydraulic-operated, compaction equipment.

B. Restoration: Replace area immediately after backfilling is completed.

C. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.

D. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching. Comply with Section 329200 "Turf and Grasses" and Section 329300 "Plants."

E. Cut and patch existing pavement in the path of underground duct, duct bank, and underground structures according to "Cutting and Patching" Article in Section 017300 "Execution."

3.5 DUCT AND DUCT-BANK INSTALLATION

A. Where indicated on Drawings, install duct, spacers, and accessories into the duct-bank configuration shown. Duct installation requirements in this Section also apply to duct bank.

B. Install duct according to NEMA TCB 2.

C. Slope: Pitch duct a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope duct from a high point between two manholes, to drain in both directions.

D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches, both horizontally and vertically, at other locations unless otherwise indicated.
1. Duct shall have maximum of two 90 degree bends or the total of all bends shall be no more 180 degrees between pull points.

E. Joints: Use solvent-cemented joints in duct and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent duct do not lie in same plane.

F. Installation Adjacent to High-Temperature Steam Lines: Where duct is installed parallel to underground steam lines, perform calculations showing the duct will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.

G. End Bell Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches o.c. for 5-inch duct, and vary proportionately for other duct sizes.
 1. Begin change from regular spacing to end-bell spacing 10 feet from the end bell, without reducing duct slope and without forming a trap in the line.
 2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line direct-buried duct with calculated expansion of more than 3/4 inch.
 3. Grout end bells into structure walls from both sides to provide watertight entrances.

H. Terminator Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use manufactured, cast-in-place duct terminators, with entrances into structure spaced approximately 6 inches o.c. for 4-inch duct, and vary proportionately for other duct sizes.
 1. Begin change from regular spacing to terminator spacing 10 feet from the terminator, without reducing duct line slope and without forming a trap in the line.
 2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line duct with calculated expansion of more than 3/4 inch.

I. Building Wall Penetrations: Make a transition from underground duct to GRC at least 10 feet outside the building wall, without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for RNC-to-GRC transition. Install GRC penetrations of building walls as specified in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

J. Sealing: Provide temporary closure at terminations of duct with pulled cables. Seal spare duct at terminations. Use sealing compound and plugs to withstand at least 15-psig hydrostatic pressure.

L. Concrete-Encased Ducts and Duct Bank:
1. Excavate trench bottom to provide firm and uniform support for duct. Prepare trench bottoms as specified in Section 312000 "Earth Moving" for pipes less than 6 inches in nominal diameter.

2. Width: Excavate trench 12 inches wider than duct on each side.

3. Depth: Install so top of duct envelope is at least 24 inches below finished grade in areas not subject to deliberate traffic, and at least 30 inches below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.

4. Support duct on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.

5. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet of duct. Place spacers within 24 inches of duct ends. Stagger spacers approximately 6 inches between tiers. Secure spacers to earth and to duct to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.

6. Minimum Space between Duct: 3 inches between edge of duct and exterior envelope wall, 2 inches between ducts for like services, and 4 inches between power and communications ducts.

7. Elbows: Use manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct run.

 a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches of concrete.

 b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.

 1) Stub-ups shall be minimum 4 inches above finished floor and minimum 3 inches from conduit side to edge of slab.

 c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of wall. Install insulated grounding bushings on terminations at equipment.

 1) Stub-ups shall be minimum 4 inches above finished floor and no less than 3 inches from conduit side to edge of slab.

8. Reinforcement: Reinforce concrete-encased duct where crossing disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.

9. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.

10. Concrete Cover: Install a minimum of 3 inches of concrete cover between edge of duct to exterior envelope wall, 2 inches between duct of like services, and 4 inches between power and communications ducts.

11. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.

 a. Start at one end and finish at the other, allowing for expansion and contraction of duct as its temperature changes during and after the pour. Use expansion fittings
installed according to manufacturer's written instructions, or use other specific measures to prevent expansion-contraction damage.

b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch reinforcing-rod dowels extending a minimum of 18 inches into concrete on both sides of joint near corners of envelope.

12. Pouring Concrete: Comply with requirements in "Concrete Placement" Article in Section 033000 "Cast-in-Place Concrete." Place concrete carefully during pours to prevent voids under and between duct and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Allow concrete to flow around duct and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-installation application.

M. Underground-Line Warning Tape: Bury nonconducting underground line specified in Section 260553 "Identification for Electrical Systems" no less than 12 inches above all concrete-encased duct and duct banks and approximately 12 inches below grade. Align tape parallel to and within 3 inches of centerline of duct bank. Provide an additional warning tape for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional tapes 12 inches apart, horizontally.

3.6 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND BOXES

A. Cast-in-Place Manhole Installation:

1. Finish interior surfaces with a smooth-troweled finish.
2. Knockouts for Future Duct Connections: Form and pour concrete knockout panels 1-1/2 to 2 inches thick, arranged as indicated.
3. Comply with requirements in Section 033000 "Cast-in-Place Concrete" for cast-in-place concrete, formwork, and reinforcement.

B. Precast Concrete Handhole and Manhole Installation:

1. Comply with ASTM C891 unless otherwise indicated.
2. Install units level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances.
3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevations:

1. Manhole Roof: Install with rooftop at least 15 inches below finished grade.
2. Manhole Frame: In paved areas and trafficways, set frames flush with finished grade. Set other manhole frames 1 inch above finished grade.
3. Install handholes with bottom below frost line, below grade.
4. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch above finished grade.
5. Where indicated, cast handhole cover frame integrally with handhole structure.
D. Drainage: Install drains in bottom of manholes where indicated. Coordinate with drainage provisions indicated.

E. Manhole Access: Circular opening in manhole roof; sized to match cover size.
 1. Manholes with Fixed Ladders: Offset access opening from manhole centerlines to align with ladder.
 2. Install chimney, constructed of precast concrete collars and rings, to support cast-iron frame to connect cover with manhole roof opening. Provide moisture-tight masonry joints and waterproof grouting for frame to chimney.

F. Waterproofing: Apply waterproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. Waterproofing materials and installation are specified in Section 071353 "Elastomeric Sheet Waterproofing." After duct has been connected and grouted, and before backfilling, waterproof joints and connections, and touch up abrasions and scars. Waterproof exterior of manhole chimneys after mortar has cured at least three days.

G. Dampproofing: Apply dampproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. Dampproofing materials and installation are specified in Section 071113 "Bituminous Dampproofing." After ducts are connected and grouted, and before backfilling, dampproof joints and connections, and touch up abrasions and scars. Dampproof exterior of manhole chimneys after mortar has cured at least three days.

H. Hardware: Install removable hardware, including pulling eyes, cable stanchions, and cable arms, and insulators, as required for installation and support of cables and conductors and as indicated.

I. Fixed Manhole Ladders: Arrange to provide for safe entry with maximum clearance from cables and other items in manholes.

J. Field-Installed Bolting Anchors in Manholes and Concrete Handholes: Do not drill deeper than 3-7/8 inches for manholes and 2 inches for handholes, for anchor bolts installed in the field. Use a minimum of two anchors for each cable stanchion.

3.7 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of duct, and seal joint between box and extension as recommended by manufacturer.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas and trafficways, set cover flush with finished grade. Set covers of other handholes 1 inch above finished grade.

D. Install handholes and boxes with bottom below frost line, 36” below grade.
E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in enclosure.

F. Field cut openings for duct according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

G. For enclosures installed in asphalt paving and subject to occasional, nondeliberate, heavy-vehicle loading, form and pour a concrete ring encircling, and in contact with, enclosure and with top surface screeded to top of box cover frame. Bottom of ring shall rest on compacted earth.

1. Concrete: 3000 psi, 28-day strength, complying with Section 033000 "Cast-in-Place Concrete," with a troweled finish.
2. Dimensions: 10 inches wide by 12 inches deep.

3.8 GROUNDING

A. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.9 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and utility structures.
2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch-long mandrel equal to duct size minus 1/4 inch. If obstructions are indicated, remove obstructions and retest.
3. Test manhole and handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 260526 "Grounding and Bonding for Electrical Systems."

B. Correct deficiencies and retest as specified above to demonstrate compliance.

C. Prepare test and inspection reports.

3.10 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.
B. Clean internal surfaces of manholes, including sump.

 1. Sweep floor, removing dirt and debris.
 2. Remove foreign material.

END OF SECTION 260543
SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLELING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
2. Sleeve-seal systems.
5. Silicone sealants.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:

2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. PVC-Pipe Sleeves: ASTM D1785, Schedule 40.

D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.
E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

F. Sleeves for Rectangular Openings:
 2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Advance Products & Systems, Inc.
 b. BWM Company.
 c. CALPICO, Inc.
 d. Flexicraft Industries.
 e. Metraflex Company (The).
 f. Pipeline Seal and Insulator, Inc.
 g. Proco Products, Inc.

2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.

3. Pressure Plates: Carbon steel.

4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. HOLDRITE.
2.4 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

1. Interior Penetrations of Non-Fire-Rated Walls and Floors:

 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."

 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.
4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:

1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544
SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Color and legend requirements for raceways, conductors, and warning labels and signs.
2. Labels.
4. Tapes and stencils.
5. Tags.
7. Cable ties.
9. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.

D. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Comply with NFPA 70E and Section 260573.19 "Arc-Flash Hazard Analysis" requirements for arc-flash warning labels.

F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

G. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

A. Raceways and Cables Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage.

B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service feeder and branch-circuit conductors.
 1. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
 3. Colors for 240-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 4. Colors for 480/277-V Circuits:
 b. Phase B: Orange.
 c. Phase C: Yellow.
 7. Colors for Isolated Grounds: Green with two or more yellow stripes.
C. Raceways and Cables Carrying Circuits at More Than 600 V:
 1. Black letters on an orange field.
 2. Legend: "DANGER - CONCEALED HIGH VOLTAGE WIRING."

D. Warning Label Colors:
 1. Identify system voltage with black letters on an orange background.

E. Warning labels and signs shall include, but are not limited to, the following legends:
 1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD -
 EQUIPMENT HAS MULTIPLE POWER SOURCES."
 2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN
 FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

F. Equipment Identification Labels:
 1. Black letters on a white field.

2.3 LABELS
A. Self-Adhesive Labels: Vinyl, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and
 UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
 1. **Manufacturers:** Subject to compliance with requirements, available manufacturers
 offering products that may be incorporated into the Work include, but are not limited to
 the following:
 a. A'n D Cable Products.
 b. Brady Corporation.
 c. Brother International Corporation.
 d. emedco.
 e. Grafoplast Wire Markers.
 f. HellermannTyton.
 g. Ideal Industries, Inc.
 h. LEM Products Inc.
 i. Marking Services, Inc.
 j. Panduit Corp.
 k. Seton Identification Products.
 2. Minimum Nominal Size:
 a. 1-1/2 by 6 inches for raceway and conductors.
 b. 3-1/2 by 5 inches for equipment.
 c. As required by authorities having jurisdiction.
2.4 **BANDS AND TUBES**

A. **Snap-around, Color-Coding Bands:** Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters and that stay in place by gripping action.

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. [Brady Corporation](#).

b. [HellermannTyton](#).

c. [Panduit Corp.](#).

2.5 **TAPES AND STENCILS**

A. **Underground-Line Warning Tape:**

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. [Brady Corporation](#).

b. [Ideal Industries, Inc.](#).

c. [LEM Products Inc.](#).

d. [Marking Services, Inc.](#).

e. [Reef Industries, Inc.](#).

f. [Seton Identification Products](#).

2. **Tape:**

 a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.

b. Printing on tape shall be permanent and shall not be damaged by burial operations.

c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.

3. **Color and Printing:**

b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".

c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".

B. **Stenciled Legend:** In nonfading, waterproof, black ink or paint. Minimum letter height shall be 2 inch.
2.6 TAGS
A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Brady Corporation.
 b. Carlton Industries, LP.
 c. emedco.
 d. Marking Services, Inc.
 e. Seton Identification Products.

2.7 SIGNS
A. Baked-Enamel Signs:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Carlton Industries, LP.
 b. Champion America.
 c. emedco.
 d. Marking Services, Inc.

2. Preprinted aluminum signs, high-intensity reflective, punched or drilled for fasteners, with colors, legend, and size required for application.
3. 1/4-inch grommets in corners for mounting.

2.8 CABLE TIES
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. HellermannTyton.
2. Ideal Industries, Inc.
3. Marking Services, Inc.
4. Panduit Corp.

B. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.

2. Tensile Strength at 73 Deg F according to ASTM D638: 12,000 psi.
3. Temperature Range: Minus 40 to plus 185 deg F.

C. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 2. Tensile Strength at 73 Deg F according to ASTM D638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

D. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.
 2. Tensile Strength at 73 Deg F according to ASTM D638: 7000 psi.
 3. UL 94 Flame Rating: 94V-0.
 4. Temperature Range: Minus 50 to plus 284 deg F.
 5. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.

C. Verify identity of each item before installing identification products.
D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.

E. Apply identification devices to surfaces that require finish after completing finish work.

F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.

G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 1. Secure tight to surface of conductor, cable, or raceway.

H. System Identification for Raceways and Cables over 600 V: Identification shall completely encircle cable or conduit. Place adjacent identification of two-color markings in contact, side by side.
 1. Secure tight to surface of conductor, cable, or raceway.

J. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer.

K. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.

L. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:
 1. "EMERGENCY POWER."
 2. "POWER."
 3. "UPS."

M. Vinyl Wraparound Labels:
 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

N. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.

O. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.
P. Self-Adhesive Labels:
 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.

Q. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.

R. Heat-Shrink, Preprinted Tubes: Secure tight to surface at a location with high visibility and accessibility.

S. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.

T. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.
 1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.

U. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.

V. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.

W. Underground Line Warning Tape:
 1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.
 2. Limit use of underground-line warning tape to direct-buried cables.
 3. Install underground-line warning tape for direct-buried cables and cables in raceways.

X. Metal Tags:
 1. Place in a location with high visibility and accessibility.

Y. Nonmetallic Preprinted Tags:
 1. Place in a location with high visibility and accessibility.

Z. Baked-Enamel Signs:
1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on minimum 1-1/2-inch-high sign; where two lines of text are required, use signs minimum 2 inches high.

AA. Cable Ties: General purpose, for attaching tags, except as listed below:
 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.

3.3 IDENTIFICATION SCHEDULE

A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.

 1. Locate identification at changes in direction, at penetrations of walls and floors, and at 30-foot maximum intervals.

D. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Self-adhesive labels.
 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

E. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive raceway labels.
 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

F. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive labels containing the wiring system legend and system voltage. System legends shall be as follows:
 1. "EMERGENCY POWER."
 2. "POWER."
G. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive labels with the conductor or cable designation, origin, and destination.

H. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive labels with the conductor designation.

I. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.

J. Concealed Raceways and Duct Banks, More Than 600 V, within Buildings: Apply floor marking tape to the following finished surfaces:
 1. Floor surface directly above conduits running beneath and within 12 inches of a floor that is in contact with earth or is framed above unexcavated space.
 2. Wall surfaces directly external to raceways concealed within wall.
 3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.

K. Workspace Indication: Apply floor marking tape or tape and stencil to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

L. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.

M. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Baked-enamel warning signs.
 1. Apply to exterior of door, cover, or other access.
 2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 a. Power-transfer switches.
 b. Controls with external control power connections.

O. Operating Instruction Signs: Laminated acrylic or melamine plastic signs.

P. Equipment Identification Labels:
 1. Indoor Equipment: Baked-enamel signs.
 2. Outdoor Equipment: Laminated acrylic or melamine sign.
 3. Equipment to Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a engraved, laminated acrylic or melamine label.
b. Enclosures and electrical cabinets.
c. Access doors and panels for concealed electrical items.
d. Switchgear.
e. Switchboards.
f. Transformers: Label that includes tag designation indicated on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
g. Substations.
h. Emergency system boxes and enclosures.
i. Motor-control centers.
j. Enclosed switches.
k. Enclosed circuit breakers.
l. Enclosed controllers.
m. Variable-speed controllers.
n. Push-button stations.
o. Power-transfer equipment.
p. Contactors.
q. Remote-controlled switches, dimmer modules, and control devices.
r. Battery-inverter units.
s. Battery racks.
t. Power-generating units.
u. Monitoring and control equipment.

END OF SECTION 260553
SECTION 260573.13 - SHORT-CIRCUIT STUDIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes a computer-based, fault-current study to determine the minimum interrupting capacity of circuit protective devices.

1.3 DEFINITIONS

A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed and salvaged, or removed and reinstalled. Existing to remain items shall remain functional throughout the construction period.

B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.

C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.

D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.

E. Power Systems Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.

F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion of the circuit from the system.

G. SCCR: Short-circuit current rating.

H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS

A. Product Data:

1. For computer software program to be used for studies.
2. Submit the following after the approval of system protective devices submittals. Submittals shall be in both digital and hard copy form.

a. Short-circuit study input data, including completed computer program input data sheets.
 b. Short-circuit study and equipment evaluation report; signed, dated, and sealed by a qualified professional engineer.

 1) Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.
 2) Revised one-line diagram, reflecting field investigation results and results of short-circuit study.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data:

1. For Power Systems Analysis Software Developer.
2. For Power System Analysis Specialist.
3. For Field Adjusting Agency.

B. Product Certificates: For short-circuit study software, certifying compliance with IEEE 399.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data:

1. For overcurrent protective devices to include in emergency, operation, and maintenance manuals.
2. The following are from the Short-Circuit Study Report:

 a. Final one-line diagram.
 b. Final Short-Circuit Study Report.
 c. Short-circuit study data files.
 d. Power system data.
1.7 QUALITY ASSURANCE

A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.

B. Software algorithms shall comply with requirements of standards and guides specified in this Section.

C. Manual calculations are unacceptable.

1. Power System Analysis Software Qualifications: Computer program shall be designed to perform short-circuit studies or have a function, component, or add-on module designed to perform short-circuit studies.

2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

D. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

E. Short-Circuit Study Certification: Short-Circuit Study Report shall be signed and sealed by Power Systems Analysis Specialist.

F. Field Adjusting Agency Qualifications:

1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.

2. A member company of NETA.

3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. SKM Systems Analysis, Inc.

B. Comply with IEEE 399 and IEEE 551.

1. Analytical features of power systems analysis software program shall have capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

C. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output.
2.2 SHORT-CIRCUIT STUDY REPORT CONTENTS

A. Executive summary of study findings.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.

C. One-line diagram of modeled power system, showing the following:
 1. Protective device designations and ampere ratings.
 2. Conductor types, sizes, and lengths.
 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 4. Motor and generator designations and kVA ratings.
 5. Switchgear, switchboard, motor-control center, and panelboard designations and ratings.
 6. Derating factors and environmental conditions.
 7. Any revisions to electrical equipment required by the study.

D. Comments and recommendations for system improvements or revisions in a written document, separate from one-line diagram.

E. Protective Device Evaluation:
 1. Evaluate equipment and protective devices and compare to available short-circuit currents. Verify that equipment withstand ratings exceed available short-circuit current at equipment installation locations.
 2. Tabulations of circuit breaker, fuse, and other protective device ratings versus calculated short-circuit duties.
 3. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
 4. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in standards to 1/2-cycle symmetrical fault current.
 5. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

F. Short-Circuit Study Input Data:
 1. One-line diagram of system being studied.
 2. Power sources available.
 3. Manufacturer, model, and interrupting rating of protective devices.
 4. Conductors.
 5. Transformer data.

G. Short-Circuit Study Output Reports:
 1. Low-Voltage Fault Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
b. Calculated fault-current magnitude and angle.
c. Fault-point X/R ratio.
d. Equivalent impedance.

2. Momentary Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. Calculated asymmetrical fault currents:
 1) Based on fault-point X/R ratio.
 2) Based on calculated symmetrical value multiplied by 1.6.
 3) Based on calculated symmetrical value multiplied by 2.7.

3. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. No AC Decrement (NACD) ratio.
 e. Equivalent impedance.
 f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

PART 3 - EXECUTION

3.1 POWER SYSTEM DATA

A. Obtain all data necessary for conduct of the study.
 1. Verify completeness of data supplied on one-line diagram. Call any discrepancies to Architect's attention.
 2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.

B. Gather and tabulate the required input data to support the short-circuit study. Comply with requirements in Section 017839 "Project Record Documents" for recording circuit protective device characteristics. Record data on a Record Document copy of one-line diagram. Comply with recommendations in IEEE 551 as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:
1. Product Data for Project's overcurrent protective devices involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
2. Obtain electrical power utility impedance at the service.
3. Power sources and ties.
4. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
5. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
6. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip, SCCR, current rating, and breaker settings.
7. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
8. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
9. Motor horsepower and NEMA MG 1 code letter designation.
10. Conductor sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).
11. Derating factors.

3.2 SHORT-CIRCUIT STUDY

A. Perform study following the general study procedures contained in IEEE 399.
B. Calculate short-circuit currents according to IEEE 551.
C. Base study on device characteristics supplied by device manufacturer.
D. Extent of electrical power system to be studied is indicated on Drawings.
E. Begin short-circuit current analysis at the service, extending down to system overcurrent protective devices as follows:
 1. To normal system low-voltage load buses where fault current is 10 kA or less.
 2. Exclude equipment rated 240 V ac or less when supplied by a single transformer rated less than 125 kVA.
F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.
G. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for the fault-current dc decrement to address asymmetrical requirements of interrupting equipment.
H. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.
1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

I. Include in the report identification of any protective device applied outside its capacity.

END OF SECTION 260573.13
SECTION 260573.16 - COORDINATION STUDIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes computer-based, overcurrent protective device coordination studies to determine overcurrent protective devices and to determine overcurrent protective device settings for selective tripping.

1. Study results shall be used to determine coordination of series-rated devices.

1.3 DEFINITIONS

A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled. Existing to remain items shall remain functional throughout the construction period.

B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.

C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.

D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.

E. Power System Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.

F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion of the circuit from the system.

G. SCCR: Short-circuit current rating.

H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.4 ACTION SUBMITTALS

A. Product Data:

1. For computer software program to be used for studies.
2. Submit the following after the approval of system protective devices submittals. Submittals shall be in both digital and hard copy form.
 a. Coordination-study input data, including completed computer program input data sheets.
 b. Study and equipment evaluation reports.
3. Overcurrent protective device coordination study report; signed, dated, and sealed by a qualified professional engineer.
 a. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data:

1. For Power System Analysis Software Developer.
2. For Power Systems Analysis Specialist.
3. For Field Adjusting Agency.

B. Product Certificates: For overcurrent protective device coordination study software, certifying compliance with IEEE 399.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For overcurrent protective devices to include in emergency, operation, and maintenance manuals.

1. The following are from the Coordination Study Report:

 a. Final one-line diagram.
 b. Final protective device coordination study.
 c. Coordination study data files.
 d. List of all protective device settings.
 e. Time-current coordination curves.
 f. Power system data.
1.7 QUALITY ASSURANCE

A. Studies shall be performed using commercially developed and distributed software designed specifically for power system analysis.

B. Software algorithms shall comply with requirements of standards and guides specified in this Section.

C. Manual calculations are unacceptable.

D. Power System Analysis Software Qualifications:
 1. Computer program shall be designed to perform coordination studies or have a function, component, or add-on module designed to perform coordination studies.
 2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

E. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

F. Field Adjusting Agency Qualifications:
 1. Employer of a NETA ETT-Certified Technician Level III responsible for all field adjusting of the Work.
 2. A member company of NETA.
 3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 1. SKM Systems Analysis, Inc.

B. Comply with IEEE 242 and IEEE 399.

C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

D. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.
1. Optional Features:
 a. Arcing faults.
 b. Simultaneous faults.
 c. Explicit negative sequence.
 d. Mutual coupling in zero sequence.

2.2 COORDINATION STUDY REPORT CONTENTS

A. Executive summary of study findings.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.

C. One-line diagram of modeled power system, showing the following:
 1. Protective device designations and ampere ratings.
 2. Conductor types, sizes, and lengths.
 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 4. Motor and generator designations and kVA ratings.
 5. Switchgear, switchboard, motor-control center, and panelboard designations.
 6. Any revisions to electrical equipment required by the study.
 7. Study Input Data: As described in "Power System Data" Article.

D. Protective Device Coordination Study:
 1. Report recommended settings of protective devices, ready to be applied in the field. Use manufacturer's data sheets for recording the recommended setting of overcurrent protective devices when available.
 a. Phase and Ground Relays:
 1) Device tag.
 2) Relay current transformer ratio and tap, time dial, and instantaneous pickup value.
 3) Recommendations on improved relaying systems, if applicable.
 b. Circuit Breakers:
 1) Adjustable pickups and time delays (long time, short time, and ground).
 2) Adjustable time-current characteristic.
 3) Adjustable instantaneous pickup.
 4) Recommendations on improved trip systems, if applicable.
 c. Fuses: Show current rating, voltage, and class.
E. Time-Current Coordination Curves: Determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:

1. Device tag and title, one-line diagram with legend identifying the portion of the system covered.
2. Terminate device characteristic curves at a point reflecting maximum symmetrical or asymmetrical fault current to which the device is exposed.
3. Identify the device associated with each curve by manufacturer type, function, and, if applicable, tap, time delay, and instantaneous settings recommended.
4. Plot the following listed characteristic curves, as applicable:
 a. Power utility's overcurrent protective device.
 b. Medium-voltage equipment overcurrent relays.
 c. Medium- and low-voltage fuses including manufacturer's minimum melt, total clearing, tolerance, and damage bands.
 d. Low-voltage equipment circuit-breaker trip devices, including manufacturer's tolerance bands.
 e. Transformer full-load current, magnetizing inrush current, and ANSI through-fault protection curves.
 f. Cables and conductors damage curves.
 g. Ground-fault protective devices.
 h. Motor-starting characteristics and motor damage points.
 i. Generator short-circuit decrement curve and generator damage point.
 j. The largest feeder circuit breaker in each motor-control center and panelboard.

5. Maintain selectivity for tripping currents caused by overloads.
6. Maintain maximum achievable selectivity for tripping currents caused by overloads on series-rated devices.
7. Provide adequate time margins between device characteristics such that selective operation is achieved.
8. Comments and recommendations for system improvements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance of the Work. Devices to be coordinated are indicated on Drawings.

1. Proceed with coordination study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study.
3.2 POWER SYSTEM DATA

A. Obtain all data necessary for conduct of the overcurrent protective device study.

1. Verify completeness of data supplied in one-line diagram on Drawings. Call any discrepancies to Architect's attention.
2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.

B. Gather and tabulate all required input data to support the coordination study. List below is a guide. Comply with recommendations in IEEE 551 for the amount of detail required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:

1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
2. Electrical power utility impedance at the service.
3. Power sources and ties.
4. Short-circuit current at each system bus (three phase and line to ground).
5. Full-load current of all loads.
6. Voltage level at each bus.
7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
8. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
11. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.
12. Maximum demands from service meters.
13. Busway manufacturer and model designation, current rating, impedance, lengths, size, and conductor material.
14. Motor horsepower and NEMA MG 1 code letter designation.
15. Low-voltage cable sizes, lengths, number, conductor material, and conduit material (magnetic or nonmagnetic).
16. Medium-voltage cable sizes, lengths, conductor material, cable construction, metallic shield performance parameters, and conduit material (magnetic or nonmagnetic).
17. Data sheets to supplement electrical distribution system one-line diagram, cross-referenced with tag numbers on diagram, showing the following:

 a. Special load considerations, including starting inrush currents and frequent starting and stopping.
b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.

c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.

d. Generator thermal-damage curve.

e. Ratings, types, and settings of utility company's overcurrent protective devices.

f. Special overcurrent protective device settings or types stipulated by utility company.

g. Time-current-characteristic curves of devices indicated to be coordinated.

h. Manufacturer, frame size, interrupting rating in amperes root mean square (rms) symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.

i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.

j. Switchgear, switchboards, motor-control centers, and panelboards ampacity, and SCCR in amperes rms symmetrical.

k. Identify series-rated interrupting devices for a condition where the available fault current is greater than the interrupting rating of downstream equipment. Obtain device data details to allow verification that series application of these devices complies with NFPA 70 and UL 489 requirements.

3.3 COORDINATION STUDY

A. Comply with IEEE 242 for calculating short-circuit currents and determining coordination time intervals.

B. Comply with IEEE 399 for general study procedures.

C. Base study on device characteristics supplied by device manufacturer.

D. Extent of electrical power system to be studied is indicated on Drawings.

E. Begin analysis at the service, extending down to system overcurrent protective devices as follows:

1. To normal system low-voltage load buses where fault current is 10 kA or less.

2. Exclude equipment rated 240 V ac or less when supplied by a single transformer rated

F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.

G. Transformer Primary Overcurrent Protective Devices:

1. Device shall not operate in response to the following:

 a. Inrush current when first energized.
b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.

2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

H. Motor Protection:

1. Select protection for low-voltage motors according to IEEE 242 and NFPA 70.
2. Select protection for motors served at voltages more than 600 V according to IEEE 620.

I. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and protection recommendations in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.

J. Generator Protection: Select protection according to manufacturer's written instructions and to IEEE 242.

K. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for fault-current dc decrement, to address asymmetrical requirements of interrupting equipment.

L. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.

1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

M. Protective Device Evaluation:

1. Evaluate equipment and protective devices and compare to short-circuit ratings.
2. Adequacy of switchgear, motor-control centers, and panelboard bus bars to withstand short-circuit stresses.
3. Any application of series-rated devices shall be recertified, complying with requirements in NFPA 70.
4. Include in the report identification of any protective device applied outside its capacity.

3.4 LOAD-FLOW AND VOLTAGE-DROP STUDY

A. Perform a load-flow and voltage-drop study to determine the steady-state loading profile of the system. Analyze power system performance two times as follows:
1. Determine load flow and voltage drop based on full-load currents obtained in "Power System Data" Article.
2. Determine load flow and voltage drop based on 80 percent of the design capacity of load buses.
3. Prepare load-flow and voltage-drop analysis and report to show power system components that are overloaded, or might become overloaded; show bus voltages that are less than as prescribed by NFPA 70.

3.5 MOTOR-STARTING STUDY
A. Perform a motor-starting study to analyze the transient effect of system's voltage profile during motor starting. Calculate significant motor-starting voltage profiles and analyze the effects of motor starting on the power system stability.
B. Prepare the motor-starting study report, noting light flicker for limits proposed by IEEE 141, and voltage sags so as not to affect operation of other utilization equipment on system supplying the motor.

3.6 FIELD ADJUSTING
A. Adjust relay and protective device settings according to recommended settings provided by the coordination study. Field adjustments shall be completed by the engineering service division of equipment manufacturer under the "Startup and Acceptance Testing" contract portion.
B. Make minor modifications to equipment as required to accomplish compliance with short-circuit and protective device coordination studies.
C. Testing and adjusting shall be by a full-time employee of the Field Adjusting Agency, who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification.

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters. Perform NETA tests and inspections for all adjustable overcurrent protective devices.

3.7 DEMONSTRATION
A. Engage Power Systems Analysis Specialist to train Owner's maintenance personnel in the following:

1. Acquaint personnel in fundamentals of operating the power system in normal and emergency modes.
2. Hand-out and explain the coordination study objectives, study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpreting time-current coordination curves.
3. For Owner's maintenance staff certified as NETA ETT-Certified Technicians Level III or NICET Electrical Power Testing Level III Technicians, teach how to adjust, operate, and maintain overcurrent protective device settings.

END OF SECTION 260573.16
SECTION 260573.19 - ARC-FLASH HAZARD ANALYSIS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes a computer-based, arc-flash study to determine the arc-flash hazard distance and the incident energy to which personnel could be exposed during work on or near electrical equipment.

1.3 DEFINITIONS
 A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.
 B. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.
 C. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
 D. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.
 E. Power Systems Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.
 F. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.
 G. SCCR: Short-circuit current rating.
 H. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.
1.4 ACTION SUBMITTALS

A. Product Data: For computer software program to be used for studies.

B. Study Submittals: Submit the following submittals after the approval of system protective devices submittals. Submittals shall be in both digital and hard copy form:

1. Arc-flash study input data, including completed computer program input data sheets.
2. Arc-flash study report; signed, dated, and sealed by Power Systems Analysis Specialist.
3. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

C. Sample Arc Flash labels shall be submitted for review and approval prior to printing and applying labels to equipment.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data:

1. For Power Systems Analysis Software Developer.
2. For Power System Analysis Specialist.
3. For Field Adjusting Agency.

B. Product Certificates: For arc-flash hazard analysis software, certifying compliance with IEEE 1584 and NFPA 70E.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data:

1. Provide maintenance procedures in equipment manuals according to requirements in NFPA 70E.
2. Operation and Maintenance Procedures: In addition to items specified in Section 017823 "Operation and Maintenance Data," provide maintenance procedures for use by Owner's personnel that comply with requirements in NFPA 70E.

1.7 QUALITY ASSURANCE

A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.

B. Software algorithms shall comply with requirements of standards and guides specified in this Section.

C. Manual calculations are unacceptable.
D. Power System Analysis Software Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.

1. Computer program shall be designed to perform arc-flash analysis or have a function, component, or add-on module designed to perform arc-flash analysis.
2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

E. Power Systems Analysis Specialist Qualifications: Professional engineer in charge of performing the arc-flash study, analyzing the arc flash, and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

F. Arc-Flash Study Certification: Arc-Flash Study Report shall be signed and sealed by Power Systems Analysis Specialist.

G. Field Adjusting Agency Qualifications:

1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.
2. A member company of NETA.
3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

1. SKM Systems Analysis, Inc.

B. Comply with IEEE 1584 and NFPA 70E.

C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

2.2 ARC-FLASH STUDY REPORT CONTENT

A. Executive summary of study findings.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.

C. One-line diagram, showing the following:
1. Protective device designations and ampere ratings.
2. Conductor types, sizes, and lengths.
3. Transformer kilovolt ampere (kVA) and voltage ratings, including derating factors and environmental conditions.
4. Motor and generator designations and kVA ratings.
5. Switchgear, switchboard, motor-control center, panelboard designations, and ratings.

D. Study Input Data: As described in "Power System Data" Article.

E. Short-Circuit Study Output Data: As specified in "Short-Circuit Study Output Reports" Paragraph in "Short-Circuit Study Report Contents" Article in Section 260573.13 "Short-Circuit Studies."

F. Protective Device Coordination Study Report Contents: As specified in "Coordination Study Report Contents" Article in Section 260573.16 "Coordination Studies."

G. Arc-Flash Study Output Reports:

1. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each equipment location included in the report:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. No AC Decrement (NACD) ratio.
 e. Equivalent impedance.
 f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

H. Incident Energy and Flash Protection Boundary Calculations:

1. Arcing fault magnitude.
2. Protective device clearing time.
3. Duration of arc.
5. Restricted approach boundary.
7. Working distance.
8. Incident energy.

I. Fault study input data, case descriptions, and fault-current calculations including a definition of terms and guide for interpretation of computer printout.
2.3 ARC-FLASH WARNING LABELS

A. Comply with requirements in Section 260553 "Identification for Electrical Systems" for self-adhesive equipment labels. Produce a 3.5-by-5-inch self-adhesive equipment label for each work location included in the analysis.

B. Label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:

1. Location designation.
2. Nominal voltage.
3. Protection boundaries.
 a. Arc-flash boundary.
 b. Restricted approach boundary.
 c. Limited approach boundary.
4. Arc flash PPE category.
5. Required minimum arc rating of PPE in Cal/cm squared.
6. Available incident energy.
7. Working distance.
8. Engineering report number, revision number, and issue date.

C. Labels shall be machine printed, with no field-applied markings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals. Proceed with arc-flash study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to arc-flash study may not be used in study.

3.2 ARC-FLASH HAZARD ANALYSIS

A. Comply with NFPA 70E and its Annex D for hazard analysis study.

B. Preparatory Studies: Perform the Short-Circuit and Protective Device Coordination studies prior to starting the Arc-Flash Hazard Analysis.

2. Coordination Study Report Contents: As specified in "Coordination Study Report Contents" Article in Section 260573.16 "Coordination Studies."

C. Calculate maximum and minimum contributions of fault-current size.
1. Maximum calculation shall assume a maximum contribution from the utility and shall assume motors to be operating under full-load conditions.
2. Calculate arc-flash energy at 85 percent of maximum short-circuit current according to IEEE 1584 recommendations.
3. Calculate arc-flash energy at 38 percent of maximum short-circuit current according to NFPA 70E recommendations.
4. Calculate arc-flash energy with the utility contribution at a minimum and assume no motor contribution.

D. Calculate the arc-flash protection boundary and incident energy at locations in electrical distribution system where personnel could perform work on energized parts.

E. Include medium- and low-voltage equipment locations, except equipment rated 240 V ac or less fed from transformers less than 125 kVA.

F. Calculate the limited, restricted, and prohibited approach boundaries for each location.

G. Incident energy calculations shall consider the accumulation of energy over time when performing arc-flash calculations on buses with multiple sources. Iterative calculations shall take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors and generators shall be decremented as follows:

1. Fault contribution from induction motors shall not be considered beyond three to five cycles.
2. Fault contribution from synchronous motors and generators shall be decayed to match the actual decrement of each as closely as possible (for example, contributions from permanent magnet generators will typically decay from 10 per unit to three per unit after 10 cycles).

H. Arc-flash energy shall generally be reported for the maximum of line or load side of a circuit breaker. However, arc-flash computation shall be performed and reported for both line and load side of a circuit breaker as follows:

1. When the circuit breaker is in a separate enclosure.
2. When the line terminals of the circuit breaker are separate from the work location.

I. Base arc-flash calculations on actual overcurrent protective device clearing time. Cap maximum clearing time at two seconds based on IEEE 1584, Section B.1.2.

3.3 POWER SYSTEM DATA

A. Obtain all data necessary for conduct of the arc-flash hazard analysis.

1. Verify completeness of data supplied on one-line diagram on Drawings and under "Preparatory Studies" Paragraph in "Arc-Flash Hazard Analysis" Article. Call discrepancies to Architect's attention.
2. For new equipment, use characteristics from approved submittals under provisions of action submittals and information submittals for this Project.
B. Electrical Survey Data: Gather and tabulate the following input data to support study. Comply with recommendations in IEEE 1584 and NFPA 70E as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:

1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
2. Obtain electrical power utility impedance or available short circuit current at the service.
3. Power sources and ties.
4. Short-circuit current at each system bus (three phase and line to ground).
5. Full-load current of all loads.
6. Voltage level at each bus.
7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
8. For reactors, provide manufacturer and model designation, voltage rating and impedance.
9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
11. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.
12. Busway manufacturer and model designation, current rating, impedance, lengths, size, and conductor material.
13. Motor horsepower and NEMA MG 1 code letter designation.
14. Low-voltage conductor sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).
15. Medium-voltage conductor sizes, lengths, conductor material, conductor construction and metallic shield performance parameters, and conduit material (magnetic or nonmagnetic).

3.4 LABELING

A. Apply one arc-flash label on the front cover of each section of the equipment and on side or rear covers with accessible live parts and hinged doors or removable plates for each equipment included in the study. Base arc-flash label data on highest values calculated at each location.

B. Each piece of equipment listed below shall have an arc-flash label applied to it:

1. Motor-control center.
2. Low-voltage switchboard.
3. Switchgear.
4. Medium-voltage switch.
5. Medium voltage transformers
6. Low voltage transformers.
7. Panelboard and safety switch over 250 V.
8. Applicable panelboard and safety switch under 250 V.
9. Control panel.

C. Note on record Drawings the location of equipment where the personnel could be exposed to arc-flash hazard during their work.

1. Indicate arc-flash energy.
2. Indicate protection level required.

3.5 APPLICATION OF WARNING LABELS

A. Install arc-flash warning labels under the direct supervision and control of Power System Analysis Specialist.

3.6 DEMONSTRATION

A. Engage Power Systems Analysis Specialist to train Owner's maintenance personnel in potential arc-flash hazards associated with working on energized equipment and the significance of arc-flash warning labels.

END OF SECTION 260573.19
SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:

1. Time switches.
2. Photoelectric switches.
3. Indoor occupancy and vacancy sensors.
4. Switchbox-mounted occupancy sensors.
5. Digital timer light switches.
6. High-bay occupancy sensors.
7. Extreme temperature occupancy sensors.
8. Outdoor motion sensors.
9. Lighting contactors.

B. Related Requirements:

1. Section 262726 "Wiring Devices" for wall-box dimmers, non-networkable wall-switch occupancy sensors, and manual light switches.

1.3 DEFINITIONS

1. Area: A grouping of zones which can be programmed to respond together to a single command

2. Cloud: An application making use of a remote server to access and process encrypted data, rather than a local server.

3. Retain terms that remain after this Section has been edited for a project.

4. Device: A collective term for all networked lighting control system products, including gateways, occupancy/vacancy sensors, daylight harvesters, wall dimmers, touchscreens, and controllers.

5. Mesh: Stand-alone wireless mesh network consisting of devices that communicate with one another.
6. Monitoring: The real-time measurement of status and power consumption reported from a device or devices to the Lighting Control System User Interface.

7. Sensor: A device which collects input from the environment and communicates it to the Lighting Control System. Sensors may include occupancy/vacancy, daylight harvesting, or 3rd party devices.

8. Scene: Preset saved illumination levels.

9. Trigger mode: While in trigger mode, a device will monitor a non-system device or 3rd party sensor which is not part of the mesh network, and relay data from the sensor to the Lighting Control System.

10. User Interface: The platform by which individuals access the system to monitor and control the lighting.

11. Zone: One Group of fixtures that will all behave in the same manner. Zones are homerun through a single controller or sensor relay.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings:

1. Floor Plans: Location, orientation, and coverage area of each sensor; zone designations; and other specific design symbols and designations as required to define the installation, location, and configuration of all control devices.

2. Devices: Provide actual quantities and types of individual devices which will be necessary for a properly functioning system. Quantities shown on drawings are approximate. Manufacturer shall dictate actual quantities based on their product offering.

3. Cut Sheets: Provide all specification sheets, wiring diagrams, and specific installation instructions for all products and components required for a properly functioning system.

4. Controls Narrative: Provide details as needed to communicate how the devices should control the lighting. May include schedules of operation for zones and the desired response behaviors of devices based on input from the sensors. May include user interface direction such as specific scenes for each space, programmed digital buttons for touchscreens, or user account information.

5. Show installation details for the following:

 a. Occupancy sensors.
 b. Vacancy sensors.

6. Interconnection diagrams showing field-installed wiring.

7. Include diagrams for power, signal, and control wiring.
1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and elevations, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Suspended ceiling components.
2. Structural members to which equipment will be attached.
3. Items penetrating finished ceiling, including the following:
 a. Luminares.
 b. Air outlets and inlets.
 c. Sprinklers.
 d. Access panels.
 e. Control modules.

B. Field quality-control reports.

C. Sample Warranty: For manufacturer's warranties.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in operation and maintenance manuals.

B. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
 3. Device address list.
 4. Printout of software application and graphic screens.

1.7 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Faulty operation of lighting control software.
 b. Faulty operation of lighting control devices.

2. Warranty Period: Two year(s) from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 OUTDOOR PHOTOELECTRIC SWITCHES, SOLID STATE, LUMINAIRE-MOUNTED

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Cooper Industries, Inc.
2. Intermatic, Inc.
3. Leviton Manufacturing Co., Inc.
4. NSi Industries LLC.
5. TE Connectivity Ltd.

B. Description: Solid state, with SPST dry contacts rated for, to operate connected load, complying with UL 773, and compatible with CFL and LED lamps.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range.
3. Time Delay: Thirty-second minimum, to prevent false operation.
5. Mounting: Twist lock complying with ANSI C136.10, with base from same source and manufacturer as switch.
6. Failure Mode: Luminaire stays ON.

2.2 INDOOR OCCUPANCY AND VACANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Bryant Electric.
2. Cooper Industries, Inc.
3. Hubbell Building Automation, Inc.
4. Intermatic, Inc.
5. Leviton Manufacturing Co., Inc.
6. Lithonia Lighting; Acuity Brands Lighting, Inc.
7. Lutron Electronics Co., Inc.
8. NSi Industries LLC.
10. RAB Lighting.
11. Sensor Switch, Inc.
12. Square D.
13. WattStopper; a Legrand® Group brand.

B. General Requirements for Sensors:

2. Dual technology.
3. Integrated power pack.
4. Hardwired connection to switch.
5. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
6. Operation:
 a. Occupancy Sensor: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 b. Vacancy Sensor: Unless otherwise indicated, lights are manually turned on and sensor turns lights off when the room is unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 c. Combination Sensor: Unless otherwise indicated, sensor shall be programmed to turn lights on when coverage area is occupied and turn them off when unoccupied, or to turn off lights that have been manually turned on; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
7. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A.
9. Power Pack: Dry contacts rated for 20-A LED load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
10. Mounting:
 a. Sensor: Suitable for mounting in any position on a standard outlet box.
 b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
11. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
12. Bypass Switch: Override the "on" function in case of sensor failure.
13. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; turn lights off when selected lighting level is present.

C. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
1. Sensitivity Adjustment: Separate for each sensing technology.
2. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.
4. Detection Coverage (Room, Wall Mounted): Detect occupancy anywhere within a 180-degree pattern centered on the sensor over an area of 3000 square feet when mounted 48 inches above finished floor.

2.3 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Bryant Electric.
2. Cooper Industries, Inc.
3. Hubbell Building Automation, Inc.
4. Intermatic, Inc.
5. Leviton Manufacturing Co., Inc.
6. Lithonia Lighting; Acuity Brands Lighting, Inc.
7. Lutron Electronics Co., Inc.
8. NSi Industries LLC.
10. RAB Lighting.
11. Sensor Switch, Inc.
12. Square D.
13. WattStopper; a Legrand® Group brand.

B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor with manual on-off switch, suitable for mounting in a single gang switchbox, with provisions for connection to BAS using hardwired connection.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Occupancy Sensor Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn lights off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
3. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
4. Switch Rating: Not less than 800-VA LED load at 120 V, 1200-VA LED load at 277 V, and 800-W incandescent.

C. Wall-Switch Sensor:

1. Standard Range: 210-degree field of view, with a minimum coverage area of 900 sq. ft..
2. Sensing Technology: PIR.
3. Switch Type: SP, field-selectable automatic "on," or manual "on," automatic "off."
5. Voltage: Dual voltage, 120 and 277 V.
6. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc. The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
7. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
8. Concealed, "off" time-delay selector at 30 seconds and 5, 10, and 20 minutes.
9. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.

11. Faceplate: Color matched to switch.

2.4 HIGH-BAY OCCUPANCY SENSORS

A. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. [Hubbell Building Automation, Inc.](#)

B. Description: Solid-state unit. The unit is designed to operate with the lamp and ballasts indicated.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Operation: Turn lights on when coverage area is occupied, and to half-power when unoccupied; with a time delay for turning lights to half-power that is adjustable over a minimum range of 1 to 16 minutes.
3. Continuous Lamp Monitoring: When lamps are dimmed continuously for 24 hours, automatically turn lamps on to full power for 15 minutes for every 24 hours of continuous dimming.
5. Operating Ambient Conditions: 32 to 149 deg F.
7. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
8. Detector Technology: PIR.

C. Detector Coverage: User selectable by interchangeable PIR lenses, suitable for mounting heights from 12 to 50 feet.

D. Accessories: Obtain manufacturer's installation and maintenance kit with laser alignment tool for sensor positioning and power port connectors.

2.5 LIGHTING CONTACTORS

A. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. [Allen-Bradley/Rockwell Automation](#)
2. ASCO: a brand of Vertiv.
3. Eaton.
4. [General Electric Company](#).
5. [Square D](#).

B. Description: Electrically operated and mechanically held, combination-type lighting contactors with fusible switch, complying with NEMA ICS 2 and UL 508.
1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less THD of normal load current).

2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.

3. Enclosure: Comply with NEMA 250.

4. Provide with control and pilot devices as indicated on Drawings, matching the NEMA type specified for the enclosure.

2.6 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.

B. Examine walls and ceilings for suitable conditions where lighting control devices will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SENSOR INSTALLATION

A. Comply with NECA 1.

B. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.

C. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.
3.3 WIRING INSTALLATION

A. Comply with NECA 1.

B. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch.

C. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.

D. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.

E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.4 IDENTIFICATION

A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."

1. Identify controlled circuits in lighting contactors.
2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.

B. Label time switches and contactors with a unique designation.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate lighting control devices and perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Lighting control devices will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.
3.6 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
2. For daylighting controls, adjust set points and deadband controls to suit Owner's operations.
3. Align high-bay occupancy sensors using manufacturer's laser aiming tool.

3.7 FIELD QUALITY CONTROL

A. Acceptance Testing Preparation:

1. Test continuity of each circuit.

B. Perform the following tests and inspections:

1. Test each load controller using local and remote controls.
2. Perform each visual and mechanical inspection and electrical test stated in NETA ATS, and manufacturers’ recommendations. Certify compliance with test parameters.
3. Inspect each device for secure mounting and hardware defects.
4. Verify that all equipment is clean.
5. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

C. Field Test Reports:

1. Event log verifying the performance of all devices generating event messages to include occupancy sensors, control buttons, alarm messages, and any other change of value messages.

D. Lighting controls will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a Device Table, and Programming Schedule. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.8 STARTUP SERVICE

A. Startup service shall be initiated by the Contractor and performed by the System Manufacturer, and shall include the following:

1. Contractor shall send digital copies of device tables or as-built drawings with device ID tags to the Manufacturer upon completion of device installations.
2. Contractor shall call the Manufacturer to initiate the commissioning of the system.
3. Complete installation and startup checks according to manufacturer's written instructions, and in accordance with the Owner / Facility Manager's desired system functionality, completed remotely.

4. Activate luminaires and verify that all lamps are operating at 100 percent.

5. Confirm correct communications wiring, initiate communications between devices and load controllers, and program the lighting control system according to approved configuration schedules, time-of-day schedules, and input override assignments.

6. Manufacturer shall remotely confirm system connectivity.

7. Manufacturer shall remotely confirm proper switching / dimming of each zone being controlled.

8. Contractor shall be capable of walking through the facility while communicating with the manufacturer to visually confirm functionality of zone on/off/dim.

9. Contractor shall be capable of walking through the facility while communicating with the manufacturer to visually confirm functionality of sensors for sensitivity and / or timeout as required.

B. Startup Service shall be performed by the Manufacturer after receipt of the following information:

1. Contractor to provide manufacturer with the names and locations of zones to be controlled by the system.

2. Contractor to contact manufacturer to verify system connectivity.

3. Owner / Facility Manager shall contact the manufacturer to communicate desired system functionality / behavior / reporting needs.

3.9 BASIC SYSTEM FUNCTIONALITY

A. Basic system functionality based on industry best practices is outlined below. All functionality is subject to change based upon Owners requirements and / or stricter code requirements.

1. Manufacturer remotely configures sensors so that controlled zones remain lighted to a programmed level for task performance for the following time periods unless otherwise noted:
 a. Bathrooms, storage rooms, and other areas not always occupied: 10 minutes after occupant leaves area.
 b. In offices, classrooms, reception areas, kitchens, and libraries: 30 minutes after occupant leaves area.
 c. In hallways, corridors, and stairwells: 15 minutes after occupant leaves area.

2. Manufacturer remotely configures sensors so that lights are off or at a programmed level for energy conservation after the timeout period.
 a. Programming of daylight harvesting devices varies based on the location of the device, height of the windows and architecture of the room. Contractor or end user to visually confirm task light levels during commissioning.

3. Manufacturer remotely configures wall dimmers as follows, unless otherwise noted:
 a. Device shall act like a dimmer, on/off control, or scene control.
 1) If the device is being used as a dimmer, the max/min trim levels shall be set to desired levels to meet illumination levels for the space / task local to that control.
4. Manufacturer remotely configures Daylight Harvesters to measure illumination levels and provide input to allow controllers to dim artificial lighting in the space.
5. Manufacturer remotely configures Scene Controllers per the clients’ requests.

3.10 ADJUSTING

A. When requested within 10 Years from date of Substantial Completion, manufacturer shall provide assistance in adjusting system to suit actual occupied conditions with the option to renew and extend.

3.11 WEB-BASED USER INTERFACE SERVICE

A. Technical Support: Beginning at the date of Substantial Completion, service agreement shall include firmware support for ten years, with the option to renew and extend.

B. Upgrades of Service: At Substantial Completion, all firmware will be upgraded to the latest version. All future firmware upgrades shall be provided as they become available with no downtime for a period of ten years, with the option to renew and extend.

3.12 DEMONSTRATION

A. At the owner’s request, manufacturer shall train owner’s maintenance personnel to adjust, operate, and maintain the lighting control system and devices.

B. At the owner’s request, manufacturer shall support any and all system adjustments to be completed remotely throughout the 10 year warranty period.

END OF SECTION 260923
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes secondary unit substations, each consisting of medium-voltage primary incoming section, transformer section, and low-voltage secondary switchboard section, with the following features:

1. Indoor enclosure.
2. Medium-voltage, metal-enclosed switchgear section.
3. Dry-type transformer.

B. Related Requirements:

1. Section 260513 "Medium-Voltage Cables" for requirements for terminating cables in incoming section of substation.

1.3 DEFINITIONS

A. BIL: Basic insulation level.

B. ICCB: Insulated-case circuit breaker.

C. MCCB: Molded-case circuit breaker.

D. NETA ATS: Acceptance testing specification.

E. PCB: Polychlorinated biphenyl.

F. SPD: Surge protective device.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include rated capacities, operating characteristics, and furnished specialties and accessories.
B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

2. Dimensioned plans and elevations showing major components and features.
 a. Include a plan view and cross section of equipment base, showing clearances, manufacturer's recommended workspace that accounts for breaker service and removal, and locations of penetrations for grounding and conduits.
3. One-line diagram.
4. List of materials.
5. Nameplate legends.
6. The material, size and number of bus bars, and current rating for each bus, including mains and branches of phase, neutral, and ground buses.
7. Short-time and short-circuit current ratings of secondary unit substations and components.
8. Ratings of individual protective devices.

C. Design Data:

2. Primary Fuses: Submit recommendations and size calculations.
3. Utility company's metering provisions with indication of approval by utility company.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings.

1. Outdoor Installations:
 a. Utilities site plan, drawn to scale, showing heavy equipment or truck access paths for maintenance and replacement.
 b. Dimensioned concrete base, outline of secondary unit substation, conduit entries, and grounding equipment locations.
 c. Support locations, type of support, and weight on each support. Locate structural supports for structure-supported raceways, busways.

2. Indoor Installations:
 a. Location plan, showing heavy equipment or truck access paths for maintenance and replacement.
 b. Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved.
 c. Dimensioned concrete base, outline of secondary unit substation, conduit entries, and grounding equipment locations.
d. Support locations, type of support, and weight on each support. Locate structural supports for structure-supported raceways, busways.

e. Location of lighting fixtures, sprinkler piping and heads, ducts, and diffusers.

B. Qualification Data: For testing agency.

C. Seismic Qualification Data: Certificates, for transformer assembly, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity, and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Product Certificates: For secondary unit substations, signed by product manufacturer.

E. Factory test reports.

F. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For secondary unit substations and accessories to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Spare Fuses: Six of each type and rating of fuse and fusible device used, except for medium-voltage fuses. Include spares for the following:

a. Primary disconnect fuses.
b. Potential transformer fuses.
c. Control power fuses.
d. Fuses and fusible devices for fused circuit breakers.
e. Fuses for secondary fusible devices.

2. Spare Indicating Lights: Six of each type installed.
3. Touchup Paint: Three half-pint containers of paint matching enclosure's exterior finish.
4. Primary Switch Contact Lubricant: One container(s).
5. One set(s) of spare mounting gaskets for bushings, handholes, and the gasket between relief cover and flange of pressure-relief device.
1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Certified by NETA or the National Institute for Certification in Engineering Technologies to supervise on-site testing.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Deliver in shipping splits in sizes that can be moved past obstructions in delivery path.

B. Coordinate delivery of secondary unit substations to allow movement into designated space.

C. Store secondary unit substation components protected from weather and so condensation will not form on or in units. Provide temporary heating according to manufacturer's written instructions.

D. Handle secondary unit substation components according to manufacturer's written instructions. Use factory-installed lifting provisions.

1.10 FIELD CONDITIONS

A. Service Conditions: The unit substation shall be suitable for operation under service conditions specified as usual service conditions in IEEE C37.121, except for the following:

1. Exposure to significant solar radiation.
2. Altitudes above 3300 feet.
3. Exposure to fumes, vapors, or dust.
4. Exposure to explosive environments.
5. Exposure to hot and humid climate or to excessive moisture, including steam, salt spray, and dripping water.
6. Exposure to seismic shock or to abnormal vibration, shock, or tilting.
7. Exposure to excessively high or low temperatures.
8. Unusual transportation or storage conditions.
9. Unusual grounding resistance conditions.
10. Unusual space limitations.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

2. Eaton.
2.2 SYSTEM DESCRIPTION

A. Description: Medium-voltage, primary incoming section; transformer section; and low-voltage secondary switchgear section; and including coordinated circuit breakers, fusible switches, and metering components.

1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
3. Comply with IEEE C37.121.
4. Comply with NFPA 70.

2.3 PERFORMANCE REQUIREMENTS

A. Seismic Performance: The secondary unit substations shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. Component Importance Factor: 1.5.
2. Component Amplification Factor: 2.5.

2.4 MANUFACTURED UNITS

A. Indoor Unit Arrangement: Single assembly.

B. Connections between the primary device and transformer shall be bus, and between the transformer and secondary shall be flexible bus braid unless noted otherwise.

C. Indoor Enclosure: Steel.

D. Unit Substation Enclosures Finish: Factory-applied finish in manufacturer's standard gray over a rust-inhibiting primer on treated metal surface.

2.5 MEDIUM-VOLTAGE TERMINAL COMPARTMENT SECTION

A. Primary Incoming Section: Terminal assembly with adequate space for incoming-cable terminations and surge arresters, complying with NEMA SG4 and meeting thermal, mechanical, and dielectric requirements specified for the transformer section.

B. Ratings: Suitable for application in three-phase, 60-Hz, solidly grounded-neutral system.

5. Square D; by Schneider Electric.
C. System Voltage: 13.8 kV nominal; 15 kV maximum.

D. Surge Arresters: Comply with IEEE C62.11, Distribution Class; metal-oxide-varistor type, connected in each phase of incoming circuit and ahead of any disconnecting device.

2.6 MEDIUM-VOLTAGE METAL-ENCLOSED SWITCHGEAR SECTION

A. Metal-enclosed, air-interrupter switchgear, with fuses, complying with IEEE C37.20.3.
 1. Switchgear shall be arc-resistant, complying with IEEE C37.20.7, Type 1A.

B. Ratings: Comply with IEEE C37.04; and suitable for application in three-phase, 60-Hz, solidly grounded-neutral system.
 1. System Voltage: 13.8 kV nominal; 15 kV maximum.

C. Interrupter Switches: Stationary, gang operated, and suitable for application at maximum short-circuit rating of integrated switchgear assembly.
 1. Rating: 600-A continuous duty and load break.
 2. Two-Time Duty-Cycle Fault Closing: 40,000 asymmetrical amperes.
 3. Switch Action: No external arc and no significant quantities of ionized gas released into the enclosure.
 4. Switch Construction: Supported entirely by interior framework of structure, with copper switchblades and stored-energy operating mechanism.
 5. Phase Barriers: Full length of switchblades and fuses for each pole; designed for easy removal; allow visual inspection of switch components if barrier is in place.
 6. Protective Shields: Cover live components and terminals.
 a. Fuse Mounts: Single-frame mounted and de-energized when switch is open.
 7. Mechanical Interlock: Prevent opening switch compartment door unless switchblades are open, and prevent closing switch if door is open. Interlock air-interrupter switch with transformer secondary main circuit breaker, preventing switch from being opened or closed unless secondary main circuit breaker is open.
 8. Window: Permits viewing switch-blade positions when door is closed.
 9. Accessory Set: Tools and miscellaneous items required for interrupter switchgear test, inspection, maintenance, and operation. Include fuse-handling tool as recommended by switchgear manufacturer.

D. Fuses: Sizes recommended by secondary unit substation manufacturer, considering fan cooling, temperature-rise specification, and cycle loading.
 1. Current-Limiting Fuses: Full-range, fast-replaceable, current-limiting type that will operate without explosive noise or expulsion of gas, vapor, or foreign matter from tube.
 2. Indicator integral with each fuse to show when it has blown.
3. Spares: Include three fuses in use and three spare fuses in storage clips in each switch.

E. Surge Arresters: Comply with IEEE C62.11, Distribution Class; metal-oxide-varistor type, with ratings as indicated, connected in each phase of incoming circuit and ahead of any disconnecting device.

2.7 MEDIUM-VOLTAGE INSTRUMENTS SECTION

1. Potential and Current Transformers: Burden and Accuracy Class suitable for connected meters.

B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems.

1. Inputs from sensors or 5-A current-transformer secondaries, and potential terminals rated to 600 V.
2. Switch-selectable digital display with the following features:
 a. Phase Currents, Each Phase: Plus or minus 1 percent.
 b. Phase-to-Phase Voltages, Three Phase: Plus or minus 1 percent.
 c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 1 percent.
 d. Three-Phase Real Power: Plus or minus 2 percent.
 e. Three-Phase Reactive Power: Plus or minus 2 percent.
 f. Power Factor: Plus or minus 2 percent.
 g. Frequency: Plus or minus 0.5 percent.
 h. Integrated Demand, with Demand Interval Selectable from 5 to 60 Minutes: Plus or minus 2 percent.
 i. Accumulated energy, in megawatt hours, plus or minus 2 percent; stored values unaffected by power outages for up to 72 hours.

3. Communications module suitable for remote monitoring of meter quantities and functions. Interface communication and metering requirements according to Section 260913 "Electrical Power Monitoring and Control."
4. Mounting: Display and control unit that is flush or semiflush mounted in instrument compartment door.

2.8 DRY-TYPE TRANSFORMER SECTION

A. Description: IEEE C57.12.01, IEEE C57.12.51, and dry-type, two-winding, secondary unit substation transformer.

B. Primary Incoming Section: Transformer cover-mounted bushings. The bushings shall meet thermal, mechanical, and dielectric requirements as specified for the transformer section.
C. **Style:** Indoor, ventilated, vacuum-pressure, impregnated type, and with insulation system rated at 220 deg C with an 80 deg C average winding temperature rise above a maximum ambient temperature of 40 deg C.

D. **Cooling System:** Class AA/FA, air cooled with provisions for future forced-air rating, complying with IEEE C57.12.01.
 1. Automatic forced-air cooling system controls, including thermal sensors, fans, control wiring, temperature controller with test switch, power panel with current-limiting fuses, indicating lights, alarm, and alarm-silencing relay.
 2. Include mounting provision for fans.

E. **Insulation Materials:** IEEE C57.12.01, rated 220 deg C.
 1. Insulation Temperature Rise: 115 deg C, maximum rise above 40 deg C.

F. **BIL:** 95 kV.

G. **Full-Capacity Voltage Taps:** Four nominal 2.5 percent taps, two above and two below rated primary voltage.

H. **Full-Capacity Voltage Taps:** Four nominal 2.5 percent taps below rated primary voltage.

I. **Impedance:** 5.75 percent.

J. **High-Temperature Alarm:** Sensor at transformer with local audible and visual alarm and contacts for remote alarm.

2.9 **SECONDARY DISTRIBUTION SECTION SWITCHBOARD**

A. **Switchboard Structure:** Front accessible.
 1. Match and align the front and rear of the switchgear.
 2. Comply with UL requirements for service entrance equipment.

B. **Switchboard Bus:**
 1. Use bus bars to connect compartments and vertical sections. Cable connections are not permitted.
 2. **Main Phase Bus:** Uniform capacity the entire length of section.
 3. **Neutral Bus:** 100 percent of phase-bus ampacity, except as indicated. Equip bus with pressure-connector terminations for outgoing circuit neutral conductors. Include braces for neutral-bus extensions for busway feeders.
 4. **Vertical Section Bus:** Extend to spaces for future circuit breakers.
 5. **Phase- and Neutral-Bus Material:** Hard-drawn copper of 98 percent minimum conductivity, with copper feeder circuit-breaker line connections.
6. Ground Bus: Hard-drawn copper of 98 percent minimum conductivity, with pressure connector for feeder and branch-circuit ground conductors, minimum size 1/4-by-2 inches.

7. Neutral bus equipped with pressure-connector terminations for outgoing circuit neutral conductors. Neutral-bus extensions for busway feeders are braced.

8. Neutral Disconnect Link: Bolted, uninsulated, 1/4-by-2-inch copper bus, arranged to connect neutral bus to ground bus.

C. Switchboard Arrangement:

1. Main Disconnect Device(s): ICCBs.
2. Feeder Protective Devices: MCCBs.

D. ICCBs: Fixed-mounted, manually operated air-circuit breakers. Comply with UL 1066.

1. With "close" and "open" push buttons and red and green lighted breaker position indicators. Charging time of the motor operator shall not exceed 8 seconds. Operator power shall be from a control power transformer internal to the switchboard.
2. Solid-state monitoring and tripping system to provide system status monitoring, adjustable time-current protection, and shunt trip.
 a. Interchangeable current sensors and timing circuits for adjustable time-current protection settings and status signals.
 b. LED indicators or display, with manual reset, to show cause of automatic trip.
 c. Display panel to indicate that the status of the system circuitry is fully operational, or give fault location based on automatic diagnosis.
 d. Trip the circuit breaker when closing on a fault.
 e. Time-current adjustments to achieve protective-device coordination as follows:
 1) Adjustable long-delay pickup and time.
 2) Individual adjustments for short-delay pickup, time, and I-squared-t setting.
 3) Adjustable instantaneous pickup.
 4) Individually adjustable ground-fault pickup and time, with I-squared-t setting.
 f. With built-in connector to test the breaker settings. Provide one test set.
 g. Battery backup for informational displays after automatic trip, with battery status indicator.

E. MCCBs (to 2500 A): Fixed-mounted, manually operated air-circuit breakers. Comply with UL 489.

1. With quick-make, quick-break, over-center switching mechanism that is mechanically trip-free, and its position is shown by the position of the handle. With manual push-to-trip push button.
2. Solid-state monitoring and tripping system to provide system status monitoring, adjustable time-current protection, and shunt trip.
 a. Interchangeable current sensors and timing circuits for adjustable time-current protection settings and status signals.
b. With trip-setting dials or interchangeable plugs to establish the continuous trip of the circuit breaker. Plugs shall not be interchangeable between frames, and the breaker may not be closed without the plug. With neutral ground-fault sensor.

c. Time-current adjustments to achieve protective-device coordination as follows:

 1) Adjustable long-time delay.
 2) Adjustable short-time setting and delay to shape the time-current curve.
 3) Adjustable instantaneous setting.
 4) Individually adjustable ground-fault setting and time delay.

d. With built-in connector to test the long-time delay, instantaneous, and ground-fault functions of the breaker.

e. With built-in digital ammeter display, showing load current and tripping cause.

2.10 LOW-VOLTAGE INSTRUMENTS SECTION

 1. Potential Transformers: Secondary voltage rating of 120 V and NEMA C 12.11 Accuracy Class of 0.3 with burdens of W, X, and Y.
 2. Current Transformers: Burden and Accuracy Class suitable for connected relays, meters, and instruments.

B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems.

 1. Inputs from sensors or 5-A current-transformer secondaries, and potential terminals rated to 600 V.
 2. Switch-selectable digital display with the following features:

 a. Phase Currents, Each Phase: Plus or minus 1 percent.
 b. Phase-to-Phase Voltages, Three Phase: Plus or minus 1 percent.
 c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 1 percent.
 d. Three-Phase Real Power: Plus or minus 2 percent.
 e. Three-Phase Reactive Power: Plus or minus 2 percent.
 f. Power Factor: Plus or minus 2 percent.
 g. Frequency: Plus or minus 0.5 percent.
 h. Integrated Demand, with Demand Interval Selectable from 5 to 60 Minutes: Plus or minus 2 percent.
 i. Accumulated energy, in megawatt hours, plus or minus 2 percent; stored values unaffected by power outages for up to 72 hours.

 3. Communications module suitable for remote monitoring of meter quantities and functions. Interface communication and metering requirements according to Section 260913 “Electrical Power Monitoring and Control.”
 4. Mounting: Display and control unit that is flush or semiflush mounted in instrument compartment door.

C. Relays: Comply with IEEE C37.90, types and settings as indicated; with test blocks and plugs.
D. Surge Suppression: Factory installed as an integral part of the low-voltage switchgear, complying with UL 1449 SPD, Type 1, with the following features and accessories:

1. Integral disconnect switch.
2. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
3. Indicator light display for protection status.
4. Form-C contacts rated at 5 A and 250-V ac, one N.O. and one N.C., for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
5. Surge counter.

E. Control Power Supply: Control power transformer supplying 120-V control circuits through secondary disconnect devices.

F. Control Wiring: Factory installed, complete with bundling, lacing, and protection; and complying with the following:

1. Flexible conductors for No. 8 AWG and smaller, for conductors across hinges and for conductors for interconnections between shipping units.
2. Conductors sized according to NFPA 70 for duty required.

G. Maintenance Tools: Furnish tools and miscellaneous items required for circuit-breaker and switchgear test, inspection, maintenance, and operation.

1. Racking handle to manually move circuit breaker between "connected" and "disconnected" positions.
2. Portable test set for testing all functions of circuit-breaker, solid-state trip devices without removal from switchboard.
3. Relay and meter test plugs suitable for testing switchgear meters and switchgear class relays.

2.11 IDENTIFICATION DEVICES

A. Compartment Nameplates: Engraved, laminated-plastic or metal nameplate for each compartment, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 260553 "Identification for Electrical Systems."

2.12 SOURCE QUALITY CONTROL

A. Factory Tests: Perform design and routine tests according to standards specified for components. Conduct transformer tests according to IEEE C57.12.90. Conduct switchgear and switchboard tests according to NEMA C37.51.

B. Factory Tests: Perform the following factory-certified tests on each secondary unit substation:
1. Resistance measurements of all windings on the rated voltage connection and on tap extreme connections.
2. Ratios on the rated voltage connection and on tap extreme connections.
3. Polarity and phase relation on the rated voltage connection.
4. No-load loss at rated voltage on the rated voltage connection.
5. Exciting current at rated voltage on the rated voltage connection.
6. Impedance and load loss at rated current on the rated voltage connection and on tap extreme connections.
8. Induced potential.
9. Temperature Test: If a transformer is supplied with auxiliary cooling equipment to provide more than one rating, test at lowest kVA Class ONAN or Class AA rating and highest kVA Class ONAF or Class AFA rating.
 a. Temperature test is not required if a record of a temperature test on an essentially duplicate unit is available.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and space conditions for compliance with requirements for secondary unit substations and other conditions affecting performance of the Work.

B. Examine roughing-in of conduits and grounding systems to verify the following:
 1. Wiring entries comply with layout requirements.
 2. Entries are within conduit-entry tolerances specified by manufacturer, and no feeders will have to cross section barriers to reach load or line lugs.

C. Examine walls, floors, roofs, and concrete bases for suitable conditions for secondary unit substation installation.

D. Verify that ground connections are in place and that requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at secondary unit substation location.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with applicable portions of NECA 1, NECA 400, NECA 410, NECA 430, and NEMA SG 11.

B. Install secondary unit substations on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
C. Comply with requirements for vibration isolation and seismic control devices specified in Section 260529 "Hangers and Supports for Electrical Systems" and Section 260548.16 "Seismic Controls for Electrical Systems."

D. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and NFPA 70.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

1. Install the number of signs required to be readable from each accessible side, but space the signs a maximum of 30 feet apart.

2. Install arc-flash warning labels specified in Section 260573.19 "Arc-Flash Hazard Analysis."

B. Operating Instructions: Place printed operating instructions for secondary unit substations, including key interlocking, control sequences, elementary single-line diagram, and emergency procedures with the maintenance materials.

3.4 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

1. At Interior Locations: For grounding to grounding electrodes, use bare copper cable not smaller than No. 4/0 AWG. Bond surge arrester and neutrals directly to the transformer enclosure and then to the grounding electrode system with bare copper conductors. Keep leads as short as practicable with no kinks or sharp bends. Make joints in grounding conductors and loops by exothermic weld or compression connector.

2. At Exterior Locations:

 a. For counterpoise, use tinned bare copper cable not smaller than No. 4/0 AWG, buried not less than 30 inches below grade interconnecting the grounding electrodes. Bond surge arrester and neutrals shall directly to the transformer enclosure and then to the grounding electrode system with bare copper conductors, sized as shown. Keep lead lengths as short as practicable with no kinks or sharp bends.

 b. Fence and equipment connections shall not be smaller than No. 4 AWG. Ground fence at each gate post and corner post and at intervals not exceeding 10 feet. Bond each gate section to the fence post using 1/8 by 1 inch [tinned] flexible braided copper strap and clamps.

 c. Make joints in grounding conductors and loops by exothermic weld or compression connector.

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
3.5 CLEANING

A. After completing equipment installation and before energizing, inspect unit components. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish. Vacuum interiors of secondary unit substation sections.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections[with the assistance of a factory-authorized service representative].

E. General Field Testing Requirements:

1. Comply with the provisions of NFPA 70B Ch. "Testing and Test Methods."
2. Perform each visual and mechanical inspection and electrical test. Certify compliance with test parameters.
3. After installing secondary unit substation but before primary is energized, verify that grounding system at the substation is tested at the specified value or less.
4. After installing secondary unit substation and after electrical circuitry has been energized, test for compliance with requirements.
5. Visual and Mechanical Inspection:
 a. Verify equipment nameplate data complies with Contract Documents.
 b. Inspect bolted electrical connections for high resistance using one of the following two methods:
 1) Use a low-resistance ohmmeter to compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data or NETA ATS, Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS, Table 100.12.

6. Remove and replace malfunctioning units and retest.
7. Prepare test and inspection reports. Record as-left set points of all adjustable devices.

F. Switchgear Field Tests:

1. Visual and Mechanical Inspection:
a. Inspect physical and mechanical condition.
b. Inspect anchorage, alignment, grounding, and required area clearances.
c. Verify the unit is clean and shipping bracing, loose parts, and documentation shipped inside cubicles have been removed.
d. Verify that fuse and circuit-breaker sizes and types correspond to Drawings and coordination study as well as the address of the circuit breaker that is used to identify it in microprocessor-communication software.
e. Verify that current and voltage-transformer ratios correspond to Drawings.
f. Confirm correct operation and sequencing of electrical and mechanical interlock systems.

2) Make key exchange with devices operated in off-normal positions.

g. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.
h. Inspect insulators for evidence of physical damage or contaminated surfaces.
i. Verify correct barrier and shutter installation and operation.
j. Exercise all active components.
k. Inspect mechanical indicating devices for correct operation.
l. Verify that filters are in place and vents are clear.
m. Inspect control power transformers as follows:

1) Inspect for physical damage, cracked insulation, broken leads, connection tightness, defective wiring, and overall general condition.
2) Verify that primary- and secondary-use or circuit-breaker ratings match Drawings and comply with manufacturer's recommendations.
3) Verify correct functioning of drawout disconnecting and grounding contacts and interlocks.

2. Electrical Tests:

a. Perform dc voltage insulation-resistance tests on each bus section, phase-to-phase and phase-to-ground, for one minute. If the temperature of the bus is other than plus or minus 20 deg. C, adjust the resulting resistance as provided in NETA ATS Table 100.11.

1) Insulation-resistance values of bus insulation shall be according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.1. Investigate and correct values of insulation resistance less than manufacturer's recommendations or NETA ATS, Table 100.1.
2) Do not proceed to the dielectric-withstand-voltage tests until insulation-resistance levels are raised above minimum values.

b. Perform a dielectric-withstand-voltage test on each bus section, each phase-to-ground with phases not under test grounded, according to manufacturer's published data. If manufacturer has no recommendation for this test, it shall be conducted according to NETA ATS, Table 100.2. Apply the test voltage for one minute.
1) If no evidence of distress or insulation failure is observed by the end of the total time of voltage application during the dielectric-withstand-voltage test, the test specimen is considered to have passed the test.

c. Voltage Transformers:

1) Perform secondary wiring integrity test. Verify correct potential at all devices.
2) Verify secondary voltages by energizing the primary winding with system voltage.

d. Perform current-injection tests on the entire current circuit in each section of switchgear.

1) Perform current tests by secondary injection with magnitudes such that a minimum current of 1.0 A flows in the secondary circuit. Verify correct magnitude of current at each device in the circuit.
2) Perform current tests by primary injection with magnitudes such that a minimum of 1.0 A flows in the secondary circuit. Verify correct magnitude of current at each device in the circuit.

e. Verify operation of space heaters.
f. Perform phasing checks on double-ended or dual-source switchgear to ensure correct bus phasing from each source.

G. Medium-Voltage Surge Arrester Field Tests:

1. Visual and Mechanical Inspection:

a. Inspect physical and mechanical condition.
b. Inspect anchorage, alignment, grounding, and clearances.
c. Verify the arresters are clean.
d. Verify that the ground lead on each device is individually attached to a ground bus or ground electrode.
e. Verify that the stroke counter is correctly mounted and electrically connected if applicable. Record the stroke counter reading.

2. Electrical Test:

a. Perform an insulation-resistance test on each arrester, phase terminal-to-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.1. Replace units that fail to meet recommended minimum insulation resistance listed in the table.
b. Perform a watts-loss test. Evaluate watts-loss values by comparison with similar units and test equipment manufacturer's published data.

H. Instrument Transformer Field Tests:

1. Visual and Mechanical Inspection:
a. Inspect physical and mechanical condition.

b. Verify correct connection of transformers with system requirements.

c. Verify that adequate clearances exist between primary and secondary circuit wiring.

d. Verify the unit is clean.

e. Verify that all required grounding and shorting connections provide contact.

f. Verify correct operation of transformer withdrawal mechanism and grounding operation.

g. Verify correct primary- and secondary-fuse sizes for voltage transformers.

h. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.

2. Electrical Tests of Current Transformers:

a. Perform insulation-resistance test of each current transformer and its secondary wiring with respect to ground at 1000-V dc for one minute. For units with solid-state components that cannot tolerate the applied voltage, comply with manufacturer's recommendations. Insulation-resistance values of instrument transformers shall not be less than values shown in NETA ATS, Table 100.5.

b. Perform a polarity test of each current transformer according to IEEE C57.13.1. Polarity results shall agree with transformer markings.

c. Perform a ratio-verification test using the voltage or current method according to IEEE C57.13.1. Ratio errors shall comply with IEEE C57.13.

d. Perform an excitation test on transformers used for relaying applications according to IEEE C57.13.1. Excitation results shall match the curve supplied by the manufacturer or shall comply with IEEE C57.13.1.

e. Measure current circuit burdens at transformer terminals according to IEEE C57.13.1. The measured burdens shall match the instrument transformer Accuracy Class rating.

f. Perform insulation-resistance tests on the primary winding with the secondary grounded. Test voltages shall comply with NETA ATS, Table 100.5. The insulation-resistance value shall be according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5.

g. Perform dielectric-withstand-voltage tests on the primary winding with the secondary grounded. Test voltages shall comply with NETA ATS, Table 100.9. If no evidence of distress or insulation failure is observed by the end of the total time of voltage application, the primary winding is considered to have passed the test.

h. Perform power-factor or dissipation-factor tests according to test equipment manufacturer's published data. Power-factor or dissipation-factor values shall be according to manufacturer's published data. In the absence of manufacturer's published data, comply with test equipment manufacturer's published data.

i. Verify that current-transformer secondary circuits are grounded and have only one grounding point according to IEEE C57.13.3.

3. Electrical Tests of Voltage and Potential Transformers:

a. Perform insulation-resistance tests winding-to-winding and each winding-to-ground. Apply the test voltage for one minute according to NETA ATS, Table 100.5. For units with solid-state components that cannot tolerate the applied
voltage, follow manufacturer's recommendations. Insulation-resistance values of instrument transformers shall be according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5.

b. Perform insulation-resistance tests winding-to-winding and each winding-to-ground. Test voltages shall be applied for one minute according to NETA ATS, Table 100.5. Insulation-resistance values of the transformers shall not be less than values shown in NETA ATS, Table 100.5.

c. Perform a polarity test on each transformer to verify the polarity marks or H(1)-X(1) relationship. Polarity results shall agree with transformer markings.

d. Perform a turns-ratio test on all tap positions. Ratio errors shall not exceed the tolerances specified in IEEE C57.13.

e. Measure voltage circuit burdens at transformer terminals. Measured burdens shall be compared to instrument transformer ratings. The measured burdens shall match the instrument transformer Accuracy Class rating.

f. Perform a dielectric-withstand-voltage test on the primary windings with the secondary windings connected to ground. The dielectric voltage shall comply with NETA ATS, Table 100.9. The test voltage shall be applied for one minute. If no evidence of distress or insulation failure is observed by the end of the total time of voltage application during the dielectric-withstand-voltage test, the primary windings are considered to have passed the test.

g. Perform power-factor or dissipation-factor tests according to test equipment manufacturer's published data. Power-factor or dissipation-factor values shall be according to manufacturer's published data. In the absence of manufacturer's published data, comply with test equipment manufacturer's published data.

h. Verify that voltage-transformer secondary circuits are grounded and have only one grounding point according to IEEE C57.13.3.

I. Microprocessor-Based Protective Relay Field Tests:

1. Visual and Mechanical Inspection:
 a. Record model number, style number, serial number, firmware revision, software revision, and rated control voltage.
 b. Verify operation of light-emitting diodes, display, and targets.
 c. Record passwords for each access level.
 d. Clean the front panel and remove foreign material from the case.
 e. Check tightness of connections.
 f. Verify that the frame is grounded according to manufacturer's instructions.
 g. Set the relay according to results in Section 260573.16 "Coordination Studies" and in Section 260573.19 "Arc-Flash Hazard Analysis."
 h. Download settings from the relays. Print a copy of the settings for the report and compare the settings to those specified in the coordination study.

2. Electrical Tests:
 a. Perform insulation-resistance tests from each circuit to the grounded frame according to manufacturer's published data.
 b. Apply voltage or current to all analog inputs, and verify correct registration of the relay meter functions.
c. Functional Operation: Check functional operation of each element used in the protection scheme.

J. Dry-Type Transformer Section Field Tests:

1. Visual and Mechanical Inspection:
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, and grounding.
 c. Verify that resilient mounts are free and that any shipping brackets have been removed.
 d. Verify the unit is clean.
 e. Verify that alarm, control, and trip settings on temperature and level indicators are set and operate within manufacturer's recommended settings.
 f. Verify that cooling fans operate and that fan motors have correct overcurrent protection.
 g. Perform specific inspections and mechanical tests recommended by the manufacturer.
 h. Verify that as-left tap connections are as specified.
 i. Verify the presence of surge arresters and that their ratings are as specified.

2. Electrical Tests:
 a. Perform insulation-resistance tests winding-to-winding and each winding-to-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index; the value of the index shall not be less than 1.0.
 b. Perform power-factor or dissipation-factor tests on all windings according to the test equipment manufacturer's published data. Investigate and correct power-factor values that exceed:
 1) 2.0 percent for power transformers.
 2) 5.0 percent for distribution transformers.
 3) Measure core insulation resistance at 500 V dc if the core is insulated and the core ground strap is removable. Core insulation-resistance values shall not be less than 1 megohm at 500-V dc.
 c. Perform a power-factor or dissipation-factor tip-up test on windings greater than 2.5 kV. Tip-up test result exceeding 1.0 percent shall be investigated.
 d. Perform turns-ratio tests at all tap positions. The test results shall not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. If the test fails, replace the transformer.
 e. Perform an excitation-current test on each phase. The typical excitation-current test data pattern for a three-legged core transformer is two similar current readings and one lower current reading. Investigate and correct if the test shows a different pattern.
 f. Measure the resistance of each winding at each tap connection.
 g. Perform an applied-voltage test on all high- and low-voltage windings-to-ground. See IEEE C57.12.91, Sections 10.2 and 10.9. The ac dielectric-withstand-voltage test result shall not exceed 75 percent of factory test voltage for one-minute
duration. The dc dielectric-withstand-voltage test result shall not exceed 100 percent of the ac rms test voltage specified in IEEE C57.12.91, Section 10.2, for one-minute duration. If no evidence of distress or insulation failure is observed by the end of the total time of voltage application during the dielectric-withstand-voltage test, the test specimen is considered to have passed the test.

h. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.

K. Insulated-Case/Molded-Case Air-Circuit-Breaker Field Tests:

1. Visual and Mechanical Inspection:
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage and alignment.
 c. Verify the unit is clean.
 d. Operate the circuit breaker to ensure smooth operation.
 e. Inspect operating mechanism, contacts, and arc chutes in unsealed units.
 f. Perform adjustments for final protective-device settings according to the coordination study. Set the protective devices according to results in Section 260573.16 "Coordination Studies" and in Section 260573.19 "Arc-Flash Hazard Analysis."

2. Electrical Tests:
 a. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with the circuit breaker closed, and across each open pole. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.1. Insulation-resistance values shall be according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.1. Values of insulation resistance less than this table or manufacturer's recommendations shall be investigated.
 b. Perform a contact/pole-resistance test. Microhm or dc millivolt drop values shall not exceed the high levels of the normal range as indicated in the manufacturer's published data. If manufacturer's published data is not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
 c. Determine long-time pickup and delay by primary current injection. Ground-fault pickup values shall be as specified, and the trip characteristic shall not exceed manufacturer's published time-current tolerance band, including adjustment factors.
 d. Determine short-time pickup and delay by primary current injection. Short-time pickup values shall be as specified, and the trip characteristic shall not exceed manufacturer's published time-current tolerance band.
 e. Determine ground-fault pickup and time delay by primary current injection. Ground-fault pickup values shall be as specified, and the trip characteristic shall not exceed manufacturer's published time-current tolerance band.
 f. Determine instantaneous pickup by primary current injection. Instantaneous pickup values shall be as specified and within manufacturer's published tolerances. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.8.
g. Test functions of the trip unit by means of secondary injection. Pickup values and trip characteristic shall be as specified and within manufacturer's published tolerances.

h. Perform minimum pickup voltage tests on shunt trip and close coils according to manufacturer's published data. Minimum pickup voltage of the shunt trip and close coils shall conform to the manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.20.

i. Verify correct operation of auxiliary features, such as trip and pickup indicators, zone interlocking, electrical close and trip operation, trip-free operation, anti-pump function, and trip unit battery condition. Reset all trip logs and indicators. Auxiliary features shall operate according to manufacturer's published data.

j. Verify operation of charging mechanism. The charging mechanism shall operate according to manufacturer's published data.

L. Low-Voltage Ground-Fault Protection System Field Tests:

1. Visual and Mechanical Inspection:
 a. Inspect the components for damage and errors in polarity or conductor routing.
 1) Verify that ground connection is made on the source side of the neutral disconnect link and on the source side of any ground-fault sensor.
 2) Verify that the neutral sensors are connected with correct polarity on both primary and secondary.
 3) Verify that phase conductors and the neutral pass through the sensor in the same direction for zero sequence systems.
 4) Verify that grounding conductors do not pass through zero sequence sensors.
 5) Verify that grounded conductor is solidly grounded.
 b. Verify the unit is clean.
 c. Operate the circuit breaker to ensure smooth operation.
 d. Verify correct operation of functions of the self-test panel if provided.
 e. Verify that the control power transformer has adequate capacity for the system.
 f. Set pickup and time-delay settings according to "Quality Control" Article. Record appropriate operation and test sequences according to NFPA 70, "Services" Article, "Ground-Fault Protection Equipment" Section.

2. Electrical Tests:
 a. Measure the system neutral-to-ground insulation resistance with the neutral disconnect link temporarily removed. Replace the neutral disconnect link after testing. System neutral-to-ground insulation resistance shall be a minimum of 1 megohm. Correct wiring until the minimum is achieved.
 b. Perform ground-fault protective-device pickup tests using primary injection. Results of pickup test shall be greater than 90 percent of the ground-fault protective-device pickup setting and less than 1200 A or 125 percent of the pickup setting, whichever is smaller. Adjust or replace the device until these parameters are achieved.
c. For summation-type systems utilizing phase and neutral current transformers, verify correct polarities by applying current to each phase-neutral current-transformer pair. This test also applies to MCCBs utilizing an external neutral current transformer. The ground-fault protective device shall operate when current direction is the same relative to polarity marks in the two current transformers. The ground-fault protective device shall not operate when current direction is opposite relative to polarity marks in the two current transformers.

d. Measure time delay of the ground-fault protective device at a value equal to or greater than 150 percent of the pickup value. Relay timing shall be according to manufacturer's published data but shall be no longer than one second at 3000 A according to NFPA 70, "Services" Article, "Ground-Fault Protection Equipment" Section.

e. Verify reduced control voltage tripping capability is 55 percent for ac systems and 80 percent for dc systems. Replace the ground-fault system if the reduced control voltage tripping requirement is not achieved, and retest.

f. Verify blocking capability of zone interlock systems. Results of zone-blocking tests shall be according to manufacturer's published data and design specifications.

M. Metering Device Field Tests:

1. Visual and Mechanical Inspection:
 a. Inspect physical and mechanical condition.
 b. Inspect cover gasket, cover glass, condition of spiral spring, disk clearance, contacts, and case shorting contacts, as applicable.
 c. Verify the unit is clean.
 d. Verify freedom of movement, end play, and alignment of rotating disk(s).

2. Electrical Tests:
 a. Verify accuracy of meters at all cardinal points. Meter accuracy shall be according to manufacturer's published data.
 b. Calibrate meters according to manufacturer's published data. Calibration results shall be within manufacturer's published tolerances.
 c. Verify all instrument multipliers. Instrument multipliers shall be according to system design specifications.
 d. Verify that current-transformer and voltage-transformer secondary circuits are intact. Test results shall confirm the integrity of the secondary circuits of current and voltage transformers.

3.7 FOLLOW-UP SERVICE

A. Voltage Monitoring and Adjusting: After Substantial Completion, if requested by Owner, but not more than six months after Final Acceptance, perform the following voltage monitoring:

1. During a period of normal load cycles as evaluated by Owner, perform seven days of three-phase voltage recording at the outgoing section of each secondary unit substation. Use voltmeters with calibration traceable to the National Institute of Science and Technology standards and with a chart speed of not less than 1 inch per hour. Voltage
unbalance greater than 1 percent between phases, or deviation of any phase voltage from the nominal value by more than plus or minus 5 percent during the test period, is unacceptable.

2. Corrective Action: If test results are unacceptable, perform the following corrective action, as appropriate:

 a. Adjust transformer taps.
 b. Rebalance loads.
 c. Prepare written request for voltage adjustment by electric utility.

3. Retests: Repeat monitoring, after corrective action has been performed, until satisfactory results are obtained.

4. Report:

 a. Prepare a written report covering monitoring performed and corrective action taken.
 b. For each relay and adjustable circuit breaker, tag the device with adjusting technician's initials and the date of the adjustment. Record the settings and file with test records specified in "Field Quality Control" Article.

B. Infrared Inspection: Perform the survey during periods of maximum possible loading. Remove all necessary covers prior to the inspection.

 1. After Substantial Completion, but not more than 60 days after Final Acceptance, perform infrared inspection of the electrical power connections of the unit substation.
 2. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switchgear 11 months after date of Substantial Completion.
 3. Instrument: Inspect distribution systems with imaging equipment capable of detecting a minimum temperature difference of 1 deg C at 30 deg C.
 4. Record of Infrared Inspection: Prepare a certified report that identifies the testing technician and equipment used, and lists the results as follows:

 a. Description of equipment to be tested.
 b. Discrepancies.
 c. Temperature difference between the area of concern and the reference area.
 d. Probable cause of temperature difference.
 e. Areas inspected. Identify inaccessible and unobservable areas and equipment.
 f. Identify load conditions at time of inspection.
 g. Provide photographs and thermograms of the deficient area.

 5. Act on inspection results according to the recommendations of NETA ATS, Table 100.18. Correct possible and probable deficiencies as soon as Owner's operations permit. Retest until deficiencies are corrected.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain systems.
END OF SECTION 261116.12
SECTION 261323 - MEDIUM-VOLTAGE, METAL-ENCLOSED SWITCHGEAR

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes outdoor metal-enclosed interrupter switchgear.

1.3 DEFINITIONS

A. BIL: Basic Impulse Insulation Level.

B. SCADA: Supervisory control and data acquisition.

C. VRLA: Valve-regulated, recombinant, lead-calcium acid.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include rated capacities, operating characteristics, and furnished specialties and accessories.

2. Time-current characteristic curves for overcurrent protective devices.

B. Shop Drawings: For medium-voltage, metal-enclosed switchgear.

1. Include a tabulation of installed devices with features and ratings.

2. Include dimensioned plans and elevations, showing dimensions, shipping sections, and weights of each assembled section. Elevations shall show major components, features, and mimic bus diagram.

3. Include a plan view and cross section of equipment base showing clearances, manufacturer's recommended work space, and locations of penetrations for grounding and conduits. Show location of anchor bolts and leveling channels.

4. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, and location and size of each field connection.

5. Locate accessory and spare equipment storage.

6. Include single-line diagram.

7. Include control power wiring diagrams.

8. Include batteries, battery rack, equipment base, and room layout.

9. Include copy of nameplate.
10. Ratings of the assembled switchgear:
 a. Voltage.
 b. Continuous current.
 c. Short-circuit rating.
 d. BIL.

11. Utility company's metering provisions with indication of approval by utility company.

13. Wiring Diagrams: For each switchgear assembly include the following:
 a. Power, signal, and control wiring.
 b. Three-line diagrams of current and future secondary circuits showing device terminal numbers and internal diagrams.
 c. Schematic control diagrams.
 d. Diagrams showing connections of component devices and equipment.
 e. Schematic diagrams showing connections to remote devices.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings:
 1. Outdoor Installations:
 a. Utilities site plan, drawn to scale, showing heavy equipment or truck access paths for maintenance and replacement.
 b. Dimensioned concrete base, outline of the switchgear, conduit entries, and grounding equipment locations.
 2. Indoor Installations:
 a. Dimensioned concrete base, outline of the switchgear, conduit entries, and grounding equipment locations.
 b. Support locations, type of support, and weight on each support. Locate structural supports for structure-supported raceways, cable trays, busways.
 c. Location of lighting fixtures, sprinkler piping and heads, ducts, and diffusers.

B. Qualification Data: For professional engineer and testing agency.

C. Product Certificates: For switchgear, signed by product manufacturer.

D. Source quality-control reports.

E. Field quality-control reports.
1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For switchgear and switchgear components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials described below, before installation begins, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Spare Fuses: Six of each type and rating of fuse and fusible device used, except for medium-voltage fuses. Include spares for the following:
 a. Primary disconnect fuses.
 b. Potential transformer fuses.
 c. Control power fuses.
 d. Fuses and fusible devices for fused circuit breakers.

2. Spare Indicating Lights: Six of each type installed.
3. Touchup Paint: Three half-pint containers of paint matching enclosure's exterior finish.
4. Primary Switch Contact Lubricant: One container(s).

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.

1. Testing Agency's Field Supervisor: Certified by the InterNational Electrical Testing Association or the National Institute for Certification in Engineering Technologies to supervise on-site testing specified in "Field Quality Control" Article.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Manufactured Unit: Metal-enclosed switchgear, designed for application in solidly grounded neutral system.

B. Switchgear Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
C. Comply with IEEE C37.20.3.

2.2 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Eaton.
4. Square D; by Schneider Electric.

2.3 PERFORMANCE REQUIREMENTS

A. Service Conditions:

1. Switchgear shall be suitable for operation under service conditions specified as usual service conditions in IEEE C37.20.3

2.4 SWITCHGEAR ENCLOSURE

A. Outdoor Enclosure: Weatherproof, galvanized steel, designed for installation outdoors. Aisleless, full-height doors, with provisions for padlocking, in front of basic weatherproof equipment. Integral structural-steel base frame with factory-applied asphaltic undercoating. The enclosure shall meet IEEE C37.20.3 Annex A, Category A enclosure requirements.

1. Each vertical section shall have the following features:

 a. Structural design and anchorage adequate to resist loads imposed by 125-mph wind.
 b. Space heater operating at one-half or less of rated voltage, sized to prevent condensation, controlled by thermostats to maintain temperature of each section above expected dew point.
 c. Louvers equipped with insect and rodent screens and filters, and arranged to permit air circulation while excluding rodents and exterior dust.
 d. Weatherproof ground-fault circuit interrupter duplex receptacle.
 e. Power for heaters and receptacles shall be provided by control power transformer.
 f. Skid Mounted: Mount each shipping group on an integral base frame as a complete weatherproof unit.

 B. Switchgear Enclosures Finish: Factory-applied finish in manufacturer's standard gray over a rust-inhibiting primer on treated metal surface.

2.5 FUSIBLE LOAD INTERRUPTER SWITCHGEAR

A. Construction:
1. Deadfront, metal-enclosed, fixed-mount, fusible interrupter switchgear assembly of vertical sections.
 a. Front and rear access switchgear.
 b. Viewing window to show view of the position of the three poles of the interrupter.
 c. Mechanical interlock preventing the door from opening when the switch is open and requiring the door to be closed before the switch can be closed.
 d. Padlocking and tagging the switch in the opened or closed position.
 e. Switch position indicator.
 f. Front and rear vertical section covers shall have full-length hinges. The front cover shall be a flanged door with latching hardware. The rear cover may be bolted.

 a. Ground Bus: Sized to carry the rated short-time withstand current and connected to the metal enclosures of each vertical section.
 b. Neutral Bus: Rated 600 A.

3. Auxiliary Vertical Sections and Compartments:
 a. Utility metering compartment that complies with utility company requirements.
 b. Owner's Metering: Vertical section with a front hinged door for isolated access to meters and associated terminal and fuse blocks for maintenance, calibration or testing while the gear is energized.
 c. Owner's Metering: Hinged panel in switch or breaker section, for isolated access to meters and associated terminal and fuse blocks for maintenance, calibration, or testing while the gear is energized.

B. Surge Arresters: Comply with IEEE C62.11, distribution class; metal-oxide-varistor type, connected in each phase of incoming circuit and ahead of disconnecting device.

C. Switches: Load interrupter type, with fuses. Omit fuses where specifically indicated.
 2. Switch Construction:
 a. Grounded, metal shield to cover live components and terminals.
 b. Supported entirely by interior framework of structure, with copper switchblades and stored-energy operating mechanism.
 c. Phase barriers, full length of switchblades and fuses for each pole; readily removable and replaceable; designed to allow visual inspection of switch components when barrier is in place.

3. Fuses:
 a. Installed on a single mounting frame, de-energized when the switch is open.
 b. Current-Limiting Fuses: Full-range, fast-replaceable, current-limiting type that will operate without explosive noise or expulsion of gas, vapor, or foreign matter from tube.
c. Expulsion Fuses: In disconnect-type mountings and renewable with replacement fuse units. Gases emitted on interruption are controlled and silenced by chambers designed for that purpose.
d. Indicator integral with each fuse to show when it has blown.
e. Spares: Include three fuses in use and three spare fuses in storage clips in each switch.

D. Accessory Set:

1. Tools and miscellaneous items required for interrupter switchgear test, inspection, maintenance, and operation.
2. Fuse-handling tool recommended by switchgear manufacturer.

E. Capacities and Characteristics:

1. Switchgear Assembly:
 a. Rated Maximum Voltage and BIL: 15 kV, 95 kV.
 b. Rated Continuous Current: 600 A.

2. Fused Switches with Current Limiting Fuses:
 a. Fuse Type and Rated Continuous Current: As noted on drawings.
 b. Fuse Interrupting Rating: 80 kA sym rms.

2.6 CIRCUIT BREAKER SWITCHGEAR

A. Construction:

1. Deadfront, metal-enclosed, drawout, switchgear assembly of vertical sections, each with vacuum circuit breakers. Additional vertical sections shall be provided to house accessories related to the switchboard functions.
 a. Comply with IEEE C37.20.7, Type 1A.
 b. Front and rear access switchgear.
 c. Front and rear vertical section covers shall have full-length hinges. The front cover shall be a flanged door with latching hardware. The rear cover may be bolted.

 a. Ground Bus: Sized to carry the rated short-time withstand current, and connected to the metal enclosures of each vertical section.
 b. Neutral Bus: Rated 600 A.
3. Auxiliary Vertical Sections and Compartments:
 a. Utility metering compartment that complies with utility company requirements.
 b. Owner's Metering: Vertical section with a front hinged door for isolated access to meters and associated terminal and fuse blocks for maintenance, calibration or testing while the gear is energized.
 c. Owner's Metering: Hinged panel in switch or breaker section, for isolated access to meters and associated terminal and fuse blocks for maintenance, calibration or testing while the gear is energized.

B. Surge Arresters: Comply with IEEE C62.11, distribution class; metal-oxide-varistor type, connected in each phase of incoming circuit and ahead of any disconnecting device.

C. Vacuum Circuit Breakers:
 1. Operated by a motor-charged, stored-energy mechanism and having manual means of charging the mechanism.
 2. Electrically Operated: 120 V ac close, ac capacitor trip. Powered from external power source powered from a fused control transformer integral to the switchgear.

D. Protective Relays
 1. Microprocessor-based, multifunction, overcurrent relay with the following IEEE C37.2 device functions: 50, 51, 51N, 50N, 51G, 50G, and 86.

E. Accessory Set: Tools and miscellaneous items required for interrupter switchgear test, inspection, maintenance, and operation.

F. Capacities and Characteristics:
 1. Switchgear Assembly:
 a. Rated Maximum Voltage and BIL: 15 kV, 95 kV.
 b. Rated Continuous Current: 600 A.
 c. Rated Momentary Withstand Current (600 A and 1200 A Continuous Current Ratings): 40 kA sym rms for 10 cycles
 2. 15 kV Circuit Breaker:
 a. Rated Continuous Current and Load Switching Current: 600 A.
 b. Short-Circuit Current at Rated Maximum Voltage: Insert value> kA sym rms.
 c. Closing and Latching Maximum Current: 80 kA crest.
 e. Rated Interrupting Time: 5 cycles.
2.7 INSTRUMENTS

 1. Potential Transformers: Secondary voltage rating of 120 V and NEMA C 12.11 accuracy class of 0.3 with burdens of W, X, and Y.
 2. Current Transformers: Burden and accuracy class suitable for connected relays, meters, and instruments.

B. Multifunction Digital Meter and Monitor: Microprocessor-based unit suitable for three- or four-wire systems.
 1. Inputs from sensors or 5-A current-transformer secondaries, and potential terminals rated to 600 V.
 2. Switch-selectable digital display with the following features:
 a. Phase Currents, Each Phase: Plus or minus 1 percent.
 b. Phase-to-Phase Voltages, Three Phase: Plus or minus 1 percent.
 c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 1 percent.
 d. Three-Phase Real Power: Plus or minus 2 percent.
 e. Three-Phase Reactive Power: Plus or minus 2 percent.
 f. Power Factor: Plus or minus 2 percent.
 g. Frequency: Plus or minus 0.5 percent.
 h. Integrated Demand, with Demand Interval Selectable from 5 to 60 Minutes: Plus or minus 2 percent.
 i. Accumulated energy, in megawatt hours, plus or minus 2 percent; stored values unaffected by power outages for up to 72 hours.

 3. Communications module suitable for remote monitoring of meter quantities and functions. Interface communication and metering requirements according to Section 260913 "Electrical Power Monitoring and Control."
 4. Mounting: Display and control unit that is flush or semiflush mounted in instrument compartment door.

2.8 CONTROL POWER SUPPLY

A. Description: Control power transformer shall supply 120-V control circuits through secondary disconnect and overcurrent protective devices.

 1. Dry-type transformer, in separate compartment, with primary and secondary fuses to provide current-limiting and overload protection.

B. Description: Uninterruptible ac power supply complying with requirements in Section 263353 "Static Uninterruptible Power Supply."
2.9 WARNING LABELS AND SIGNS

A. Comply with requirements for labels and signs specified in Section 260553 "Identification for Electrical Systems."

1. Warning signs shall be baked enamel signs.
2. Equipment Identification Labels: Laminated acrylic or melamine label.

2.10 SOURCE QUALITY CONTROL

A. Perform production tests on each circuit breaker housing for this Project, complying with IEEE C37.20.3:

1. Perform mechanical operation tests to ensure proper functioning of shutters, operating mechanism, mechanical interlocks, and interchangeability of removable elements that are designed to be interchangeable.
2. Verify that control wiring is correct by verifying continuity. Perform electrical operation of relays and devices to ensure they function properly and in the intended sequence.
3. Perform the control wiring dielectric test at 1500 V for one minute.

B. Perform production tests, on each circuit breaker supplied for this Project, complying with IEEE C37.20.4.

1. Perform mechanical operation tests to ensure proper functioning of the switch.
2. Verify the contact gap. Perform terminal-to-terminal resistance test.
3. Verify that control wiring is correct by verifying continuity. Perform electrical operation of relays and devices to ensure they function properly and in the intended sequence.
4. Perform the control wiring dielectric test at 1500 V for one minute.

C. Owner will witness required factory tests. Notify Architect at least 14 days before date of tests and indicate their approximate duration.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Upon delivery of switchgear and prior to unloading, inspect equipment for damage.

1. Examine tie rods and chains to verify they are undamaged and tight and that blocking and bracing are tight.
2. Verify that there is no evidence of load shifting in transit and that readings from transportation shock recorders, if equipped, are within manufacturer's recommendations.
3. Examine switchgear for external damage, including dents or scratches in doors and sill, and termination provisions.
4. Compare switchgear and accessories received with the bill of materials to verify that the shipment is complete. Verify that switchgear and accessories conform to the
manufacturer's quotation and shop drawings. If the shipment is not complete or does not comply with project requirements, notify the manufacturer in writing immediately.

5. Unload switchgear, observing packing label warnings and handling instructions.

6. Open compartment doors and inspect components for damage or displaced parts, loose or broken connections, cracked or chipped insulators, bent mounting flanges, dirt or foreign material, and water or moisture.

B. Handling:

1. Handle switchgear according to manufacturer's recommendations; avoid damage to the enclosure, termination compartments, base, frame, tank, and internal components. Do not subject switchgear to impact, jolting, jarring, or rough handling.

2. Protect switchgear compartments against the entrance of dust, rain, and snow.

3. Transport switchgear upright to avoid internal stresses on equipment mounting assemblies. Do not tilt or tip switchgear.

4. Use spreaders or a lifting beam to obtain a vertical lift and to protect switchgear from straps bearing against the enclosure. Lifting cable pull angles may not be greater than 15 degrees from vertical.

5. Do not damage structure when handling switchgear.

C. Storage:

1. Store switchgear in a location that is clean and protected from weather. Protect switchgear from dirt, water, contamination, and physical damage. Do not store switchgear in the presence of corrosive or explosive gases.

2. Store switchgear with compartment doors closed.

3. Regularly inspect switchgear while in storage and maintain documentation of storage conditions, noting any discrepancies or adverse conditions.

D. Examine roughing-in of conduits and grounding systems to verify the following:

1. Wiring entries comply with layout requirements.

2. Entries are within conduit-entry tolerances specified by manufacturer, and no feeders will have to cross section barriers to reach load or line lugs.

E. Pre-Installation Checks:

F. Verify that ground connections are in place and that requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be [5 ohms] <Insert value> at switchgear location.

G. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SWITCHGEAR INSTALLATION

A. Equipment Mounting:
1. Install switchgear on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."

2. Comply with requirements for vibration isolation and seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."

3. Comply with requirements for vibration isolation devices specified in Section 260529 "Hangers and Supports for Electrical Systems."

B. Switchgear shall be installed level and plumb. Switchgear shall tilt less than 1.5 degrees while energized.

C. Maintain minimum clearances and workspace at equipment according to manufacturer’s written instructions and NFPA 70.

D. Comply with NECA 1.

E. Comply with NECA 430.

3.3 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

B. Grounding Connections at Interior Locations:

1. Install bare copper cable not smaller than No. 4/0 AWG for grounding to grounding electrodes.
2. Bond surge arrester and neutrals directly to the switchgear enclosure and then to the grounding electrode system with bare copper conductors.
3. Keep leads as short as practicable with no kinks or sharp bends.
4. Make joints in grounding conductors and loops by exothermic weld or compression connector.

C. Grounding Connections at Exterior Locations:

1. Install tinned bare copper cable not smaller than No. 4/0 AWG, for counterpoise buried not less than 30 inches below grade interconnecting the grounding electrodes.
2. Bond surge arrester and neutrals directly to the switchgear enclosure and then to the grounding electrode system with bare copper conductors, sized as shown.
3. Keep lead lengths as short as practicable with no kinks or sharp bends.
4. Fence and equipment connections shall not be smaller than No. 4 AWG.
5. Ground fence at each gate post and corner post and at intervals not exceeding 10 ft..
6. Bond each gate section to the fence post using 1/8 by 1 inch tinned flexible braided copper strap and clamps.
7. Make joints in grounding conductors and loops by exothermic weld or compression connector.
D. Terminate all grounding and bonding conductors on a common equipment grounding terminal on the switchgear enclosure. Install supplemental terminal bars, lugs, and bonding jumpers as required to accommodate the number of conductors for termination.

E. Complete switchgear grounding and lightning arrester connections prior to making any other electrical connections.

F. Terminate medium-voltage cables according to Section 260513 "Medium-Voltage Cables."

3.4 SIGNS AND LABELS

A. Comply with the installation requirements for labels and signs specified in Section 260553 "Identification for Electrical Systems."

B. Install warning signs as required to comply with OSHA in 29 CFR 1910.269.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections with the assistance of a factory-authorized service representative.

E. General Field Testing Requirements:

1. Comply with the provisions of NFPA 70B, "Testing and Test Methods."
2. After installing switchgear and after electrical circuitry has been energized, test for compliance with requirements.
3. Perform each visual and mechanical inspection and electrical test. Certify compliance with test parameters.

F. Medium-Voltage Switchgear Assembly Field Tests:

1. Visual and Mechanical Inspection:
 a. Verify that fuse and circuit breaker sizes and types correspond to Drawings and coordination study, as well as to the circuit breaker's address in the control network.
 b. Verify that current and voltage transformer ratios correspond to Drawings.
 c. Inspect bolted electrical connections using calibrated torque-wrench method according to manufacturer's published data or NETA ATS, Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS, Table 100.12. Investigate values
that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

d. Confirm correct operation and sequencing of electrical and mechanical interlock systems.

2) Make key exchange with devices operated in off-normal positions.

e. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.

f. Inspect insulators for evidence of physical damage or contaminated surfaces.

g. Verify correct barrier and shutter installation and operation.

h. Exercise active components.

i. Inspect mechanical indicating devices for correct operation.

j. Verify that filters are in place and vents are clear.

k. Perform visual and mechanical inspection of instrument transformers according to Article "Instrument Transformer Field Tests."

l. Inspect control power transformers.

1) Inspect for physical damage, cracked insulation, broken leads, tightness of connections, defective wiring, and overall general condition.
2) Verify that primary and secondary fuse or circuit breaker ratings match drawings.
3) Verify correct functioning of drawout disconnecting and grounding contacts and interlocks.

2. Electrical Tests:

a. Inspect bolted electrical connections using a low resistance ohmmeter to compare bolted resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

b. Perform dc voltage insulation-resistance tests on each bus section, phase to phase and phase to ground, for one minute. If the temperature of the bus is other than plus or minus 20 deg C, adjust the resulting resistance as provided in NETA ATS, Table 100.11.

1) Insulation-resistance values of bus insulation shall be according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.1. Investigate and correct values of insulation resistance less than manufacturer's recommendations or NETA ATS, Table 100.1.

2) Do not proceed to the dielectric withstand voltage tests until insulation-resistance levels are raised above minimum values.

c. Perform a dielectric withstand voltage test on each bus section, each phase to ground with phases not under test grounded, according to manufacturer's published data. If manufacturer has no recommendation for this test, it shall be conducted according to NETA ATS, Table 100.2. Apply the test voltage for one minute.
1) If no evidence of distress or insulation failure is observed by the end of the total time of voltage application during the dielectric withstand test, the test specimen is considered to have passed the test.

d. Perform insulation-resistance tests on control wiring with respect to ground. Applied potential shall be 500 volts dc for 300-volt rated cable and 1000 V dc for 600-V rated cable. Test duration shall be one minute. For units with solid-state components or control devices that cannot tolerate the applied voltage, follow the manufacturer's recommendation.

1) Minimum insulation-resistance values of control wiring shall not be less than two megohms.

e. Control Power Transformers:

1) Perform insulation-resistance tests. Perform measurements from winding to winding and each winding to ground. Insulation-resistance values of winding insulation shall be according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.1. Investigate and correct values of insulation resistance less than manufacturer's recommendations or NETA ATS, Table 100.1.

2) Perform secondary wiring integrity test. Disconnect transformer at secondary terminals and connect secondary wiring to a rated secondary voltage source. Verify correct potential at all devices.

3) Verify correct secondary voltage by energizing the primary winding with system voltage. Measure secondary voltage with the secondary wiring disconnected.

4) Verify correct function of control transfer relays located in the switchgear with multiple control power sources.

f. Voltage Transformers:

1) Perform secondary wiring integrity test. Verify correct potential at all devices.

2) Verify secondary voltages by energizing the primary winding with system voltage.

g. Perform current-injection tests on the entire current circuit in each section of switchgear.

1) Perform current tests by secondary injection with magnitudes such that a minimum current of 1.0 A flows in the secondary circuit. Verify correct magnitude of current at each device in the circuit.

2) Perform current tests by primary injection with magnitudes such that a minimum of 1.0 A flows in the secondary circuit. Verify correct magnitude of current at each device in the circuit.

h. Perform system function tests according to "System Function Tests" Article.

i. Verify operation of space heaters.
j. Perform phasing checks on double-ended or dual-source switchgear to ensure correct bus phasing from each source.

G. Medium-Voltage Vacuum Circuit Breaker Field Tests:

1. Visual and Mechanical Inspection:
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, grounding, and required clearances.
 c. Verify that maintenance devices such as special tools and gages specified by the manufacturer are available for servicing and operating the breaker.
 d. Verify the unit is clean.
 e. Perform mechanical operation tests on operating mechanism according to manufacturer's published data.
 f. Measure critical distances on operating mechanism as recommended by the manufacturer. Critical distances of the operating mechanism shall be according to manufacturer's published data.
 g. Verify cell fit and element alignment.
 h. Verify racking mechanism operation.
 i. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.
 j. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.
 k. Perform time-travel analysis. Travel and velocity values shall be according to manufacturer's published data.
 l. Record as-found and as-left operation counter reading. Operation counter shall advance one digit per close-open cycle.

2. Electrical Tests:
 a. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.1. Insulation-resistance values shall be according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.1. Investigate and correct values of insulation resistance less than this table or manufacturer's recommendations. Dielectric-withstand-voltage tests shall not proceed until insulation-resistance levels are raised above minimum values.
 b. Perform a contact/pole-resistance test. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value. Microhm or dc millivolt drop values shall not exceed the high levels of the normal range according to manufacturer's published data. If manufacturer's published data is not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
 c. Perform minimum pickup voltage tests on trip and close coils according to manufacturer's published data. Minimum pickup voltage of the trip and close coils shall comply with manufacturer's published data. In the absence of the manufacturer's published data, comply with NETA ATS, Table 100.20.
d. Verify correct operation of any auxiliary features, such as electrical close and trip operation, trip-free operation, and anti-pump function. Auxiliary features shall operate according to manufacturer's published data.

e. Trip circuit breaker by operation of each protective device. Reset trip logs and indicators.

f. Perform power-factor or dissipation-factor tests on each pole with the breaker open and each phase with the breaker closed. Power-factor or dissipation-factor values shall comply with manufacturer's published data.

g. Perform vacuum bottle integrity (dielectric-withstand-voltage) test across each vacuum bottle, with the contacts in the "open" position according to manufacturer's published data. If no evidence of distress or insulation failure is observed by the end of the total time of voltage application during the vacuum bottle integrity test, the test specimen is considered to have passed the test.

h. Perform a dielectric-withstand-voltage test according to manufacturer's published data. If no evidence of distress or insulation failure is observed by the end of the total time of voltage application during the dielectric-withstand-voltage test, the test specimen is considered to have passed the test.

i. Verify operation of heaters.

H. Instrument Transformer Field Tests:

1. Visual and Mechanical Inspection:

 a. Verify that equipment nameplate data complies with Contract Documents.
 b. Inspect physical and mechanical condition.
 c. Verify correct connection of transformers with system requirements.
 d. Verify that adequate clearances exist between primary and secondary circuit wiring.
 e. Verify the unit is clean.
 f. Inspect bolted electrical connections using calibrated torque-wrench method according to manufacturer's published data or NETA ATS, Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS, Table 100.12. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 g. Verify that required grounding and shorting connections provide contact.
 h. Verify correct operation of transformer withdrawal mechanism and grounding operation.
 i. Verify correct primary and secondary fuse sizes for voltage transformers.
 j. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.

2. Electrical Tests of Current Transformers:

 a. Inspect bolted electrical connections using a low resistance ohmmeter to compare bolted resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 b. Perform insulation-resistance test of each current transformer and its secondary wiring with respect to ground at 1000 V dc for one minute. For units with solid-
state components that cannot tolerate the applied voltage, follow manufacturer's written recommendations. Investigate and correct values of insulation resistance less than manufacturer's recommendations or NETA ATS, Table 100.5.

c. Perform a polarity test of each current transformer according to IEEE C57.13.1. Polarity results shall agree with transformer markings.

d. Perform a ratio-verification test using the voltage or current method according to IEEE C57.13.1. Ratio errors shall be according to IEEE C57.13.

e. Perform an excitation test on transformers used for relaying applications according to IEEE C57.13.1. Excitation results shall match the curve supplied by the manufacturer or be according to IEEE C57.13.1.

f. Measure current circuit burdens at transformer terminals according to IEEE C57.13.1. Measured burdens shall be compared with and shall match instrument transformer ratings.

g. Perform insulation-resistance tests on the primary winding with the secondary grounded. Test voltages shall be according to Table 100.5.

h. Perform dielectric withstand tests on the primary winding with the secondary grounded. Test voltages shall be according to Table 100.9.

i. Perform power-factor or dissipation-factor tests according to test equipment manufacturer's published data. Power-factor or dissipation-factor values shall be...
h. Verify that voltage transformer secondary circuits are grounded and have only one grounding point according to IEEE C57.13.3. Test results shall indicate that the circuits are grounded at only one point.

I. Ground Resistance Test:

1. Visual and Mechanical Inspection:
 a. Verify ground system complies with the Contract Documents and NFPA 70 Article 250, "Grounding and Bonding."
 b. Inspect physical and mechanical condition. Grounding system electrical and mechanical connections shall be free of corrosion.
 c. Inspect bolted electrical connections using a calibrated torque-wrench method according to manufacturer's published data or NETA ATS, Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS, Table 100.12. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 d. Inspect anchorage.

2. Electrical Tests:
 a. Perform fall-of-potential or alternative test according to IEEE 81 on the main grounding electrode or system. The resistance between the main grounding electrode and ground shall be no more than 5 ohms.
 b. Perform point-to-point tests to determine the resistance between the main grounding system and all major electrical equipment frames, system neutral, and derived neutral points. Investigate point-to-point resistance values that exceed 0.5 ohms. Compare equipment nameplate data with Contract Documents.
 c. Inspect physical and mechanical condition.
 d. Inspect bolted electrical connections for high resistance using a low-resistance ohmmeter to compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

J. Metering Devices Field Tests:

1. Visual and Mechanical Inspection:
 a. Inspect physical and mechanical condition.
 b. Inspect bolted electrical connections using calibrated torque-wrench method according to manufacturer's published data or NETA ATS, Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS, Table 100.12.
 c. Inspect cover gasket, cover glass, condition of spiral spring, disk clearance, contacts, and case shorting contacts, as applicable.
 d. Verify the unit is clean.
 e. Verify freedom of movement, end play, and alignment of rotating disk(s).
2. Electrical Tests:
 a. Inspect bolted electrical connections using a low resistance ohmmeter to compare bolted resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 b. Verify accuracy of meters at all cardinal points. Meter accuracy shall be according to manufacturer's published data.
 c. Calibrate meters according to manufacturer's published data. Calibration results shall be within manufacturer's published tolerances.
 d. Verify all instrument multipliers. Instrument multipliers shall be according to system design specifications.
 e. Verify that current transformer and voltage transformer secondary circuits are intact. Test results shall confirm the integrity of the secondary circuits of current and voltage transformers.

K. Medium-Voltage Surge Arrester Field Tests:
 1. Visual and Mechanical Inspection:
 a. Verify that equipment nameplate data complies with Contract Documents.
 b. Inspect physical and mechanical condition.
 c. Inspect anchorage, alignment, grounding, and clearances.
 d. Verify the arresters are clean.
 e. Verify that the ground lead on each device is individually attached to a ground bus or ground electrode.
 f. Verify that the stroke counter is correctly mounted and electrically connected if applicable. Record the stroke counter reading.
 2. Electrical Test:
 a. Perform an insulation-resistance test on each arrester, phase terminal to ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.1. Replace units that fail to meet recommended minimum insulation resistance listed in the table.
 b. Perform a watts-loss test. Evaluate watts-loss values by comparison with similar units and test equipment manufacturer's published data.
 c. Test grounding connections. Resistance between the arrester ground terminal and the ground system shall be less than 0.5 ohm.

L. Microprocessor-Based Protective Relay Field Tests:
 1. Visual and Mechanical Inspection:
 a. Record model number, style number, serial number, firmware revision, software revision, and rated control voltage.
 b. Verify operation of light-emitting diodes, display, and targets.
 c. Record passwords for each access level.
 d. Clean the front panel and remove foreign material from the case.
e. Check tightness of connections.
f. Verify that the frame is grounded according to manufacturer's instructions.
g. Set the relay according to results in Section 260573.16 "Coordination Studies" and in Section 260573.19 "Arc-Flash Hazard Analysis."
h. Download settings from the relay. Print a copy of the settings for the report and compare the settings to those specified in the coordination study.

2. Electrical Tests:

a. Perform insulation-resistance tests from each circuit to the grounded frame according to manufacturer's published data.
b. Apply voltage or current to analog inputs, and verify correct registration of the relay meter functions.
c. Functional Operation: Check functional operation of each element used in the protection scheme as follows:

1) Timing Relay:
 a) Determine time delay.
 b) Verify operation of instantaneous contacts.

2) Volts/Hertz Relay:
 a) Determine pickup frequency at rated voltage.
 b) Determine pickup frequency at a second voltage level.
 c) Determine time delay.

3) Sync Check Relay:
 a) Determine closing zone at rated voltage.
 b) Determine maximum voltage differential that permits closing at zero degrees.
 c) Determine live line, live bus, dead line, and dead bus set points.
 d) Determine time delay.
 e) Verify dead bus/live line, dead line/live bus, and dead bus/dead line control functions.

4) Undervoltage Relay:
 a) Determine dropout voltage.
 b) Determine time delay.
 c) Determine time delay at a second point on the timing curve for inverse time relays.

5) Directional Power Relay:
 a) Determine minimum pickup at maximum torque angle.
 b) Determine closing zone.
 c) Determine maximum torque angle.
 d) Determine time delay.
6) Current Balance Relay:
 a) Determine pickup of each unit.
 b) Determine percent slope.
 c) Determine time delay.

7) Negative Sequence Current Relay:
 a) Determine negative sequence alarm level.
 b) Determine negative sequence minimum trip level.
 c) Determine maximum time delay.
 d) Verify two points on the I-t two-squared-t curve.

8) Phase Sequence or Phase Balance Voltage Relay:
 a) Determine positive sequence voltage to close the NO contact.
 b) Determine positive sequence voltage to open the NC contact (undervoltage trip).
 c) Verify negative sequence trip.
 d) Determine time delay to close the NO contact with sudden application of 120 percent of pickup.
 e) Determine time delay to close the NC contact upon removal of voltage when previously set to rated system voltage.

9) Instantaneous Overcurrent Relay:
 a) Determine pickup.
 b) Determine dropout.
 c) Determine time delay.

10) Time Overcurrent:
 a) Determine minimum pickup.
 b) Determine time delay at two points on the time current curve.

11) Ground Detector Relay:
 a) Determine maximum impedance to ground causing relay pickup.

12) Directional Overcurrent Relay:
 a) Determine directional unit minimum pickup at maximum torque angle.
 b) Determine closing zone.
 c) Determine maximum torque angle.
 d) Plot operating characteristics.
e) Determine overcurrent unit pickup.
f) Determine overcurrent unit time delay at two points on the time current curve.

d. Control Verification:

1) **Functional Tests:**

 a) Check operation of all active digital inputs.
 b) Check output contacts or silicone-controlled rectifiers (SCRs), preferably by operating the controlled device, such as circuit breaker, auxiliary relay, or alarm.
 c) Check internal logic functions used in protection scheme.
 d) Upon completion of testing, reset min/max recorders, communications statistics, fault counters, sequence-of-events recorder, and event records.

2) **In-Service Monitoring:** After the equipment is initially energized, measure magnitude and phase angle of inputs and verify expected values.

M. Switchgear will be considered defective if it does not pass tests and inspections.

N. Remove and replace defective units and retest.

O. Prepare test and inspection reports. Record as-left set points of adjustable devices.

3.6 SYSTEM FUNCTION TESTS

A. System function tests shall prove the correct interaction of sensing, processing, and action devices. Perform system function tests after field quality control tests have been completed and all components have passed specified tests.

1. Develop test parameters and perform tests for the purpose of evaluating performance of integral components and their functioning as a complete unit within design requirements and manufacturer's published data.
2. Verify the correct operation of interlock safety devices for fail-safe functions in addition to design function.
3. Verify the correct operation of sensing devices, alarms, and indicating devices.

3.7 FOLLOW-UP SERVICE

A. Voltage Monitoring and Adjusting: After Substantial Completion, but not more than six months after Final Acceptance, if requested by Owner, perform the following voltage monitoring:

1. During a period of normal load cycles as evaluated by Owner, perform seven days of three-phase voltage recording at the outgoing section of each switchgear. Use voltmeters with calibration traceable to NIST standards and with a chart speed of not less than 1 inch per hour. Voltage unbalance greater than 1 percent between phases, or deviation of phase...
voltage from the nominal value by more than plus or minus 5 percent during the test period, is unacceptable.

2. Corrective Action: If test results are unacceptable, perform the following corrective action, as appropriate:
 a. Adjust switchgear taps.
 b. Prepare written request for voltage adjustment by electric utility.

3. Retests: Repeat monitoring, after corrective action has been performed, until specified results are obtained.

4. Report:
 a. Prepare a written report covering monitoring performed and corrective action taken.

B. Infrared Inspection: Perform the survey during periods of maximum possible loading. Remove covers prior to the inspection.

1. After Substantial Completion, but not more than 60 days after Final Acceptance, perform infrared inspection of the electrical power connections of the switchgear.

2. Instrument: Inspect distribution systems with imaging equipment capable of detecting a minimum temperature difference of 1deg C at 30 deg C.

3. Record of Infrared Inspection: Prepare a certified report that identifies the testing technician and equipment used and lists the results as follows:
 a. Description of equipment to be tested.
 b. Discrepancies.
 c. Temperature difference between the area of concern and the reference area.
 d. Probable cause of temperature difference.
 e. Areas inspected. Identify inaccessible and unobservable areas and equipment.
 f. Identify load conditions at time of inspection.
 g. Provide photographs and thermograms of the deficient area.

4. Act on inspection results according to the recommendations of NETA ATS, Table 100.18. Correct possible and probable deficiencies as soon as Owner’s operations permit. Retest until deficiencies are corrected.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain systems.

END OF SECTION 261323
SECTION 262213 - LOW-VOLTAGE DISTRIBUTION TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes distribution, dry-type transformers with a nominal primary and secondary rating of 600 V and less, with capacities up to 1500 kVA.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.

B. Shop Drawings:

1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.
3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Seismic Qualification Data: Certificates, for transformers, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
4. Certification: Indicate that equipment meets Project equipment seismic requirements.

C. Source quality-control reports.

D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Inspection: On receipt, inspect for and note any shipping damage to packaging and transformer.

1. If manufacturer packaging is removed for inspection, and transformer will be stored after inspection, re-package transformer using original or new packaging materials that provide protection equivalent to manufacturer's packaging.

B. Storage: Store in a warm, dry, and temperature-stable location in original shipping packaging.

C. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

D. Handling: Follow manufacturer's instructions for lifting and transporting transformers.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Controlled Power Company; an Emerson company.
2. Eaton.
4. Hammond Power Solutions Inc.
5. Jefferson Electric, Inc.
2.2 GENERAL TRANSFORMER REQUIREMENTS

A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.

B. Comply with NFPA 70.
 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

C. Transformers Rated 15 kVA and Larger:
 1. Comply with 10 CFR 431 (DOE 2016) efficiency levels.
 2. Marked as compliant with DOE 2016 efficiency levels by an NRTL.

D. Shipping Restraints: Paint or otherwise color-code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

2.3 DISTRIBUTION TRANSFORMERS

A. Comply with NFPA 70, and list and label as complying with UL 1561.

B. Provide transformers that are constructed to withstand seismic forces specified in Section 260548.16 "Seismic Controls for Electrical Systems."

C. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
 1. One leg per phase.
 2. Core volume shall allow efficient transformer operation at 10 percent above the nominal tap voltage.
 3. Grounded to enclosure.

D. Coils: Continuous windings without splices except for taps.
 1. Coil Material: Copper.
 2. Internal Coil Connections: Brazed or pressure type.

E. Encapsulation: Transformers smaller than 30 kVA shall have core and coils completely resin encapsulated.

F. Enclosure: Ventilated.
1. NEMA 250, Type 2: Core and coil shall be encapsulated within resin compound using a vacuum-pressure impregnation process to seal out moisture and air.
2. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.
3. Wiring Compartment: Sized for conduit entry and wiring installation.
4. Finish: Comply with NEMA 250.

G. Taps for Transformers 3 kVA and Smaller: One 5 percent tap above normal full capacity.
H. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity.
I. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.
J. Insulation Class, Smaller Than 30 kVA: 180 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.
K. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.
L. Grounding: Provide ground-bar kit or a ground bar installed on the inside of the transformer enclosure.
M. Electrostatic Shielding: Each winding shall have an independent, single, full-width copper electrostatic shield arranged to minimize interwinding capacitance.
 1. Arrange coil leads and terminal strips to minimize capacitive coupling between input and output terminals.
 2. Include special terminal for grounding the shield.
N. Neutral: Rated 200 percent of full load current for K-factor-rated transformers.
O. Wall Brackets: Manufacturer's standard brackets.
P. Low-Sound-Level Requirements: Maximum sound levels when factory tested according to IEEE C57.12.91, as follows:
 1. 9.00 kVA and Less: 40 dBA.
 2. 9.01 to 30.00 kVA: 45 dBA.
 3. 30.01 to 50.00 kVA: 45 dBA for K-factors of 1, 4, and 9.
 4. 50.01 to 150.00 kVA: 50 dBA for K-factors of 1, 4, and 9.
 5. 150.01 to 300.00 kVA: 55 dBA for K-factors of 1, 4, and 9.
 6. 300.01 to 500.00 kVA: 60 dBA for K-factors of 1, 4, and 9.
 7. 500.01 to 700.00: 62 dBA for K-factors of 1, 4, and 9.
 8. 700.01 to 1000.00: 67 dBA for K-factors of 13 and 20.
2.4 IDENTIFICATION

A. Nameplates: Engraved, laminated-acrylic or melamine plastic signs for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 260553 "Identification for Electrical Systems."

B. Nameplates: Self-adhesive label for each distribution transformer. Self-adhesive labels are specified in Section 260553 "Identification for Electrical Systems."

2.5 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.
 1. Resistance measurements of all windings at rated voltage connections and at all tap connections.
 2. Ratio tests at rated voltage connections and at all tap connections.
 3. Phase relation and polarity tests at rated voltage connections.
 4. No load losses, and excitation current and rated voltage at rated voltage connections.
 5. Impedance and load losses at rated current and rated frequency at rated voltage connections.
 6. Applied and induced tensile tests.
 7. Regulation and efficiency at rated load and voltage.
 8. Insulation-Resistance Tests:
 a. High-voltage to ground.
 b. Low-voltage to ground.
 c. High-voltage to low-voltage.
 9. Temperature tests.

B. Factory Sound-Level Tests: Conduct sound-level tests on equipment for this Project.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.

C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.
D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.

E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.

F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install wall-mounted transformers level and plumb with wall brackets fabricated by transformer manufacturer.
 1. Coordinate installation of wall-mounted and structure-hanging supports with actual transformer provided.
 2. Brace wall-mounted transformers as specified in Section 260548.16 "Seismic Controls for Electrical Systems."

B. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions and requirements in Section 260529 "Hangers and Supports for Electrical Systems."
 1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

C. Secure transformer to concrete base according to manufacturer's written instructions.

D. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.

E. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.
3.4 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections with the assistance of a factory-authorized service representative.

E. Small (Up to 167-kVA Single-Phase or 500-kVA Three-Phase) Dry-Type Transformer Field Tests:

1. Visual and Mechanical Inspection.
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, and grounding.
 c. Verify that resilient mounts are free and that any shipping brackets have been removed.
 d. Verify the unit is clean.
 e. Perform specific inspections and mechanical tests recommended by manufacturer.
 f. Verify that as-left tap connections are as specified.
 g. Verify the presence of surge arresters and that their ratings are as specified.

2. Electrical Tests:
 a. Measure resistance at each winding, tap, and bolted connection.
 b. Perform insulation-resistance tests winding-to-winding and each winding-to-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index: the value of the index shall not be less than 1.0.
 c. Perform turns-ratio tests at all tap positions. Test results shall not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. If test fails, replace the transformer.
 d. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.

F. Large (Larger Than 167-kVA Single Phase or 500-kVA Three Phase) Dry-Type Transformer Field Tests:

1. Visual and Mechanical Inspection:
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, and grounding.
 c. Verify that resilient mounts are free and that any shipping brackets have been removed.
 d. Verify the unit is clean.
 e. Perform specific inspections and mechanical tests recommended by manufacturer.
 f. Verify that as-left tap connections are as specified.
g. Verify the presence of surge arresters and that their ratings are as specified.

2. Electrical Tests:
 a. Measure resistance at each winding, tap, and bolted connection.
 b. Perform insulation-resistance tests winding-to-winding and each winding-to-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index: the value of the index shall not be less than 1.0.
 c. Perform power-factor or dissipation-factor tests on all windings.
 d. Perform turns-ratio tests at all tap positions. Test results shall not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. If test fails, replace the transformer.
 e. Perform an excitation-current test on each phase.
 f. Perform an applied voltage test on all high- and low-voltage windings to ground. See IEEE C57.12.91, Sections 10.2 and 10.9.
 g. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.

G. Remove and replace units that do not pass tests or inspections and retest as specified above.

H. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.
 1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
 2. Perform two follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.
 3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.

I. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.

B. Output Settings Report: Prepare a written report recording output voltages and tap settings.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.
END OF SECTION 262213
SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.
 3. Load centers.
 4. Electronic-grade panelboards.

1.3 DEFINITIONS

A. ATS: Acceptance testing specification.
B. GFCI: Ground-fault circuit interrupter.
C. GFEP: Ground-fault equipment protection.
D. HID: High-intensity discharge.
E. MCCB: Molded-case circuit breaker.
F. SPD: Surge protective device.
G. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of panelboard.
 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 2. Include dimensions and manufacturers’ technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Shop Drawings: For each panelboard and related equipment.
1. Include dimensioned plans, elevations, sections, and details.
2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
4. Detail bus configuration, current, and voltage ratings.
5. Short-circuit current rating of panelboards and overcurrent protective devices.
6. Include evidence of NRTL listing for series rating of installed devices.
7. Include evidence of NRTL listing for SPD as installed in panelboard.
8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
9. Include wiring diagrams for power, signal, and control wiring.
10. Key interlock scheme drawing and sequence of operations.
11. Include time-current coordination curves for each type and rating of overcurrent protective device included in panelboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device. Include an Internet link for electronic access to downloadable PDF of the coordination curves.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For testing agency.

B. Panelboard Schedules: For installation in panelboards. Submit final versions after load balancing.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Keys: Two spares for each type of panelboard cabinet lock.
2. Circuit Breakers Including GFCI and GFEP Types: Two spares for each panelboard.
3. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
4. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
1.8 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or ISO 9002 certified.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.10 FIELD CONDITIONS

A. Environmental Limitations:

1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:

 a. Ambient Temperature: Not exceeding minus 22 deg F to plus 104 deg F.
 b. Altitude: Not exceeding 6600 feet.

B. Service Conditions: NEMA PB 1, usual service conditions, as follows:

1. Ambient temperatures within limits specified.
2. Altitude not exceeding 6600 feet.

C. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:

1. Notify Construction Manager no fewer than two days in advance of proposed interruption of electric service.
2. Do not proceed with interruption of electric service without Construction Manager's written permission.
3. Comply with NFPA 70E.

1.11 WARRANTY

A. Panelboard Warranty Period: 18 months from date of Substantial Completion.

B. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace SPD that fails in materials or workmanship within specified warranty period.

1. SPD Warranty Period: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PANELBOARDS COMMON REQUIREMENTS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NEMA PB 1.

E. Comply with NFPA 70.

F. Enclosures: Flush and Surface-mounted, dead-front cabinets.

1. Rated for environmental conditions at installed location.

 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 5.

2. Height: 84 inches maximum.

3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.

4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.

5. Skirt for Surface-Mounted Panelboards: Same gage and finish as panelboard front with flanges for attachment to panelboard, wall, and ceiling or floor.

6. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.

7. Finishes:

 a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer’s standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 b. Back Boxes: Same finish as panels and trim.
 c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.
G. Incoming Mains:

1. Location: Convertible between top and bottom.
2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

H. Phase, Neutral, and Ground Buses:

 a. Plating shall run entire length of bus.
 b. Bus shall be fully rated the entire length.
2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.

I. Conductor Connectors: Suitable for use with conductor material and sizes.

2. Terminations shall allow use of 75 deg C rated conductors without derating.
3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
4. Main and Neutral Lugs: Compression type, with a lug on the neutral bar for each pole in the panelboard.
5. Ground Lugs and Bus-Configured Terminators: Compression type, with a lug on the bar for each pole in the panelboard.
6. Feed-Through Lugs: Compression type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
7. Gutter-Tap Lugs: Compression type suitable for use with conductor material and with matching insulating covers. Locate at same end of bus as incoming lugs or main device.

J. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.

K. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

1. Percentage of Future Space Capacity: 20 percent.
L. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

B. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD Type 1.

2.3 POWER PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
4. Square D; by Schneider Electric.

B. Panelboards: NEMA PB 1, distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.

1. For doors more than 36 inches high, provide two latches, keyed alike.

D. Mains: Circuit breaker

1. Shunt Trip: Provide shunt trip unit on all noted, distribution panel board main circuit breaker to operate the breaker on signal from fire alarm system. Shunt 120-V trip coil shall be energized from separate circuit, set to trip at 75 percent of rated voltage.
2. Alarm Switch: Single-pole, normally open contact that actuates only when circuit breaker trips.

F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Eaton.
4. Square D; by Schneider Electric.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker.

D. Branch Overcurrent Protective Devices: circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

F. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Eaton.
3. Square D; by Schneider Electric.

B. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.

1. Thermal-Magnetic Circuit Breakers:
 a. Inverse time-current element for low-level overloads.
 b. Instantaneous magnetic trip element for short circuits.
 c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

3. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.

4. GFCl Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).

5. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).

8. MCCB Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Breaker handle indicates tripped status.
 c. UL listed for reverse connection without restrictive line or load ratings.
 d. Lugs: Compression style, suitable for number, size, trip ratings, and conductor materials.
 e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 f. Rating Plugs: Three-pole breakers with ampere ratings greater than 150 amperes shall have interchangeable rating plugs or electronic adjustable trip units.
 g. Alarm Switch: Single-pole, normally open contact that actuates only when circuit breaker trips.
 h. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
 i. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function with other upstream or downstream devices.
 j. Multipole units enclosed in a single housing with a single handle.
 k. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
 l. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

2.6 IDENTIFICATION

A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.

B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.

C. Circuit Directory: Directory card inside panelboard door, mounted in metal frame with transparent protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

D. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.7 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.

B. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.

C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.

D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Comply with NECA 1.

C. Install panelboards and accessories according to NEMA PB 1.1.

D. Equipment Mounting:

 1. Install panelboards on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
2. Attach panelboard to the vertical finished or structural surface behind the panelboard.
3. Comply with requirements for seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."

E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

F. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

G. Mount top of trim 90 inches above finished floor unless otherwise indicated.

H. Mount panelboard cabinet plumb and rigid without distortion of box.

I. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.

J. Mount surface-mounted panelboards to steel slotted supports 1-1/4 inch in depth. Orient steel slotted supports vertically.

K. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.
 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.

L. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.

M. Install filler plates in unused spaces.

N. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future. Stub four 1-inch empty conduits into raised floor space or below slab not on grade.

O. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

P. Mount spare fuse cabinet in accessible location.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.
C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

D. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers stated in NETA ATS, Paragraph 7.6 Circuit Breakers. Perform optional tests. Certify compliance with test parameters.
 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 3. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 c. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

E. Panelboards will be considered defective if they do not pass tests and inspections.
F. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573.16 "Coordination Studies."

C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.

 1. Measure loads during period of normal facility operations.
 2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
 4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 PROTECTION

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416
SECTION 262713 - ELECTRICITY METERING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes electricity metering work to accommodate utility company revenue meters, and Owner's electricity meters used to manage the electrical power system.

1.3 DEFINITIONS

A. KY or KYZ Pulse: Term used by the metering industry to describe a method of measuring consumption of electricity (kWh) that is based on a relay opening and closing in response to the rotation of the disk in the meter. Electronic meters generate pulses electronically.

1.4 ACTION SUBMITTALS

A. Product Data:
 1. For each type of meter.
 2. For metering infrastructure components.
 3. For metering software.

B. Shop Drawings: For electricity-metering equipment.
 1. Include elevation views of front panels of control and indicating devices and control stations.
 2. Include diagrams for power, signal, and control wiring.
 3. Wire Termination Diagrams and Schedules: Include diagrams for power, signal, and control wiring. Identify terminals and wiring designations and color-codes to facilitate installation, operation, and maintenance. Indicate recommended types, wire sizes, and circuiting arrangements for field-installed wiring, and show circuit protection features. Differentiate between manufacturer-installed and field-installed wiring.
 4. Include series-combination rating data for modular meter centers with main disconnect device.
 5. Block Diagram: Show interconnections between components specified in this Section and devices furnished with power distribution system components. Indicate data communication paths and identify networks, data buses, data gateways, concentrators,
and other devices used. Describe characteristics of network and other data communication lines.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Submit evidence that meters are compatible with connected monitoring and control devices and systems specified in

1. Show interconnecting signal and control wiring, and interface devices to show compatibility of meters.
2. For reporting and billing interfaces and adapters, list network protocols and provide statements from manufacturers that input and output devices comply with interoperability requirements of the protocol.

B. Qualification Data: For testing agency.

C. Field quality-control reports.

D. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Application and operating software documentation.
2. Software licenses.
3. Software service agreement.
4. Device address list.
5. Hard copies of manufacturer's operating specifications, user's guides for software and hardware, and PDF files on a USB storage device of hard-copy Submittal.
6. Meter data sheet for each meter, listing nameplate data and serial number, accuracy certification, and test results.
7. Meter installation and billing software startup report.

1.7 FIELD CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Construction Manager shall be notified and issued written permission no fewer than two days in advance of proposed interruption of electrical service.
1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: An NRTL.

1.9 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of metering equipment that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Damage from transient voltage surges.

2. Warranty Period: Cost to repair or replace any parts for two years from date of Substantial Completion.

3. Extended Warranty Period: Cost of replacement parts (materials only, f.o.b. the nearest shipping point to Project site), for eight years, that failed in service due to transient voltage surges.

1.10 COORDINATION

A. Electrical Service Connections:

1. Coordinate with utility companies and utility-furnished components.
 a. Comply with requirements of utility providing electrical power services.
 b. Coordinate installation and connection of utilities and services, including provision for electricity-metering components.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 916.

2.2 UTILITY METERING INFRASTRUCTURE

A. Install metering accessories furnished by the utility company, complying with its requirements.

B. Utility-Furnished Meters: Connect data transmission facility of metering equipment installed by the Utility.
1. Data Transmission: Transmit pulse data over control-circuit conductors, classified as Class 1 per NFPA 70, Article 725. Comply with Section 260523 "Control-Voltage Electrical Power Cables."

C. Current-Transformer Cabinets: Comply with requirements of electrical-power utility company.

D. Meter Sockets:
 1. Comply with requirements of electrical-power utility company.

E. Arc-Flash Warning Labels:
 1. Labels: Comply with requirements for "Arc-Flash Warning Labels" in Section 260573.19 "Arc-Flash Studies." Apply a 3-1/2-by-5-inch thermal transfer label of high-adhesion polyester for each work location included in the analysis.
 2. Labels: Comply with requirements for "Self-Adhesive Equipment Labels" and "Signs" in Section 260553 "Identification for Electrical Systems." Apply a 3-1/2-by-5-inch thermal transfer label of high-adhesion polyester for each work location included in the analysis. Labels shall be machine printed, with no field-applied markings.
 a. The label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:
 1) Location designation.
 2) Nominal voltage.
 3) Flash protection boundary.
 4) Hazard risk category.
 5) Incident energy.
 6) Working distance.
 7) Engineering report number, revision number, and issue date.

2.3 ELECTRICITY METERS

A. System Description: Able to meter designated activity loads, with or without external alarm, control, and communication capabilities, or other optional features.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. Davidge Controls.
 2. Eaton.
 5. Square D; by Schneider Electric.
 a. Circuit: 120/240-V ac, 100 A.
b. Measure: kWh, onboard LED display.
c. Remote-Reading Options: None.

C. General Requirements for Meters:
1. Meters Certification: Certified by as complying with 4 CCR 4027, Article 2.2.
2. Certify that meters comply with ANSI C12.20 requirements by a laboratory accredited by
the National Voluntary Laboratory Accreditation Program (NVLAP) of the National
Institute of Standards and Technology (NIST). The laboratory shall use test equipment
that is certified annually and is traceable to NIST standards.
3. Enclosure: Supplied by meter manufacturer, NEMA 250, Type 3R minimum, with
provisions for locking or sealing.
4. Identification: Comply with requirements in Section 260553 "Identification for Electrical
Systems."
5. Onboard Nonvolatile Data Storage: kWh, until reset.
6. Sensors: Current-sensing type, supplied by electronic meter manufacturer, with current or
voltage output, selected for optimum range and accuracy for meters indicated for this
application.
 a. Type: Split and solid core, complying with recommendation of meter
 manufacturer.

D. kWh Meter: Electronic three-phase meters, measuring electricity use.
1. Voltage and Phase Configuration: Meter shall be designed for use on circuits with
 voltage rating and phase configuration indicated for its application.
2. Display: LCD with characters not less than 0.25 inch high, indicating accumulative kWh
 and current kilowatt load. Retain accumulated kWh in a nonvolatile memory, until reset.
3. Display: Digital electromechanical counter, indicating accumulative kWh.

E. kWhd Meter: Electronic three-phase meters, measuring electricity use and demand. Demand
shall be integrated over a 15-minute interval.
1. Voltage and Phase Configuration: Meter shall be designed for use on circuits with
 voltage rating and phase configuration indicated for its application.
2. Display: LCD with characters not less than 0.25 inch high, indicating the following:
 a. Accumulative kWh.
 b. Current time and date.
 c. Current demand.
 d. Historic peak demand.
 e. Time and date of historic peak demand.
3. Retain accumulated kWh and historic peak demand in a nonvolatile memory, until reset.

F. KY and KYZ Pulse Totalizer:
1. Pulse Totalizer: An instrument for demand and billing applications where one or more
 utility revenue meters stream KY or KYZ energy pulses. The instrument shall totalize
 kWh accumulated over the user-selected period and shall log the maximum and minimum
kWhd for that period. Record each period with a date/time stamp. Time period shall be user selected from one to 60 minutes.

a. Pulse Input: One, individually programmable, KYZ Form C (three-wire) contact pulse channels. Pulse interval, pulse rate, and minimum pulse width shall be field adjustable, set for the pulse stream provided by the utility revenue meter.

b. Data Totalizing Capacity of Each Channel: Not less than 149 days at 15-minute intervals.

d. Clock: Line frequency.

G. Current-Transformer Cabinet: Size and configuration as recommended by metering equipment manufacturer for use with indicated connected feeder and sensors.

H. Data Transmission Cable: Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with equipment installation requirements in NECA 1.

B. Install meters furnished by utility company. Install raceways and equipment according to utility company's written instructions. Provide empty conduits for metering leads and extend grounding connections as required by utility company.

C. Install modular meter center according to switchboard installation requirements in NECA 400.

D. Install arc-flash labels as required by NFPA 70.

E. Wiring Method:

1. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

2. Install unshielded, twisted-pair cable for control and signal transmission conductors, complying with Section 271513 "Communications Copper Horizontal Cabling."

3. Minimum conduit size shall be 1/2 inch.

3.2 IDENTIFICATION

A. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

1. Series Combination Warning Label: Self-adhesive labels, with text as required by NFPA 70.
3.3 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Tests and Inspections:
 1. Equipment and Software Setup:
 a. Set meter date and time clock.
 b. Test, calibrate, and connect pulse metering system.
 c. Set and verify billing demand interval for demand meters.
 d. Report settings and calibration results.
 e. Set up reporting and billing software, insert billing location names and initial constant values and variable needed for billing computations.
 2. Connect a load of known kilowatt rating, 1.5 kW minimum, to a circuit supplied by metered feeder.
 3. Turn off circuits supplied by metered feeder and secure them in off condition.
 4. Run test load continuously for eight hours minimum, or longer, to obtain a measurable meter indication. Use test-load placement and setting that ensures continuous, safe operation.
 5. Check and record meter reading at end of test period and compare with actual electricity used, based on test-load rating, duration of test, and sample measurements of supply voltage at test-load connection. Record test results.
 6. Generate test report and billing for each tenant or activity from the meter reading tests.

E. Electricity metering will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

3.4 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
 1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.
3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s clerical and maintenance personnel to use, adjust, operate, and maintain the electronic metering and billing software.

END OF SECTION 262713
SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Standard-grade receptacles, 125 V, 20 A.
2. GFCI receptacles, 125 V, 20 A.
3. Toggle switches, 120/277 V, 20 A.
4. Wall plates.
5. Poke through assemblies

1.3 DEFINITIONS

A. AFCI: Arc-fault circuit interrupter.
B. BAS: Building automation system.
C. EMI: Electromagnetic interference.
D. GFCI: Ground-fault circuit interrupter.
E. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
F. RFI: Radio-frequency interference.
G. SPD: Surge protective device.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
C. Samples: One for each type of device and wall plate specified, in each color specified.
1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Service/Power Poles: One for every 10, but no fewer than one.
2. Floor Service-Outlet Assemblies: One for every 10, but no fewer than one.
3. Poke-Through, Fire-Rated Closure Plugs: One for every five floor service outlets installed, but no fewer than two.
4. SPD Receptacles: One for every 10 of each type installed, but no fewer than two of each type.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

B. Comply with NFPA 70.

C. RoHS compliant.

D. Comply with NEMA WD 1.

E. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:

1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
2. Devices shall comply with requirements in this Section.

F. Devices for Owner-Furnished Equipment:

1. Receptacles: Match plug configurations.
2. Cord and Plug Sets: Match equipment requirements.

G. Device Color:
1. Wiring Devices Connected to Normal Power System: As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.

H. Wall Plate Color: For plastic covers, match device color.

I. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STANDARD-GRADE RECEPTACLES, 125 V, 20 A

A. Duplex Receptacles, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Two pole, three wire, and self-grounding.
3. Configuration: NEMA WD 6, Configuration 5-20R.
4. Standards: Comply with UL 498 and FS W-C-596.

B. Weather-Resistant Duplex Receptacle, 125 V, 20 A:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
3. Configuration: NEMA WD 6, Configuration 5-20R.
5. Marking: Listed and labeled as complying with NFPA 70, "Receptacles in Damp or Wet Locations" Article.

2.3 GFCI RECEPTACLES, 125 V, 20 A

A. Duplex GFCI Receptacles, 125 V, 20 A:
1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. **Description:** Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding.

3. **Configuration:** NEMA WD 6, Configuration 5-20R.

4. **Type:** Non-feed through.

5. **Standards:** Comply with UL 498, UL 943 Class A, and FS W-C-596.

2.4 TOGGLE SWITCHES, 120/277 V, 20 A

A. **Single-Pole Switches, 120/277 V, 20 A:**

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 d. Pass & Seymour/Legrand (Pass & Seymour).

2. **Standards:** Comply with UL 20 and FS W-S-896.

2.5 WALL PLATES

A. **Single Source:** Obtain wall plates from same manufacturer of wiring devices.

B. **Single and combination types shall match corresponding wiring devices.**

1. **Plate-Securing Screws:** Metal with head color to match plate finish.
2. **Material for Finished Spaces:** 0.035-inch-thick, satin-finished, Type 302 stainless steel.
3. **Material for Unfinished Spaces:** Galvanized steel.
4. **Material for Damp Locations:** Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

C. **Wet-Location, Weatherproof Cover Plates:** NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

D. **Antimicrobial Cover Plates:**
1. Contact surfaces treated with a coating that kills 99.9 percent of certain common bacteria within two hours when regularly and properly cleaned.

2. Tarnish resistant.

2.6 POKE-THROUGH ASSEMBLIES

A. Description: Factory-fabricated and -wired assembly of below-floor junction box with multichanneled, through-floor raceway/firestop unit and detachable matching floor service-outlet assembly.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Hubbell Incorporated; Wiring Device-Kellems.
2. Pass & Seymour/Legrand (Pass & Seymour).
3. Square D; by Schneider Electric.
4. Wiremold / Legrand.

C. Standards: Comply with scrub water exclusion requirements in UL 514.

D. Service-Outlet Assembly: Flush type with two simplex receptacles and space for two RJ-45 jacks, complying with requirements in Section 271513 "Communications Copper Horizontal Cabling."

E. Size: Selected to fit nominal 4-inch cored holes in floor and matched to floor thickness.

F. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.

G. Closure Plug: Arranged to close unused 4-inch cored openings and reestablish fire rating of floor.

H. Wiring Raceways and Compartments: For a minimum of four No. 12 AWG conductors and a minimum of four, four-pair cables that comply with requirements in Section 271513 "Communications Copper Horizontal Cabling."

2.7 SERVICE POLES

A. Dual-Channel Service Poles:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Hubbell Premise Wiring.
 b. Panduit Corp.
2. Description: Factory-assembled and -wired units to extend power and voice and data communication from distribution wiring concealed in ceiling to devices or outlets in pole near floor.
3. Poles: Nominal 2.5-inch-square cross-section, with height adequate to extend from floor to at least 6 inches above ceiling, and with separate channels for power wiring and voice and data communication cabling.
4. Mounting: Ceiling trim flange with concealed bracing arranged for positive connection to ceiling supports; with pole foot and carpet pad attachment.
5. Material: Aluminum.
6. Finishes: Manufacturer's standard painted finish and trim combination.
7. Wiring: Sized for minimum of five No. 12 AWG power and ground conductors and a minimum of four, balanced twisted pair data communication cables.
8. Power Receptacles: Two duplex, 20-A, straight-blade receptacles complying with requirements in this Section.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:
 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes, and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 3. The length of free conductors at outlets for devices shall comply with NFPA 70, Article 300, without pigtails.
 4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.
D. Device Installation:

1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:

1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.
2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:

1. Install dimmers within terms of their listing.
2. Verify that dimmers used for fan-speed control are listed for that application.
3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers’ device, listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through GFCI receptacles where protection of downstream receptacles is not required.
3.3 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

C. Essential Electrical System: Mark receptacles supplied from the essential electrical system to allow easy identification using a self-adhesive label.

3.4 FIELD QUALITY CONTROL

A. Test Instruments: Use instruments that comply with UL 1436.

B. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

C. Perform the following tests and inspections:

1. Test Instruments: Use instruments that comply with UL 1436.
2. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

D. Tests for Receptacles:

1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault-current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

E. Test straight-blade for the retention force of the grounding blade according to NFPA 99. Retention force shall be not less than 4 oz.

F. Wiring device will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

END OF SECTION 262726
SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Cartridge fuses rated 600 V ac and less for use in the following:
 a. Control circuits.
 b. Motor-control centers.
 c. Panelboards.
 d. Switchboards.
 e. Enclosed controllers.
 f. Enclosed switches.

2. Spare-fuse cabinets.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:

1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.

2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.

4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse. Submit in electronic format suitable for use in coordination software and in PDF format.

5. Coordination charts and tables and related data.
6. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017700 "Closeout Procedures," Section 017823 "Operation and Maintenance Data," include the following:

1. Ambient temperature adjustment information.
2. Current-limitation curves for fuses with current-limiting characteristics.
3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse used on the Project. Submit in electronic format suitable for use in coordination software and in PDF format.
4. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.6 FIELD CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Bussmann, an Eaton business.
2. Edison; a brand of Bussmann by Eaton.
3. Littelfuse, Inc.
4. Mersen USA.

B. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.
2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

1. Type RK-1: 600-V, zero- to 600-A rating, 200 kAIC.
2. Type RK-5: 600-V, zero- to 600-A rating, 200 kAIC.
3. Type CC: 600-V, zero- to 30-A rating, 200 kAIC, fast acting.
4. Type CD: 600-V, 31- to 60-A rating, 200 kAIC, fast acting.
5. Type J: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
6. Type L: 600-V, 601- to 6000-A rating, 200 kAIC, time delay.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.

B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

A. Cartridge Fuses:
1. Feeders: Class J, time delay.
2. Motor Branch Circuits: Class RK1, time delay.
3. Large Motor Branch (601-4000 A): Class L, time delay.
4. Other Branch Circuits: Class RK1, time delay.
5. Control Transformer Circuits: Class CC, time delay, control transformer duty.
6. Provide open-fuse indicator fuses or fuse covers with open fuse indication.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813
SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Fusible switches.
2. Nonfusible switches.
3. Receptacle switches.
4. Shunt trip switches.
5. Molded-case circuit breakers (MCCBs).

1.3 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

1. Enclosure types and details for types other than NEMA 250, Type 1.
2. Current and voltage ratings.
3. Short-circuit current ratings (interrupting and withstand, as appropriate).
4. Include evidence of a nationally recognized testing laboratory (NRTL) listing for series rating of installed devices.
5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF and electronic format.
B. Shop Drawings: For enclosed switches and circuit breakers.

1. Include plans, elevations, sections, details, and attachments to other work.
2. Include wiring diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

 a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 b. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF and electronic format.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
2. Fuse Pullers: Two for each size and type.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.

1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.9 FIELD CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
2. Altitude: Not exceeding 6600 feet.

1.10 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.

1. Warranty Period: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

D. Comply with NFPA 70.

2.2 FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. ABB Inc.
2. Eaton.
5. Square D; by Schneider Electric.

B. Type HD, Heavy Duty:

1. Single throw.
2. Three pole.
3. 600-V ac.
4. 1200 A and smaller
5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses.
6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
5. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating - 120-V ac.
6. Hookstick Handle: Allows use of a hookstick to operate the handle.
7. Lugs: Compression type, suitable for number, size, and conductor material.
8. Service-Rated Switches: Labeled for use as service equipment.

2.3 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Eaton.
2. General Electric Company.
4. Square D; by Schneider Electric.

B. Type HD, Heavy Duty, Three Pole, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
5. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating - 120-V ac.
6. Hookstick Handle: Allows use of a hookstick to operate the handle.
7. Lugs: Compression type, suitable for number, size, and conductor material.
8. Service-Rated Switches: Labeled for use as service equipment.
2.4 SHUNT TRIP SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Bussmann, an Eaton business.
2. Littelfuse, Inc.
3. Mersen USA.

B. General Requirements: Comply with ASME A17.1, UL 50, and UL 98, with Class J fuse block and 200-kA interrupting and short-circuit current rating.

C. Type HD, Heavy-Duty, Three Pole, Single-Throw Fusible Switch: 600-V ac, 100 A; UL 98 and NEMA KS 1; integral shunt trip mechanism; horsepower rated, with clips or bolt pads to accommodate indicated fuses; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.

D. Control Circuit: 120-V ac; obtained from integral control power transformer, with primary and secondary fuses, with a control power transformer of enough capacity to operate shunt trip, pilot, indicating and control devices.

E. Accessories:

1. Oiltight key switch for key-to-test function.
2. Oiltight red ON pilot light.
3. Isolated neutral lug; 100 percent rating.
4. Mechanically interlocked auxiliary contacts that change state when switch is opened and closed.
5. Form C alarm contacts that change state when switch is tripped.
6. Three-pole, double-throw, fire-safety and alarm relay; 24-V dc coil voltage.
7. Three-pole, double-throw, fire-alarm voltage monitoring relay complying with NFPA 72.
8. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
9. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
10. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
11. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating - 120-V ac.
12. Hookstick Handle: Allows use of a hookstick to operate the handle.
13. Lugs: Compression type, suitable for number, size, and conductor material.

2.5 MOLDED-CASE CIRCUIT BREAKERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Eaton.
2. General Electric Company.
4. Square D; by Schneider Electric.

B. Circuit breakers shall be constructed using glass-reinforced insulating material. Current carrying components shall be completely isolated from the handle and the accessory mounting area.

C. Circuit breakers shall have a toggle operating mechanism with common tripping of all poles, which provides quick-make, quick-break contact action. The circuit-breaker handle shall be over center, be trip free, and reside in a tripped position between on and off to provide local trip indication. Circuit-breaker escutcheon shall be clearly marked on and off in addition to providing international I/O markings. Equip circuit breaker with a push-to-trip button, located on the face of the circuit breaker to mechanically operate the circuit-breaker tripping mechanism for maintenance and testing purposes.

D. The maximum ampere rating and UL, IEC, or other certification standards with applicable voltage systems and corresponding interrupting ratings shall be clearly marked on face of circuit breaker. Circuit breakers shall be 100 percent rated.

E. MCCBs shall be equipped with a device for locking in the isolated position.

F. Lugs shall be suitable for 140 deg F rated wire on 125-A circuit breakers and below.

G. Standard: Comply with UL 489 with interrupting capacity to comply with available fault currents.

I. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

J. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. Instantaneous trip.
 2. Long- and short-time pickup levels.
 3. Long- and short-time time adjustments.
 4. Ground-fault pickup level, time delay, and I-squared t response.

K. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

L. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

M. Ground-Fault Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).
N. Ground-Fault Equipment-Protection (GFEP) Circuit Breakers: With Class B ground-fault protection (30-mA trip).

O. Features and Accessories:

1. Standard frame sizes, trip ratings, and number of poles.
2. Lugs: Compression type, suitable for number, size, trip ratings, and conductor material.
3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
4. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.
5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
6. Auxiliary Contacts: Two SPDT switches with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts, "b" contacts operate in reverse of circuit-breaker contacts.
7. Alarm Switch: One NO contact that operates only when circuit breaker has tripped.
8. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.

2.6 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

B. Enclosure Finish: The enclosure shall be gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (NEMA 250 Type 1).

C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.

D. Operating Mechanism: The circuit-breaker operating handle shall be externally operable with the operating mechanism being an integral part of the box, not the cover. The cover interlock mechanism shall have an externally operated override. The override shall not permanently disable the interlock mechanism, which shall return to the locked position once the override is released. The tool used to override the cover interlock mechanism shall not be required to enter the enclosure in order to override the interlock.

E. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.

F. NEMA 250 Type 7/9 enclosures shall be furnished with a breather and drain kit to allow their use in outdoor and wet location applications.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.

1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
2. Outdoor Locations: NEMA 250, Type 3R.
4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

3.3 INSTALLATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

C. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

D. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

E. Install fuses in fusible devices.

F. Comply with NFPA 70 and NECA 1.

3.4 IDENTIFICATION

A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
D. Perform tests and inspections with the assistance of a factory-authorized service representative.
E. Tests and Inspections for Switches:
 1. Visual and Mechanical Inspection:
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, grounding, and clearances.
 c. Verify that the unit is clean.
 d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 e. Verify that fuse sizes and types match the Specifications and Drawings.
 f. Verify that each fuse has adequate mechanical support and contact integrity.
 g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 1) Use a low-resistance ohmmeter.
 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
 h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
 i. Verify correct phase barrier installation.
 j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.
 2. Electrical Tests:
a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

c. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.

d. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.

e. Perform ground fault test according to NETA ATS 7.14 "Ground Fault Protection Systems, Low-Voltage."

F. Tests and Inspections for Molded Case Circuit Breakers:

1. Visual and Mechanical Inspection:

 a. Verify that equipment nameplate data are as described in the Specifications and shown on the Drawings.

 b. Inspect physical and mechanical condition.

 c. Inspect anchorage, alignment, grounding, and clearances.

 d. Verify that the unit is clean.

 e. Operate the circuit breaker to ensure smooth operation.

 f. Inspect bolted electrical connections for high resistance using one of the two following methods:

 1) Use a low-resistance ohmmeter.

 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.

 a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.

 g. Inspect operating mechanism, contacts, and chutes in unsealed units.

 h. Perform adjustments for final protective device settings in accordance with the coordination study.
2. Electrical Tests:

a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

b. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with circuit breaker closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.

c. Perform a contact/pole resistance test. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.

d. Perform insulation resistance tests on all control wiring with respect to ground. Applied potential shall be 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable. Test duration shall be one minute. For units with solid state components, follow manufacturer's recommendation. Insulation resistance values shall be no less than two megohms.

e. Determine the following by primary current injection:

 1) Long-time pickup and delay. Pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.

 2) Short-time pickup and delay. Short-time pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.

 3) Ground-fault pickup and time delay. Ground-fault pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.

 4) Instantaneous pickup. Instantaneous pickup values shall be as specified and within manufacturer's published tolerances.

f. Test functionality of the trip unit by means of primary current injection. Pickup values and trip characteristics shall be as specified and within manufacturer's published tolerances.

g. Perform minimum pickup voltage tests on shunt trip and close coils in accordance with manufacturer's published data. Minimum pickup voltage of the shunt trip and close coils shall be as indicated by manufacturer.

h. Verify correct operation of auxiliary features such as trip and pickup indicators; zone interlocking; electrical close and trip operation; trip-free, anti-pump function; and trip unit battery condition. Reset all trip logs and indicators. Investigate units that do not function as designed.

i. Verify operation of charging mechanism. Investigate units that do not function as designed.

3. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
4. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

5. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

G. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

H. Prepare test and inspection reports.
 1. Test procedures used.
 2. Include identification of each enclosed switch and circuit breaker tested and describe test results.
 3. List deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573.16 "Coordination Studies."

END OF SECTION 262816
SECTION 262913.03 - MANUAL AND MAGNETIC MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

2. Enclosed full-voltage magnetic motor controllers.
3. Combination full-voltage magnetic motor controllers.
4. Enclosures.
5. Accessories.
6. Identification.

1.3 DEFINITIONS

A. CPT: Control power transformer.
B. MCCB: Molded-case circuit breaker.
C. MCP: Motor circuit protector.
D. NC: Normally closed.
E. OCPD: Overcurrent protective device.
F. SCCR: Short-circuit current rating.
G. SCPD: Short-circuit protective device.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For each type of magnetic controller.
1. Include plans, elevations, sections, and mounting details.
2. Indicate dimensions, weights, required clearances, and location and size of each field connection.
3. Wire Termination Diagrams and Schedules: Include diagrams for signal, and control wiring. Identify terminals and wiring designations and color-codes to facilitate installation, operation, and maintenance. Indicate recommended types, wire sizes, and circuiting arrangements for field-installed wiring, and show circuit protection features. Differentiate between manufacturer-installed and field-installed wiring.
4. Include features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.

C. Product Schedule: List the following for each enclosed controller:
1. Each installed magnetic controller type.
2. NRTL listing.
3. Factory-installed accessories.
5. SCCR of integrated unit.
6. For each combination magnetic controller include features, characteristics, ratings, and factory setting of the SCPD and OCPD.
 a. Listing document proving Type 2 coordination.
7. For each series-rated combination state the listed integrated short-circuit current (withstand) rating of SCPD and OCPDs by an NRTL acceptable to authorities having jurisdiction.

1.5 INFORMATIONAL SUBMITTALS
A. Qualification Data: For testing agency.
B. Seismic Qualification Data: Certificates, for magnetic controllers, from manufacturer.
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For magnetic controllers to include in operation and maintenance manuals.
1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

a. Routine maintenance requirements for magnetic controllers and installed components.
b. Manufacturer's written instructions for testing and adjusting circuit breaker and MCP trip settings.
c. Manufacturer's written instructions for setting field-adjustable overload relays.
d. Load-Current and Overload-Relay Heater List: Compile after motors have been installed and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.
e. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
3. Indicating Lights: Two of each type and color installed.
4. Auxiliary Contacts: Furnish one spare(s) for each size and type of magnetic controller installed.
5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Store controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.

B. If stored in areas subject to weather, cover controllers to protect them from weather, dirt, dust, corrosive substances, and physical damage. Remove loose packing and flammable materials from inside controllers; install temporary electric heating, with at least 50 W per controller.
1.10 FIELD CONDITIONS

A. Ambient Environment Ratings: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

1. Ambient Temperature: Not less than 23 deg F and not exceeding 104 deg F.
3. The effect of solar radiation is not significant.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

B. UL Compliance: Fabricate and label magnetic motor controllers to comply with UL 508 and UL 60947-4-1.

C. NEMA Compliance: Fabricate motor controllers to comply with ICS 2.

2.2 MANUAL MOTOR CONTROLLERS

A. Fractional Horsepower Manual Controllers (FHPMC): "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Eaton.
 b. General Electric Company.
 c. Rockwell Automation, Inc.
 e. Square D; by Schneider Electric.

2. Configuration: Nonreversing.

3. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters matched to nameplate full-load current of actual protected motor; external reset push button; bimetallic type.

2.3 ENCLOSED FULL-VOLTAGE MAGNETIC MOTOR CONTROLLERS

A. Description: Across-the-line start, electrically held, for nominal system voltage of 600-V ac and less.
B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Eaton.
2. General Electric Company.
3. Rockwell Automation, Inc.
5. Square D; by Schneider Electric.

C. Standard: Comply with NEMA ICS 2, general purpose, Class A.

D. Configuration: Nonreversing.

E. Contactor Coils: Pressure-encapsulated type with coil transient suppressors when indicated.

1. Operating Voltage: Manufacturer's standard, unless indicated.

F. Control Power:

1. For on-board control power, obtain from line circuit or from integral CPT. The CPT shall have capacity to operate integral devices and remotely located pilot, indicating, and control devices.
 a. Spare CPT Capacity: 100 VA.

G. Overload Relays:

1. Solid-State Overload Relay:
 a. Switch or dial selectable for motor-running overload protection.
 b. Sensors in each phase.
 c. Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
 d. Class II ground-fault protection shall comply with UL 1053 to interrupt low-level ground faults. The ground-fault detection system shall include circuitry that will prevent the motor controller from tripping when the fault current exceeds the interrupting capacity of the controller. Equip with start and run delays to prevent nuisance trip on starting, and a trip indicator.

H. Digital communication module, using RS-485 Modbus, RTU protocol, 4-wire connection to host devices with a compatible port to transmit the following to the LAN:

1. Instantaneous rms current each phase, and 3-phase average.
2. Voltage: L-L for each phase, L-L 3-phase average, L-N each phase and L-N 3-phase average - rms.
3. Active Energy (kWh): 3-phase total.
4. Power Factor: Each phase and 3-phase total.
5. Demand: kW.
2.4 COMBINATION FULL-VOLTAGE MAGNETIC MOTOR CONTROLLER

A. Description: Factory-assembled, combination full-voltage magnetic motor controller consisting of the controller described in this article, indicated disconnecting means, SCPD and OCPD, in a single enclosure.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Eaton.
2. General Electric Company.
3. Rockwell Automation, Inc.
5. Square D; by Schneider Electric.

C. Standard: Comply with NEMA ICS 2, general purpose, Class A.

D. Configuration: Nonreversing.

E. Contactor Coils: Pressure-encapsulated type with coil transient suppressors when indicated.

1. Operating Voltage: Manufacturer's standard, unless indicated.

F. Control Power:

1. For on-board control power, obtain from line circuit or from integral CPT. The CPT shall have capacity to operate integral devices and remotely located pilot, indicating, and control devices.
 a. Spare CPT Capacity: 100 VA.

G. Overload Relays:

1. Solid-State Overload Relay:
 a. Switch or dial selectable for motor-running overload protection.
 b. Sensors in each phase.
 c. Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.

H. Class II ground-fault protection shall comply with UL 1053 to interrupt low-level ground faults. The ground-fault detection system shall include circuitry that will prevent the motor controller from tripping when the fault current exceeds the interrupting capacity of the controller. Equip with start and run delays to prevent nuisance trip on starting, and a trip indicator.

I. Digital communication module, using RS-485 Modbus, RTU protocol, [2] [4]-wire connection to host devices with a compatible port to transmit the following to the LAN:

1. Instantaneous rms current each phase, and 3-phase average.
2. Voltage: L-L for each phase, L-L 3-phase average, L-N each phase and L-N 3-phase average - rms.
3. Active Energy (kWh): 3-phase total.
4. Power Factor: Each phase and 3-phase total.
5. Demand: kW.

J. Fusible Disconnecting Means:
1. NEMA KS 1, heavy-duty, horsepower-rated, fusible switch with clips or bolt pads to accommodate indicated fuses.
2. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.

2.5 ENCLOSURES

A. Comply with NEMA 250, type designations as indicated on Drawings, complying with environmental conditions at installed location.

B. The construction of the enclosures shall comply with NEMA ICS 6.

C. Controllers in hazardous (classified) locations shall comply with UL 1203.

2.6 ACCESSORIES

A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.

1. Push Buttons, Pilot Lights, and Selector Switches: Standard-duty, except as needed to match enclosure type. Heavy-duty or oil-tight where indicated in the controller schedule.
 a. Push Buttons: As indicated in the controller schedule.
 b. Pilot Lights: As indicated in the controller schedule.

2. Elapsed Time Meters: Heavy duty with digital readout in hours; resettable.
3. Meters: Panel type, 2-1/2-inch minimum size with 90- or 120-degree scale and plus or minus two percent accuracy. Where indicated, provide selector switches with an off position.

B. Motor protection relays shall be with solid-state sensing circuit and isolated output contacts for hardwired connections.

1. Phase-failure.
2. Phase-reversal, with bicolor LED to indicate normal and fault conditions. Automatic reset when phase reversal is corrected.
3. Under/overvoltage, operate when the circuit voltage reaches a preset value, and drop out when the operating voltage drops to a level below the preset value. Include adjustable time-delay setting.
4.
C. Space heaters, with NC auxiliary contacts, to mitigate condensation in Type 3R enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.

D. Sun shields installed on fronts, sides, and tops of enclosures installed outdoors and subject to direct and extended sun exposure.

2.7 IDENTIFICATION

A. Controller Nameplates: Baked enamel signs, as described in Section 260553 "Identification for Electrical Systems," for each compartment, mounted with corrosion-resistant screws.

B. Arc-Flash Warning Labels:

1. Comply with requirements in Section 260573.19 "Arc-Flash Hazard Analysis." Produce a 3.5-by-5-inch self-adhesive equipment label for each work location included in the analysis.

 a. The label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:

 1) Location designation.
 2) Nominal voltage.
 3) Flash protection boundary.
 4) Hazard risk category.
 5) Incident energy.
 6) Working distance.
 7) Engineering report number, revision number, and issue date.

 b. Labels shall be machine printed, with no field-applied markings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and space conditions for compliance with requirements for motor controllers, their relationship with the motors, and other conditions affecting performance of the Work.

3.2 INSTALLATION

A. Comply with NECA 1.

B. Wall-Mounted Controllers: Install magnetic controllers on walls with tops at uniform height indicated, and by bolting units to wall or mounting on lightweight structural-steel channels
bolted to wall. For controllers not at walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems" unless otherwise indicated.

C. Floor-Mounted Controllers: Install controllers on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."

D. Comply with requirements for seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."

E. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and NFPA 70.

F. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

G. Setting of Overload Relays: Select and set overloads on the basis of full-load current rating as shown on motor nameplate. Adjust setting value for special motors as required by NFPA 70 for motors that are high-torque, high-efficiency, and so on.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections with the assistance of a factory-authorized service representative.

D. Tests and Inspections:
 2. Visual and Mechanical Inspection:
 a. Compare equipment nameplate data with drawings and specifications.
 b. Inspect physical and mechanical condition.
 c. Inspect anchorage, alignment, and grounding.
 d. Verify the unit is clean.
 e. Inspect contactors:
 1) Verify mechanical operation.
2) Verify contact gap, wipe, alignment, and pressure are according to manufacturer's published data.

f. Motor-Running Protection:

1) Verify overload element rating is correct for its application.
2) If motor-running protection is provided by fuses, verify correct fuse rating.

G. Inspect bolted electrical connections for high resistance using one of the two following methods:

1) Use a low-resistance ohmmeter. Compare bolted connection resistance values with values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data or NETA ATS Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.

h. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.

3. Electrical Tests:

a. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Insulation-resistance values shall be according to manufacturer's published data or NETA ATS Table 100.1. In the absence of manufacturer's published data, use Table 100.5. Values of insulation resistance less than those of this table or manufacturer's recommendations shall be investigated and corrected.

b. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.

c. Test motor protection devices according to manufacturer's published data.

d. Test circuit breakers as follows:

1) Operate the circuit breaker to ensure smooth operation.
2) For adjustable circuit breakers, adjust protective device settings according to the coordination study. Comply with coordination study recommendations.

e. Perform operational tests by initiating control devices.

4. Infrared Inspection: Perform the survey during periods of maximum possible loading. Remove all necessary covers prior to the inspection.

b. After Substantial Completion, but not more than 60 days after Final Acceptance, perform infrared inspection of the electrical power connections of each motor controller.

c. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each motor controller 11 months after date of Substantial Completion.

d. Report of Infrared Inspection: Prepare a certified report that identifies the testing technician and equipment used, and lists the following results:

1) Description of equipment to be tested.
2) Discrepancies.
3) Temperature difference between the area of concern and the reference area.
4) Probable cause of temperature difference.
5) Areas inspected. Identify inaccessible and unobservable areas and equipment.
6) Load conditions at time of inspection.
7) Photographs and thermograms of the deficient area.
8) Recommended action.

e. Equipment: Inspect distribution systems with imaging equipment capable of detecting a minimum temperature difference of 1 deg C at 30 deg C. The equipment shall detect emitted radiation and convert detected radiation to a visual signal.

f. Act on inspection results and recommended action, and considering the recommendations of NETA ATS, Table 100.18. Correct possible and probable deficiencies as soon as Owner's operations permit. Retest until deficiencies are corrected.

E. Motor controller will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

3.5 SYSTEM FUNCTION TESTS

A. System function tests shall prove the correct interaction of sensing, processing, and action devices. Perform system function tests after field quality control tests have been completed and all components have passed specified tests.

1. Develop test parameters and perform tests for the purpose of evaluating performance of integral components and their functioning as a complete unit within design requirements and manufacturer's published data.
2. Verify the correct operation of interlock safety devices for fail-safe functions in addition to design function.
3. Verify the correct operation of sensing devices, alarms, and indicating devices.

B. Motor controller will be considered defective if it does not pass the system function tests and inspections.

C. Prepare test and inspection reports.
3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain switchgear.

END OF SECTION 262913.03
SECTION 264113 - LIGHTNING PROTECTION FOR STRUCTURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes lightning protection system for ordinary structures.

B. Section includes lightning protection system for the following:

 1. Ordinary structures.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings:

 1. Include layouts of the lightning protection system, with details of the components to be used in the installation.
 2. Include raceway locations needed for the installation of conductors.
 3. Details of air terminals, ground rods, ground rings, conductor supports, splices, and terminations, including concealment requirements.
 4. Include roof attachment details, coordinated with roof installation.
 5. Calculations required by NFPA 780 for bonding of metal bodies.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Lightning protection system Shop Drawings, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

 1. Lightning protection cabling attachments to roofing systems and accessories.
 2. Lightning protection strike termination device attachment to roofing systems, coordinated with the roofing system manufacturer.
 3. Lightning protection system components penetrating roofing and moisture protection systems and system components, coordinated with the roofing system manufacturer.

B. Qualification Data: For Installer.
C. Product Certificates: For each type of roof adhesive for attaching the roof-mounted air terminal assemblies, approved by the roofing-material manufacturer.

D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For lightning protection system to include in maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

 a. Dimensioned site plan showing dimensioned route of the ground loop conductor and the ground rod locations. Comply with requirements of Section 017839 "Project Record Documents."
 b. A system testing and inspection record, listing the results of inspections and ground resistance tests, as recommended by NFPA 780, Annex D.

B. Completion Certificate:

1. UL Master Label Certificate.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: LPI Master Installer.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Advanced Lightning Technology, Ltd.
2. East Coast Lightning Equipment Inc.
3. Harger Lightning & Grounding.
5. Independent Protection Co.
7. Preferred Lightning Protection.
8. Robbins Lightning, Inc.

2.2 PERFORMANCE REQUIREMENTS

A. NFPA Lightning Protection Standard: Comply with NFPA 780 requirements for Class I buildings.
B. UL Lightning Protection Standard: Comply with UL 96A requirements for Class I buildings.

C. Lightning Protection Components, Devices, and Accessories: Listed and labeled by a qualified testing agency as complying with UL 96, and marked for intended location and application.

2.3 MATERIALS

A. Air Terminals:
 1. Copper unless otherwise indicated.
 2. 3/8-inch diameter by 18 inches long.
 3. Pointed tip.
 4. Integral base support.

B. Air Terminal Bracing:
 1. Copper.
 2. 1/4-inch diameter rod.

C. Class 1 Main Conductors:
 1. Stranded Copper: 57,400 circular mils in diameter.

D. Secondary Conductors:
 1. Stranded Copper: 26,240 circular mils in diameter.

E. Ground Loop Conductor: Stranded copper.

F. Ground Rods:
 1. Material: Solid copper.
 3. Rods shall be not less than 120 inches long.

G. Conductor Splices and Connectors: Compression fittings that are installed with hydraulically operated tools, or exothermic welds, approved for use with the class type.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install lightning protection components and systems according to NFPA 780.
B. Install conductors with direct paths from air terminals to ground connections. Avoid bends less than 90 degrees and 8 inches in radius and narrow loops.

C. Conceal conductors within normal view from exterior locations at grade within 200 feet of building. Comply with requirements for concealed systems in NFPA 780.
 1. Roof penetrations required for down conductors and connections to structural-steel framework shall be made using listed through-roof fitting and connector assemblies with solid rods and appropriate roof flashings. Use materials approved by the roofing manufacturer for the purpose. Conform to the methods and materials required at roofing penetrations of the lightning protection components to ensure compatibility with the roofing specifications and warranty.
 2. Install conduit where necessary to comply with conductor concealment requirements.
 3. Air Terminals on Single-Ply Membrane Roofing: Comply with adhesive manufacturer's written instructions.

D. Ground Ring Electrode: The conductor shall be not less than the main-size lightning conductor.

3.2 CONNECTIONS

A. Aboveground concealed connections, and connections in earth or concrete, shall be done by exothermic welds or by high-compression fittings listed for the purpose.

B. Aboveground exposed connections shall be done using the following types of connectors, listed and labeled for the purpose: exothermic weld.

C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.

3.3 CORROSION PROTECTION

A. Do not combine materials that can form an electrolytic couple that will accelerate corrosion in the presence of moisture unless moisture is permanently excluded from junction of such materials.

B. Use conductors with protective coatings where conditions would cause deterioration or corrosion of conductors.

3.4 FIELD QUALITY CONTROL

A. Special Inspections: Engage a qualified special inspector to perform the following special inspections:
1. Perform inspections as required to obtain a UL Master Label for system.
2. Perform inspections to obtain an LPI certification.

B. Prepare test and inspection reports and certificates.

END OF SECTION 264113
SECTION 264313 - SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes:

1. Type 1 surge protective devices.
2. Type 2 surge protective devices.
3. Enclosures.
4. Conductors and cables.

B. Related Requirements:

1. Section 262413 "Switchboards" for integral SPDs installed by switchboard manufacturer.
2. Section 262416 "Panelboards" for integral SPDs installed by panelboard manufacturer.
3. Section 262726 "Wiring Devices" for integral SPDs installed by receptacle manufacturer.

1.3 DEFINITIONS

A. Inominal: Nominal discharge current.

B. MCOV: Maximum continuous operating voltage.

C. Mode(s), also Modes of Protection: air of electrical connections where the VPR applies.

D. MOV: Metal-oxide varistor; an electronic component with a significant non-ohmic current-voltage characteristic.

E. NRTL: Nationally recognized testing laboratory.

F. OCPD: Overcurrent protective device.

G. SCCR: Short-circuit current rating.

H. SPD: Surge protective device.

I. Type 1 SPDs: Permanently connected SPDs intended for installation between the secondary of the service transformer and the line side of the service disconnect overcurrent device.
J. Type 2 SPDs: Permanently connected SPDs intended for installation on the load side of the service disconnect overcurrent device, including SPDs located at the branch panel.

K. Type 3 SPDs: Point of utilization SPDs.

L. Type 4 SPDs: Component SPDs, including discrete components, as well as assemblies.

M. Type 5 SPDs: Discrete component surge suppressors, such as MOVs that may be mounted on a printed wiring board, connected by its leads or provided within an enclosure with mounting means and wiring terminations.

N. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include electrical characteristics, specialties, and accessories for SPDs.
2. NRTL certification of compliance with UL 1449.
 a. Tested values for VPRs.
 b. Innominal ratings.
 c. MCOV, type designations.
 d. OCPD requirements.
 e. Manufacturer's model number.
 f. System voltage.
 g. Modes of protection.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

B. Sample Warranty: For manufacturer's special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For SPDs to include in maintenance manuals.

1.7 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace SPDs that fail in materials or workmanship within five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 TYPE 2 SURGE PROTECTIVE DEVICES (SPDs)

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. ABB Electrification Products.
3. Eaton.
4. Leviton Manufacturing Co., Inc.
5. Liebert; a brand of Vertiv.
6. Schneider Electric USA, Inc.

B. Source Limitations: Obtain devices from single source from single manufacturer.

C. Standards:

1. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1449, Type 2.
2. Comply with UL 1283.

D. Product Options:

1. Include LED indicator lights for power and protection status.
2. Include internal thermal protection that disconnects the SPD before damaging internal suppressor components.
3. Include NEMA ICS 5, dry Form C contacts rated at 2 A and 24 V ac for remote monitoring of protection status.
4. Include surge counter.

E. Performance Criteria:

1. MCOV: Not less than 125 percent of nominal system voltage for 208Y/120 V and 120/240 V power systems, and not less than 115 percent of nominal system voltage for 480Y/277 V power systems.
2. Peak Surge Current Rating: Minimum single-pulse surge current withstand rating per phase must not be less than 100 kA. Peak surge current rating must be arithmetic sum of the ratings of individual MOVs in a given mode.
3. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V, three-phase, four-wire circuits must not exceed the following:
 a. Line to Neutral: 1200 V for 480Y/277 V; 700 V for 208Y/120 V.
 b. Line to Ground: 1200 V for 480Y/277 V; 700 V for 208Y/120 V.
 c. Neutral to Ground: 1200 V for 480Y/277 V; 700 V for 208Y/120 V.
 d. Line to Line: 2000 V for 480Y/277 V; 1200 V for 208Y/120 V.
4. Protection modes and UL 1449 VPR for 240/120 V, single-phase, three-wire circuits must not exceed the following:
 a. Line to Neutral: 700 V.
 b. Line to Ground: 700 V.
 c. Neutral to Ground: 700 V.
 d. Line to Line: 1200 V.

5. SCCR: Equal or exceed 200 kA.
6. Nominal Rating: 20 kA.

2.2 TYPE 3, TYPE 4, AND TYPE 5 SURGE PROTECTIVE DEVICES (SPDs)
 A. Type 3, Type 4, and Type 5 SPDs are not approved for field installation.

2.3 ENCLOSURES
 A. Indoor Enclosures: NEMA 250, Type 1.
 B. Outdoor Enclosures: NEMA 250, Type 4X.

2.4 CONDUCTORS AND CABLES
 A. Power Wiring: Same size as SPD leads, complying with Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 INSTALLATION
 A. Comply with NECA 1.
 B. Provide OCPD and disconnect for installation of SPD in accordance with UL 1449 and manufacturer's written instructions.
 C. Install leads between disconnects and SPDs short, straight, twisted, and in accordance with manufacturer's written instructions. Comply with wiring methods in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
 1. Do not splice and extend SPD leads unless specifically permitted by manufacturer.
 2. Do not exceed manufacturer's recommended lead length.
 3. Do not bond neutral and ground.
 D. Use crimped connectors and splices only. Wire nuts are unacceptable.
3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. Compare equipment nameplate data for compliance with Drawings and the Specifications.
 2. Inspect anchorage, alignment, grounding, and clearances.
 3. Verify that electrical wiring installation complies with manufacturer's written installation requirements.

B. SPDs that do not pass tests and inspections will be considered defective.

C. Prepare test and inspection reports.

3.3 STARTUP SERVICE

A. Complete startup checks in accordance with manufacturer's written instructions.

B. Do not perform insulation-resistance tests of the distribution wiring equipment with SPDs installed. Disconnect SPDs before conducting insulation-resistance tests; reconnect them immediately after the testing is over.

C. Energize SPDs after power system has been energized, stabilized, and tested.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to operate and maintain SPDs.

END OF SECTION 264313
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes the following types of LED luminaires:
 1. Highbay, linear.
 2. Linear industrial.

B. Related Requirements:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS

A. CCT: Correlated color temperature.

B. CRI: Color Rendering Index.

C. Fixture: See "Luminaire."

D. IP: International Protection or Ingress Protection Rating.

E. LED: Light-emitting diode.

F. Lumen: Measured output of lamp and luminaire, or both.

G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
4. Include emergency lighting units, including batteries and chargers.
5. Include life, output (lumens, CCT, and CRI), and energy-efficiency data.
6. Photometric data and adjustment factors based on laboratory tests, complying with IES "Lighting Measurements Testing and Calculation Guides" for each luminaire type. The adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied in this Project IES LM-79 and IES LM-80.
 a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
 b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Samples: For each luminaire and for each color and texture with standard factory-applied finish.

D. Samples for Initial Selection: For each type of luminaire with custom factory-applied finishes.
 1. Include Samples of luminaires and accessories involving color and finish selection.

E. Samples for Verification: For each type of luminaire.
 1. Include Samples of luminaires and accessories to verify finish selection.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Luminaires.
 2. Suspended ceiling components.
 3. Partitions and millwork that penetrate the ceiling or extend to within 12 inches of the plane of the luminaires.
 4. Structural members to which equipment and or luminaires will be attached.
 5. Initial access modules for acoustical tile, including size and locations.
 6. Items penetrating finished ceiling, including the following:
 a. Other luminaires.
 b. Air outlets and inlets.
 c. Speakers.
d. Sprinklers.
e. Access panels.
f. Ceiling-mounted projectors.

7. Moldings.

B. Qualification Data: For testing laboratory providing photometric data for luminaires.

C. Seismic Qualification Data: For luminaires, accessories, and components, from manufacturer.
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Product Certificates: For each type of luminaire.

E. Product Test Reports: For each type of luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.

F. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Lamps: Ten for every 100 of each type and rating installed. Furnish at least one of each type.
2. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
3. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.

C. Provide luminaires from a single manufacturer for each luminaire type.

D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

E. Mockups: For interior luminaires in room or module mockups, complete with power and control connections.

 1. Obtain Architect's approval of luminaires in mockups before starting installations.
 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

B. Ambient Temperature: 5 to 104 deg F.

 1. Relative Humidity: Zero to 95 percent.

C. Altitude: Sea level to 1000 feet.
2.2 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.

1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI.

C. Recessed luminaires shall comply with NEMA LE 4.

D. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.

E. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

F. California Title 24 compliant.

2.3 Highbay, Linear.

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Cooper Lighting, an Eaton business.
2. Elite Lighting Corporation.
3. GE Lighting Solutions.
4. Lighting Science Group.
5. RAB Lighting.

B. Nominal Operating Voltage: 277 V ac.

C. Lamp:

1. Minimum 1000 lm.
2. Minimum allowable efficacy of 80 lm/W.
3. CRI of minimum 80. CCT of 4100 K.
4. Rated lamp life of 50,000 hours to L70.
5. Dimmable from 100 percent to 0 percent of maximum light output.
6. Internal driver.
7. User-Replaceable Lamps:
 a. Bulb shape complying with ANSI C78.79.
b. Lamp base complying with ANSI C81.61.

8. Lens Thickness: At least 0.125-inch minimum unless otherwise indicated.

D. Housings:

1. Extruded-aluminum housing and heat sink.
2. Painted finish.
3. With integral mounting provisions.

E. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Components are designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

F. Diffusers and Globes:

1. Prismatic acrylic.
2. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
3. Glass: Annealed crystal glass unless otherwise indicated.
4. Lens Thickness: At least 0.125-inch minimum unless otherwise indicated.

G. Standards:

1. ENERGY STAR certified.
2. RoHS compliant.
3. UL Listing: Listed for damp location.

2.4 LINEAR INDUSTRIAL.

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Cooper Lighting, an Eaton business.
2. GE Lighting Solutions.
3. Lithonia Lighting; Acuity Brands Lighting, Inc.
4. RAB Lighting.

B. Lamp:

1. Minimum 5,000 lm.
2. Minimum allowable efficacy of 80 lm/W.
3. CRI of 80. CCT of 4100 K.
4. Rated lamp life of 50,000 hours to L70.
5. Dimmable from 100 percent to 0 percent of maximum light output.
6. Internal driver.
7. User-Replaceable Lamps:
a. Bulb shape complying with ANSI C78.79.
b. Lamp base complying with ANSI C81.61.

8. Lens Thickness: At least 0.125-inch minimum unless otherwise indicated.

C. Housings:

1. Extruded-aluminum housing and heat sink.
2. Painted finish.

D. Housing and Heat Sink Rating:

1. Class 1, Division 2 Group(s) A B C and D.
2. NEMA 4X.
3. IP 54.
4. IP 66.
5. Marine and wet locations.
6. CSA C22.2 No 137.
7. .

E. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Components are designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

F. Diffusers and Globes:

1. Prismatic acrylic.
2. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
3. Glass: Annealed crystal glass unless otherwise indicated.
4. Lens Thickness: At least 0.125-inch minimum unless otherwise indicated.

G. With integral mounting provisions.

H. Standards:

1. ENERGY STAR certified.
2. RoHS compliant.

2.5 MATERIALS

A. Metal Parts:

1. Free of burrs and sharp corners and edges.
2. Sheet metal components shall be steel unless otherwise indicated.
3. Form and support to prevent warping and sagging.

B. Steel:
1. ASTM A36/A36M for carbon structural steel.
2. ASTM A568/A568M for sheet steel.

C. Stainless Steel:
 1. Manufacturer's standard grade.
 2. Manufacturer's standard type, ASTM A240/240M.

D. Galvanized Steel: ASTM A653/A653M.

E. Aluminum: ASTM B209.

2.6 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.7 LUMINAIRE SUPPORT

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.

D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports:

1. Sized and rated for luminaire weight.
2. Able to maintain luminaire position after cleaning and relamping.
3. Provide support for luminaire without causing deflection of ceiling or wall.
4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.

E. Flush-Mounted Luminaires:

1. Secured to outlet box.
2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
3. Trim ring flush with finished surface.

F. Wall-Mounted Luminaires:

1. Attached to structural members in walls.
2. Do not attach luminaires directly to gypsum board.

G. Suspended Luminaires:

1. Ceiling Mount:
 a. Two 5/32-inch- diameter aircraft cable supports adjustable to 10 feet in length.

 4. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of luminaire chassis, including one at each end.
 5. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
H. Ceiling-Grid-Mounted Luminaires:

1. Secure to any required outlet box.
2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

I. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.6 STARTUP SERVICE

A. Comply with requirements for startup specified in Section 260943.16 "Addressable-Luminaire Lighting Controls."

B. Comply with requirements for startup specified in Section 260943.23 "Relay-Based Lighting Controls."

3.7 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.

1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 265119
SECTION 265213 - EMERGENCY AND EXIT LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Emergency lighting units.
2. Exit signs.
3. Luminaire supports.

1.3 DEFINITIONS

A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Emergency Lighting Unit: A lighting unit with internal or external emergency battery powered supply and the means for controlling and charging the battery and unit operation.
D. Fixture: See "Luminaire" Paragraph.
E. Lumen: Measured output of lamp and luminaire, or both.
F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of emergency lighting unit, exit sign, and emergency lighting support.

1. Include data on features, accessories, and finishes.
2. Include physical description of the unit and dimensions.
3. Battery and charger for light units.
4. Include life, output of luminaire (lumens, CCT, and CRI), and energy-efficiency data.
5. Include photometric data and adjustment factors based on laboratory tests, complying with IES LM-45, for each luminaire type.
a. Testing Agency Certified Data: For indicated luminaires and signs, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires and signs shall be certified by manufacturer.

b. Manufacturers’ Certified Data: Photometric data certified by manufacturer’s laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Shop Drawings: For nonstandard or custom luminaires.

1. Include plans, elevations, sections, and mounting and attachment details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring.

C. Samples: For each product and for each color and texture specified.

D. Samples for Initial Selection: For each type of luminaire with factory-applied finishes.

E. Samples for Verification: For each type of luminaire.

1. Include Samples of luminaires and accessories to verify finish selection.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Luminaires.
2. Suspended ceiling components.
3. Partitions and millwork that penetrate the ceiling or extend to within 12 inches of the plane of the luminaires.
4. Structural members to which equipment will be attached.
5. Size and location of initial access modules for acoustical tile.
6. Items penetrating finished ceiling including the following:
 a. Other luminaires.
 b. Air outlets and inlets.
 c. Speakers.
 d. Ceiling-mounted projectors.
 e. Sprinklers.
 f. Access panels.
7. Moldings.

B. Qualification Data: For testing laboratory providing photometric data for luminaires.

C. Product Certificates: For each type of luminaire.
D. Seismic Qualification Data: For luminaires, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
4. Provide seismic qualification certificate for each piece of equipment.

E. Product Test Reports: For each luminaire for tests performed by manufacturer and witnessed by a qualified testing agency.

F. Sample Warranty: For manufacturer's warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in emergency, operation, and maintenance manuals.

1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Lamps: 10 for every 100 of each type and rating installed. Furnish at least one of each type.
2. Luminaire-mounted, emergency battery pack: One for every 20 emergency lighting units. Furnish at least one of each type.
3. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
4. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.
C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

D. Mockups: For interior luminaires in room or module mockups, complete with power and control connections.

1. Obtain Architect's approval of luminaires and signs in mockups before starting installations.
2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Two year(s) from date of Substantial Completion.

B. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Emergency Power Unit Batteries: Five years from date of Substantial Completion. Full warranty shall apply for the entire warranty period.
2. Warranty Period for Self-Powered Exit Sign Batteries: Five years from date of Substantial Completion. Full warranty shall apply for the entire warranty period.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR EMERGENCY LIGHTING

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
B. NRTL Compliance: Fabricate and label emergency lighting units, exit signs, and batteries to comply with UL 924.

C. Comply with NFPA 70 and NFPA 101.

D. Comply with NEMA LE 4 for recessed luminaires.

E. Comply with UL 1598 for fluorescent luminaires.

F. Lamp Base: Comply with ANSI C81.61 or IEC 60061-1.

G. Bulb Shape: Complying with ANSI C79.1.

H. Internal Type Emergency Power Unit: Self-contained, modular, battery-inverter unit, factory mounted within luminaire body.
 1. Emergency Connection: Operate one lamp(s) continuously at an output of 1100 lumens each upon loss of normal power. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire ballast.
 2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 3. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Less than 0 deg F or exceeding 104 deg F, with an average value exceeding 95 deg F over a 24-hour period.
 b. Ambient Storage Temperature: Not less than minus 4 deg F and not exceeding 140 deg F.
 c. Humidity: More than 95 percent (condensing).
 d. Altitude: Exceeding 3300 feet.
 4. Nightlight Connection: Operate lamp continuously at 40 percent of rated light output.
 5. Test Push-Button and Indicator Light: Visible and accessible without opening luminaire or entering ceiling space.
 a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 7. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.
 8. Remote Test: Switch in handheld remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
9. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciation by an integral audible alarm and a flashing red LED.

I. External Type: Self-contained, modular, battery-inverter unit, suitable for powering one or more lamps, remote mounted from luminaire.

1. Emergency Connection: Operate one LED lamp continuously. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire.

2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.

5. Charger: Fully automatic, solid-state, constant-current type.

6. Housing: NEMA 250, Type 1 enclosure listed for installation inside, on top of, or remote from luminaire. Remote assembly shall be located no less than half the distance recommended by the emergency power unit manufacturer, whichever is less.

7. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.

8. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.

9. Remote Test: Switch in handheld remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.

10. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciation by an integral audible alarm and a flashing red LED.

2.2 EMERGENCY LIGHTING

A. General Requirements for Emergency Lighting Units: Self-contained units.

B. Emergency Luminaires:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Cooper Lighting, an Eaton business.
 b. Dual-Lite.
 c. GE Lighting Solutions.
 d. Lightolier; a Philips group brand.
 e. Lithonia Lighting; Acuity Brands Lighting, Inc.
 f. Operating at nominal voltage of 277 Vac.
g. Internal emergency power unit.

h. Rated for installation in damp locations, and for sealed and gasketed luminaires in wet locations.

i. UL 94 5VA flame rating.

C. Emergency Lighting Unit:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 b. Dual-Lite.
 c. Lighting Services, Inc.
 d. Lithonia Lighting; Acuity Brands Lighting, Inc.

2. Operating at nominal voltage of 277 V ac.

3. Wall with universal junction box adaptor.

4. UV stable thermoplastic housing, rated for damp locations.

5. Two LED lamp heads.

6. Internal emergency power unit.

D. Remote Emergency Lighting Units:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Cooper Lighting, an Eaton business.
 b. Hubbell Industrial Lighting; Hubbell Incorporated.
 c. Lithonia Lighting; Acuity Brands Lighting, Inc.

2. Operating at nominal voltage of 277 V ac.

3. Wall with universal junction box adaptor.

4. UV stable thermoplastic housing, rated for damp locations.

5. Two LED lamp heads.

6. External emergency power unit.

2.3 EXIT SIGNS

A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.

B. Internally Lighted Signs:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Amerlux.
 b. Cooper Lighting, an Eaton business.
c. Evenlite, Inc.
d. Hubbell Industrial Lighting; Hubbell Incorporated.
e. Lithonia Lighting; Acuity Brands Lighting, Inc.
f. Philips Lighting Company.
g. Ruud Lighting Direct.

2. Operating at nominal voltage of 277 V ac.
3. Lamps for AC Operation: Fluorescent, two for each luminaire; 20,000 hours of rated lamp life.
4. Lamps for AC Operation: LEDs; 50,000 hours minimum rated lamp life.
5. Self-Powered Exit Signs (Battery Type): Internal emergency power unit.
6. Master/Remote Sign Configurations:
 a. Master Unit: Comply with requirements above for self-powered exit signs, and provide additional capacity in battery for power connection to remote unit.
 b. Remote Unit: Comply with requirements above for self-powered exit signs, except omit power supply, battery, and test features. Arrange to receive full power requirements from master unit. Connect for testing concurrently with master unit as a unified system.

2.4 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access:
 1. Smooth operating, free of light leakage under operating conditions.
 2. Designed to permit relamping without use of tools.
 3. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:
 1. Prismatic acrylic.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Acrylic: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 4. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Housings:
 1. Extruded aluminum housing.
 2. Painted finish.

E. Conduit: Electrical metallic tubing, minimum 3/4 inch in diameter.
2.5 METAL FINISHES

A. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.6 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for conditions affecting performance of luminaires.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.

C. Examine walls, floors, roofs, and ceilings for suitable conditions where emergency lighting luminaires will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports:

1. Sized and rated for luminaire and emergency power unit weight.
2. Able to maintain luminaire position when testing emergency power unit.
3. Provide support for luminaire and emergency power unit without causing deflection of ceiling or wall.
4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire and emergency power unit weight and vertical force of 400 percent of luminaire weight.

E. Wall-Mounted Luminaire Support:
1. Attached to structural members in walls.
2. Do not attach luminaires directly to gypsum board.

F. Suspended Luminaire Support:

1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of luminaire chassis, including one at each end.
4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

G. Ceiling Grid Mounted Luminaires:

1. Secure to any required outlet box.
2. Secure emergency power unit using approved fasteners in a minimum of four locations, spaced near corners of emergency power unit.
3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Perform startup service:

1. Charge batteries minimum of 24 hours and conduct one-hour discharge test.
3.6 ADJUSTING

A. Adjustments: Within 12 months of date of Substantial Completion, provide on-site visit to do the following:

1. Inspect all luminaires. Replace lamps, batteries, signs, or luminaires that are defective.

 a. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

2. Conduct short-duration tests on all emergency lighting.

END OF SECTION 265213
SECTION 265619 – LED EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Exterior solid-state luminaires that are designed for and exclusively use LED lamp technology.
2. Luminaire supports.
3. Luminaire-mounted photoelectric relays.

B. Related Requirements:

1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.
2. Section 260926 "Lighting Control Panelboards" for panelboard-based lighting control.
3. Section 260933 "Central Dimming Controls" or Section 260936 "Modular Dimming Controls" for architectural dimming systems specified in Section 265100.
4. Section 260943.16 "Addressable-Luminaire Lighting Controls" and Section 260943.23 "Relay-Based Lighting Controls" for manual or programmable control systems with low-voltage control wiring or data communication circuits.
5. Section 265613 "Lighting Poles and Standards" for poles and standards used to support exterior lighting equipment.

1.3 DEFINITIONS

A. CCT: Correlated color temperature.

B. CRI: Color rendering index.

C. Fixture: See "Luminaire."

D. IP: International Protection or Ingress Protection Rating.

E. Lumen: Measured output of lamp and luminaire, or both.

F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of luminaire.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaire.
 4. Lamps, include life, output (lumens, CCT, and CRI), and energy-efficiency data.
 5. Photometric data and adjustment factors based on laboratory tests, complying with IES Lighting Measurements Testing and Calculation Guides, of each luminaire type. The adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied in this Project IES LM-79.
 a. Manufacturer's Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the NVLAP for Energy Efficient Lighting Products.
 b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
 6. Wiring diagrams for power, control, and signal wiring.
 7. Photoelectric relays.
 8. Means of attaching luminaires to supports and indication that the attachment is suitable for components involved.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Samples: For each luminaire and for each color and texture indicated with factory-applied finish.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Luminaires.
 2. Structural members to which luminaires will be attached.
 3. Underground utilities and structures.
 4. Existing underground utilities and structures.
 5. Above-grade utilities and structures.
 6. Existing above-grade utilities and structures.
 7. Building features.
 8. Vertical and horizontal information.
B. Qualification Data: For testing laboratory providing photometric data for luminaires.

C. Seismic Qualification Data: For luminaires, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

D. Product Certificates: For each type of the following:
 1. Luminaire.
 2. Photoelectric relay.

E. Product Test Reports: For each luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.

F. Source quality-control reports.

G. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and photoelectric relays to include in operation and maintenance manuals.
 1. Provide a list of all lamp types used on Project. Use ANSI and manufacturers' codes.
 2. Provide a list of all photoelectric relay types used on Project; use manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Lamps: Ten for every 100 of each type and rating installed. Furnish at least one of each type.
 2. Glass, Acrylic, and Plastic Lenses, Covers, and Other Optical Parts: One for every 100 of each type and rating installed. Furnish at least one of each type.
 3. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
 4. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.
1.8 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturers' laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products and complying with applicable IES testing standards.

C. Provide luminaires from a single manufacturer for each luminaire type.

D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

E. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

F. Mockups: For exterior luminaires, complete with power and control connections.
 1. Obtain Architect's approval of luminaires in mockups before starting installations.
 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed work.
 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering prior to shipping.

1.10 FIELD CONDITIONS

A. Verify existing and proposed utility structures prior to the start of work associated with luminaire installation.

B. Mark locations of exterior luminaires for approval by Architect prior to the start of luminaire installation.

1.11 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
1. Failures include, but are not limited to, the following:
 a. Structural failures, including luminaire support components.
 b. Faulty operation of luminaires and accessories.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.

2. Warranty Period: 2 year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

 A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

2.2 LUMINAIRE REQUIREMENTS

 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

 B. NRTL Compliance: Luminaires shall be listed and labeled for indicated class and division of hazard by an NRTL.

 C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

 D. UL Compliance: Comply with UL 1598 and listed for wet location.

 E. Lamp base complying with ANSI C81.61.

 F. Bulb shape complying with ANSI C79.1.

 G. CRI of minimum 80. CCT of 4100 K.

 H. L70 lamp life of 50,000 hours.

 I. Lamps dimmable from 100 percent to 0 percent of maximum light output.

 J. Internal driver.

 K. Nominal Operating Voltage: 277 V ac.

 L. In-line Fusing: Separate in-line fuse for each luminaire.

 M. Lamp Rating: Lamp marked for outdoor use.

 N. Source Limitations: Obtain luminaires from single source from a single manufacturer.
O. Source Limitations: For luminaires, obtain each color, grade, finish, type, and variety of luminaire from single source with resources to provide products of consistent quality in appearance and physical properties.

2.3 LUMINAIRE-MOUNTED PHOTOELECTRIC RELAYS

A. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Atlas Lighting Products,
2. Cooper Lighting, an Eaton business,
3. Eaton,
4. GE Lighting Solutions,
5. Lithonia Lighting; Acuity Brands Lighting, Inc,
6. Philips Lighting Company,
7. Schneider Electric USA, Inc,

B. Comply with UL 773 or UL 773A.

C. Contact Relays: Factory mounted, single throw, designed to fail in the on position, and factory set to turn light unit on at 1.5 to 3 fc and off at 4.5 to 10 fc with 15-second minimum time delay. Relay shall have directional lens in front of photocell to prevent artificial light sources from causing false turnoff.

1. Relay with locking-type receptacle shall comply with ANSI C136.10.
2. Adjustable window slide for adjusting on-off set points.

2.4 LUMINAIRE TYPES

A. Area and Site:

1. **Manufacturers:** Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Cooper Lighting, an Eaton business,
 b. Deco Lighting,
 c. Gallium Lighting, LLC,
 d. GE Lighting Solutions,
 e. Howard Lighting Products,
 f. Lightolier; a Philips group brand,
 g. Lithonia Lighting; Acuity Brands Lighting, Inc,
 h. RAB Lighting.

2. Luminaire Shape: Square.

3. Mounting: Pole and Building with extruded-aluminum rectangular round arm, 13 inches in length.

5. Housings:
 a. Extruded-aluminum housing and heat sink.
 b. painted finish.

2.5 MATERIALS

A. Metal Parts: Free of burrs and sharp corners and edges.

B. Sheet Metal Components: [Corrosion-resistant aluminum] [Stainless steel] [Epoxy-coated steel] <Insert material>. Form and support to prevent warping and sagging.

C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses.

D. Diffusers and Globes:
 1. Acrylic Diffusers: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

E. Lens and Refractor Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.

F. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 1. White Surfaces: 85 percent.
 2. Specular Surfaces: 83 percent.
 3. Diffusing Specular Surfaces: 75 percent.

G. Housings:
 1. Rigidly formed, weather- and light-tight enclosure that will not warp, sag, or deform in use.
 2. Provide filter/breather for enclosed luminaires.

H. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.

 1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage and coating.
2.6 FINISHES

A. Variations in Finishes: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

B. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.

C. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20 requirements; and seal aluminum surfaces with clear, high-build polyurethane enamel.
 3. Class I, Clear-Anodic Finish: AA-M32C22A41 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.

D. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1 or SSPC-SP 8.
 2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.

 a. Color: As selected by Architect from manufacturer's full range.

2.7 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire electrical conduit to verify actual locations of conduit connections before luminaire installation.

C. Examine walls, roofs, and canopy ceilings and overhang ceilings for suitable conditions where luminaires will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is substantially complete, clean luminaires used for temporary lighting and install new lamps.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Comply with NECA 1.

B. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.

C. Install lamps in each luminaire.

D. Fasten luminaire to structural support.

E. Supports:

1. Sized and rated for luminaire weight.
2. Able to maintain luminaire position after cleaning and relamping.
3. Support luminaires without causing deflection of finished surface.
4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.

F. Wall-Mounted Luminaire Support:

1. Attached to structural members in walls.

H. Install luminaires level, plumb, and square with finished grade unless otherwise indicated.
I. Coordinate layout and installation of luminaires with other construction.

J. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources, favoring a north orientation.

K. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" and Section 260533 "Raceways and Boxes for Electrical Systems" for wiring connections and wiring methods.

3.4 INSTALLATION OF INDIVIDUAL GROUND-MOUNTED LUMINAIRES

A. Aim as indicated on Drawings.

B. Install on concrete base with top 4 inches above finished grade or surface at luminaire location. Cast conduit into base, and finish by troweling and rubbing smooth. Concrete materials, installation, and finishing are specified in Section 033000 "Cast-in-Place Concrete."

3.5 CORROSION PREVENTION

A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.

B. Steel Conduits: Comply with Section 260533 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch-thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.6 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.7 FIELD QUALITY CONTROL

A. Inspect each installed luminaire for damage. Replace damaged luminaires and components.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.

2. Verify operation of photoelectric controls.

C. Illumination Tests:

1. Measure light intensities at night. Use photometers with calibration referenced to NIST standards. Comply with the following IES testing guide(s):
a. IES LM-5.
b. IES LM-50.
c. IES LM-52.
d. IES LM-64.
e. IES LM-72.

2. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.

D. Luminaire will be considered defective if it does not pass tests and inspections.

E. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain luminaires and photocell relays.

3.9 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.

1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 265619
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
B. Related Requirements outside of Division 27:
 1. Section 260526 “Grounding and Bonding for Electrical Systems.”

1.2 SUMMARY
A. Section Includes:
 1. Grounding conductors.
 2. Grounding connectors.
 3. Grounding busbars.
 4. Grounding rods.
 5. Grounding labeling.

1.3 DEFINITIONS
A. BCT: Bonding conductor for telecommunications.
B. TGB: Telecommunications grounding busbar.
C. TMGB: Telecommunications main grounding busbar.
D. Service Provider: The operator of a service that provides telecommunications transmission delivered over access provider facilities.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of product.
B. Shop Drawings: For communications equipment room signal reference grid. Include plans, elevations, sections, details, and attachments to other work.

1.5 INFORMATIONAL SUBMITTALS
A. As-Built Data: Plans showing as-built locations of grounding and bonding infrastructure, including the following:
1. Ground rods.
2. Ground and roof rings.
3. BCT, TMGB, TGBs, and routing of their bonding conductors.

B. Qualification Data: For installation supervisor, and field inspector.

C. Qualification Data: For testing agency and testing agency’s field supervisor, testing agency may be electrical contractor, submit testing qualifications for these systems.

D. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.

1. Result of the ground-resistance test, measured at the point of BCT connection.
2. Result of the bonding-resistance test at each TGB and its nearest grounding electrode.

1.7 QUALITY ASSURANCE

A. Installer Qualifications:
1. Field Inspector: Qualified to perform the on-site inspection, all qualification data must be submitted for review.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

C. Comply with TIA-607-C. All metallic pathways require grounding and bonding.

2.2 CONDUCTORS

A. Comply with UL 486A-486B.

B. Insulated Conductors: Stranded copper wire, green or green with yellow stripe insulation, insulated for 600 V, and complying with UL 83.

1. Ground wire for custom-length equipment ground jumpers shall be No. 6 AWG, 19-strand, UL-listed, Type THHN wire.
2. Cable Tray Equipment Grounding Wire: No. 6 AWG.
C. Cable Tray Grounding Jumper:

1. Not smaller than No. 6 AWG and not longer than 12 inches (300 mm). If jumper is a wire, it shall have a crimped grounding lug with two holes and long barrel for two crimps. If jumper is a flexible braid, it shall have a one-hole ferrule. Attach with grounding screw or connector provided by cable tray manufacturer.

2. Not smaller than No. 10 AWG and not longer than 12 inches (300 mm). If jumper is a wire, it shall have a crimped grounding lug with one hole and standard barrel for one crimp. If jumper is a flexible braid, it shall have a one- or two-hole ferrule. Attach with grounding screw or connector provided by cable tray manufacturer.

D. Bare Copper Conductors:

4. Bonding Cable: 28 kcmils (14.2 sq. mm), 14 strands of No. 17 AWG conductor, and 1/4 inch (6.3 mm) in diameter.

5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.

6. Bonding Jumper: Tinned-copper tape, braided conductors terminated with two-hole copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.

2.3 CONNECTORS

A. Irreversible connectors listed for the purpose. Listed by an NRTL as complying with NFPA 70 for specific types, sizes, and combinations of conductors and other items connected. Comply with UL 486A-486B.

B. Compression Wire Connectors: Crimp-and-compress connectors that bond to the conductor when the connector is compressed around the conductor. Comply with UL 467.

1. Electroplated tinned copper, C and H shaped.

C. Signal Reference Grid Connectors: Combination of compression wire connectors, access floor grounding clamps, bronze U-bolt grounding clamps, and copper split-bolt connectors, designed for the purpose.

D. Busbar Connectors: Cast silicon bronze, solderless compression-type, mechanical connector; with a long barrel and two holes spaced on 5/8- or 1-inch (15.8- or 25.4-mm) centers for a two-bolt connection to the busbar.

E. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
2.4 GROUNDING BUSBARS

A. TMGB: Predrilled, wall-mounted, rectangular bars of hard-drawn solid copper, 1/4 by 4 inches (6.3 by 100 mm) in cross section, length as indicated on Drawings. The busbar shall be NRTL listed for use as TMGB and shall comply with TIA-607-B.

1. Predrilling shall be with holes for use with lugs specified in this Section.
2. Mounting Hardware: Stand-off brackets that provide a 4-inch (100-mm) clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.
3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.

B. TGB: Predrilled rectangular bars of hard-drawn solid copper, 1/4 by 2 inches (6.3 by 50 mm) in cross section, length as indicated on Drawings. The busbar shall be for wall mounting, shall be NRTL listed as complying with UL 467, and shall comply with TIA-607-B.

1. Predrilling shall be with holes for use with lugs specified in this Section.
2. Mounting Hardware: Stand-off brackets that provide at least a 2-inch (50-mm) clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.
3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.

C. Rack and Cabinet Grounding Busbars: Rectangular bars of hard-drawn solid copper, accepting conductors ranging from No. 14 to No. 2/0 AWG, NRTL listed as complying with UL 467, and complying with TIA-607-B. Predrilling shall be with holes for use with lugs specified in this Section.

1. Cabinet-Mounted Busbar: Terminal block, with stainless-steel or copper-plated hardware for attachment to the cabinet.
2. Rack-Mounted Horizontal Busbar: Designed for mounting in 19- or 23-inch (483- or 584-mm) equipment racks. Include a copper splice bar for transitioning to an adjoining rack, and stainless-steel or copper-plated hardware for attachment to the rack.
3. Rack-Mounted Vertical Busbar: 72 or 36 inches (1827 or 914 mm) long, with stainless-steel or copper-plated hardware for attachment to the rack.

2.5 IDENTIFICATION

A. Comply with requirements for identification products in PANYNJ EWR Labeling Standards, to be provided.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the ac grounding electrode system and equipment grounding for compliance with requirements for maximum ground-resistance level and other conditions affecting performance of grounding and bonding of the electrical system.
B. Inspect the test results of the ac grounding system measured at the point of BCT connection.

C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

D. Proceed with connection of the BCT only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Bonding shall include the ac utility power service entrance, the communications cable entrance, and the grounding electrode system. The bonding of these elements shall form a loop so that each element is connected to at least two others.

B. Comply with NECA 1.

C. Comply with TIA-607-C.

3.3 APPLICATION

A. Conductors: Install solid conductor for No. 8 AWG and smaller and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

1. The bonding conductors between the TGB and structural steel of steel-frame buildings shall not be smaller than No. 6 AWG.
2. The bonding conductors between the TMGB and structural steel of steel-frame buildings shall not be smaller than No. 6 AWG.

B. Underground Grounding Conductors: Install barecopper conductor, No. 2 AWG minimum.

C. Conductor Terminations and Connections:

1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
3. Connections to Ground Rods at Test Wells: Bolted connectors.

D. Conductor Support:

1. Secure grounding and bonding conductors at intervals of not less than 36 inches (900 mm).

E. Grounding and Bonding Conductors:

1. Install in the straightest and shortest route between the origination and termination point, and no longer than required. The bend radius shall not be smaller than eight times the diameter of the conductor. No one bend may exceed 90 degrees.
2. Install without splices.
3. Support at not more than 36-inch (900-mm) intervals.
4. Install grounding and bonding conductors in 3/4-inch (21-mm) PVC conduit until conduit enters a telecommunications room. The grounding and bonding conductor pathway through a plenum shall be in EMT. Conductors shall not be installed in EMT unless otherwise indicated.

a. If a grounding and bonding conductor is installed in ferrous metallic conduit, bond the conductor to the conduit using a grounding bushing that complies with PANYNJ standards.

3.4 GROUNDING ELECTRODE SYSTEM

A. The BCT between the TMGB and the ac service equipment ground shall not be smaller than No. 3/0 AWG.

3.5 GROUNDING BUSBARS

A. Indicate locations of grounding busbars on Drawings. Install busbars horizontally, on insulated spacers 2 inches (50 mm) minimum from wall, 12 inches (300 mm) above finished floor unless otherwise indicated. Install locking washers on both ends of the insulator.

B. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus. All bolts, nut, washers, locking washers, lugs shall be made of the same material as the busbar. Locking washers shall be installed on the nut side.

3.6 CONNECTIONS

A. Bond metallic equipment in a telecommunications equipment room to the grounding busbar in that room, using equipment grounding conductors not smaller than No. 6 AWG.

B. Stacking of conductors under a single bolt is not permitted when connecting to busbars.

C. Assemble the wire connector to the conductor, complying with manufacturer's written instructions and as follows:

1. Use crimping tool and the die specific to the connector.
2. Pretwist the conductor.
3. Apply an antioxidant compound to all bolted and compression connections.

D. Primary Protector: Bond to the TMGB with insulated bonding conductor.

E. Interconnections: Interconnect all TGBs with the TMGB with the telecommunications backbone conductor. If more than one TMGB is installed, interconnect TMGBs using the grounding equalizer conductor. The telecommunications backbone conductor and grounding equalizer conductor size shall not be less than 2 kcmils/linear foot (1 sq. mm/linear meter) of conductor length, up to a maximum size of No. 3/0 AWG unless otherwise indicated.
F. Telecommunications Enclosures and Equipment Racks: Bond metallic components of enclosures to the telecommunications bonding and grounding system. Install top-mounted rack grounding busbar unless the enclosure and rack are manufactured with the busbar. Bond the equipment grounding busbar to the TGB No. 2 AWG bonding conductors.

G. Structural Steel: Where the structural steel of a steel frame building is readily accessible within the room or space, bond each TGB and TMGB to the vertical steel of the building frame.

H. Electrical Power Panelboards: Where an electrical panelboard for telecommunications equipment is located in the same room or space, bond each TGB to the ground bar of the panelboard.

I. Shielded Cable: Bond the shield of shielded cable to the TGB in communications rooms and spaces. Comply with TIA-568-C.1 and TIA-568-C.2 when grounding shielded balanced twisted-pair cables.

J. Rack- and Cabinet-Mounted Equipment: Bond powered equipment chassis to the cabinet or rack grounding bar. Power connection shall comply with NFPA 70; the equipment grounding conductor in the power cord of cord- and plug-connected equipment shall be considered as a supplement to bonding requirements in this Section.

K. Access Floors: Bond all metal parts of access floors to the TGB.

L. Equipment Room Signal Reference Grid: Provide a low-impedance path between telecommunications cabinets, equipment racks, and the reference grid, using No. 6 AWG bonding conductors.

1. Install the conductors in grid pattern on 4-foot (1200-mm) centers, allowing bonding of one pedestal from each access floor tile.
2. Bond the TGB of the equipment room to the reference grid at two or more locations.
3. Bond all conduits and piping entering the equipment room to the TGB at the perimeter of the room.

M. Towers and Antennas:

1. Ground Ring: Buried at least 30 inches (760 mm) below grade and at least 24 inches (610 mm) from the base of the tower or mounting.
2. Bond each tower base and metallic frame of a dish to the ground ring, buried at least 18 inches (460 mm) below grade.
3. Bond the ground ring and antenna grounds to the equipment room TMGB or TGB, buried at least 30 inches (760 mm) below grade.
4. Bond metallic fences within 6 feet (1.8 m) of towers and antennas to the ground ring, buried at least 18 inches (460 mm) below grade.
5. Special Requirements for Roof-Mounted Towers:

a. Roof Ring: Meet requirements for the ground ring except the conductors shall comply with requirements in Section 264113 "Lightning Protection for Structures."

b. Bond tower base footings steel, the TGB in the equipment room, and antenna support guys to the roof ring.

c. Connect roof ring to the perimeter conductors of the lightning protection system.
6. Waveguides and Coaxial Cable:
 a. Bond cable shields at the point of entry into the building to the TGB and to the
cable entrance plate, using No. 2 AWG bonding conductors.
 b. Bond coaxial cable surge arrester to the ground or roof ring using bonding
 conductor size recommended by surge-arrester manufacturer.

3.7 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Duct-Bank Grounding Conductor: Bury 12 inches (300 mm) above duct bank when indicated as
 part of duct-bank installation.

B. Comply with IEEE C2 grounding requirements.

C. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole
 floor, close to wall, and set rod depth so 4 inches (100 mm) extends above finished floor. If
 necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-
copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall.
 Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive
 insulating tape or heat-shrunk insulating sleeve from 2 inches (50 mm) above to 6 inches (150
 mm) below concrete. Seal floor opening with waterproof, nonshrink grout.

D. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts,
cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to
ground rod or grounding conductor. Make connections with No. 4 AWG minimum, bonding
conductor. Train conductors level or plumb around corners and fasten to manhole walls.
Connect grounding conductors to cable armor and cable shields according to written
instructions by manufacturer of splicing and termination kits. The manhole cover, or lid shall
also be grounded.

3.8 IDENTIFICATION

A. Labels shall be preprinted or computer-printed type.
 1. Label TMGB(s) with "fs-TMGB," where "fs" is the telecommunications space identifier
 for the space containing the TMGB.
 2. Label TGB(s) with "fs-TGB," where "fs" is the telecommunications space identifier for
 the space containing the TGB.
 3. Label the BCT and each telecommunications backbone conductor at its attachment point:
 "WARNING! TELECOMMUNICATIONS BONDING CONDUCTOR. DO NOT
 REMOVE OR DISCONNECT!"

3.9 FIELD QUALITY CONTROL

A. Testing Agency: Must be qualified to perform testing, may be electrical contractor.

B. Perform tests and inspections.
C. Tests and Inspections:

1. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer’s written instructions.

2. Test the bonding connections of the system using an ac earth ground-resistance tester, taking two-point bonding measurements in each telecommunications equipment room containing a TMGB and a TGB and using the process recommended by BICSI TDMM. Conduct tests with the facility in operation.
 a. Measure the resistance between the busbar and the nearest available grounding electrode. The maximum acceptable value of this bonding resistance is 100 milliohms.

3. Test for ground loop currents using a digital clamp-on ammeter, with a full-scale of not more than 10 A, displaying current in increments of 0.01 A at an accuracy of plus/minus 2.0 percent.
 a. With the grounding infrastructure completed and the communications system electronics operating, measure the current in every conductor connected to the TMGB. Maximum acceptable ac current level is 1 A.

D. Excessive Ground Resistance: If resistance to ground at the BCT exceeds 5 ohms, notify Architect promptly and include recommendations to reduce ground resistance.

E. Grounding system will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

G. Comply with commissioning plan.

END OF SECTION
SECTION 270528 - PATHWAYS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Metal conduits and fittings.
 2. Boxes.

1.3 DEFINITIONS
 A. EMT: Electric Metallic Tubing
 B. FMC: Flexible Metallic Conduit.
 C. GRC: Galvanized Rigid Steel Conduit.

1.4 ACTION SUBMITTALS
 A. Product Data: For conduits, fittings and junction boxes.

1.5 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Pathway routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 1. Structural members in paths of pathway groups with common supports.
 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.
 B. Qualification Data: For professional engineer.
 C. Seismic Qualification Certificates: For pathway racks and their mounting provisions, including those for internal components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which certification is based and their installation requirements.
 4. Detailed description of conduit support devices and interconnections on which certification is based and their installation requirements.
 D. Source quality-control reports.
PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Allied Tube & Conduit; a Tyco International Ltd. Co.
2. Alpha Wire Company.
4. Picoma Industries; Subsidiary of Mueller Water Products, Inc.
5. Robroy Industries.

B. General Requirements for Metal Conduits and Fittings:
1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with TIA-569-B.

C. EMT: Comply with ANSI C80.3 and UL 797.

D. FMC: Comply with UL 360.

E. GRC: Comply with ANSI C80.1 and UL 6.

F. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
1. Conduit Fittings
2. Fittings for EMT:
 a. Material: Steel
3. Type: compression fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
4. Fittings for FMC: UL 360; Threadless hinged clamp type, steel or malleable iron. Straight terminal connectors shall have one piece body, female end with clamp and deep slotted machine screw for securing conduit and male threaded end with locknut. Angle terminal connectors shall have two piece body with removable upper section.
5. Joint Compound for GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.
6. Expansion Fittings: PVC or steel to match conduit type, complying with UL-467, rated for environmental conditions where installed, and including flexible external bonding jumper.

2.2 BOXES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. Cooper Technologies Company; Cooper Crouse-Hinds.
2. Hoffman; a Pentair company.
3. Hubbell Incorporated; Killark Division.

B. General Requirements for Boxes:
1. Comply with TIA-569-B.
2. Boxes installed in wet locations shall be listed for use in wet locations.

C. Sheet-Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
E. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
G. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.
H. Device Box Dimensions: 4 inches square by 2-1/8 inches deep (100 mm square by 60 mm deep)
I. Gangable boxes are allowed.
J. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.

PART 3 - EXECUTION

3.1 PATHWAY APPLICATION

A. Indoors: Apply pathway products as specified below unless otherwise indicated:
 1. Exposed: EMT.
 2. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 3. Pathways for Communications Cable in Spaces Used for Environmental Air: EMT.
 4. Pathways for Communications Cable Risers in Vertical Shafts: EMT.
 5. Pathways for Concealed General-Purpose Distribution of Communications Cable: EMT.
 6. Boxes and Enclosures: NEMA 250 Type 1, except use NEMA 250 Type 4 nonmetallic in institutional and commercial kitchens and damp or wet locations.

B. Outdoors: Apply pathway products as specified below unless otherwise indicated:
 1. Exposed Conduit: Galvanized Rigid Steel Conduit.
 2. Underground Conduit: GRC.
 3. Boxes and Enclosures, Aboveground: NEMA 250, Type 4x.

C. Minimum Pathway Size: 3/4-inch (21-mm) trade size. Minimum size for optical-fiber cables is 1 inch.

D. Pathway Fittings: Compatible with pathways and suitable for use and location.
 1. EMT: Use compression, steel fittings. Comply with NEMA FB 2.10.
 2. FMC: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
 3. GRC: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.

E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

F. Install surface pathways only where indicated on Drawings.
G. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F (49 deg C)

3.2 INSTALLATION

A. Comply with NECA 1, NECA 101, and TIA-569-B for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum pathways. Comply with NFPA 70 limitations for types of pathways allowed in specific occupancies and number of floors.

B. Keep pathways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal pathway runs above water and steam piping.

C. Complete pathway installation before starting conductor installation.

D. Comply with requirements in Section 16070 "HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of two 90-degree bends in any pathway run. Support within 12 inches (300 mm) of changes in direction. Utilize long radius ells for all optical-fiber cables.

G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches (300 mm) of enclosures to which attached.

I. Stub-ups to Above Recessed Ceilings:
 1. Use EMT for pathways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

J. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of pathway and fittings before making up joints. Follow compound manufacturer's written instructions.

K. Coat field-cut threads on PVC-coated pathway with a corrosion-preventing conductive compound prior to assembly.

L. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install insulated bushings on conduits terminated with locknuts.

M. Install pathways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

N. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

O. Cut conduit perpendicular to the length. For conduits of 2-inch (53-mm) trade size and larger, use roll cutter or a guide to ensure cut is straight and perpendicular to the length.

P. Install pull wires in empty pathways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. Cap underground pathways designated as spare above grade alongside pathways in use.
Q. Pathways for Communications Cable: Install pathways, metal and nonmetallic, and flexible, as follows:
 1. 3/4-Inch (21-mm) Trade Size and Smaller: Install pathways in maximum lengths of 50 feet (15 m).
 2. 1-Inch (27-mm) Trade Size and Larger: Install pathways in maximum lengths of 75 feet (23 m).
 3. Install with a maximum of two 90-degree bends or equivalent for each length of pathway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.

R. Install pathway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed pathways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install pathway sealing fittings according to NFPA 70.

S. Install devices to seal pathway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all pathways at the following points:
 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 2. Where an underground service pathway enters a building or structure.
 3. Where otherwise required by NFPA 70.

T. Comply with manufacturer's written instructions for solvent welding PVC conduit and fittings.

U. Expansion-Joint Fittings:
 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F (17 deg C), and that has straight-run length that exceeds 25 feet (7.6 m). Install in each run of aboveground RMC conduit that is located where environmental temperature change may exceed 100 deg F (55 deg C) and that has straight-run length that exceeds 100 feet (30 m).
 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F (70 deg C) temperature change.
 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F (0.06 mm per meter of length of straight run per deg C) of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F (0.0115 mm per meter of length of straight run per deg C) of temperature change for metal conduits.
 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
V. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured center of box unless otherwise indicated.

W. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surface to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

X. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

Y. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

Z. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

AA. All conduit exposed in public or work areas must be painted to match surrounding area with a minimum of 2 coats of paint.

BB. All cable must be installed in raceway. Only wire mesh, solid bottom, trough, channel, single rail, or ladder type cable tray is sufficient cable tray that will take place of metal conduit. Only exception will be taken if it is specifically noted on a drawing. Free air cable will not be accepted under any circumstances.

3.3 FIRESTOPPING

A. Comply with TIA/EIA-569-A, Annex A, "Firestopping."

B. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.4 PROTECTION

A. Protect coatings, finishes, and cabinets from damage or deterioration.
 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
SECTION 270529 - HANGERS AND SUPPORTS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Steel slotted support systems for communication raceways.
2. Conduit and cable support devices.
3. Support for conductors in vertical conduit.
4. Structural steel for fabricated supports and restraints.
5. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
6. Fabricated metal equipment support assemblies.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:

 a. Slotted support systems, hardware, and accessories.
 b. Clamps.
 c. Hangers.
 d. Sockets.
 e. Eye nuts.
 f. Fasteners.
 g. Anchors.
 h. Saddles.
 i. Brackets.

2. Include rated capacities and furnished specialties and accessories.

B. Shop Drawings: For fabrication and installation details for communications hangers and support systems.

1. Trapeze hangers. Include product data for components.
2. Steel slotted-channel systems.
3. Aluminum slotted-channel systems.
4. Nonmetallic slotted-channel systems.
5. Equipment supports.
6. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For hangers and supports for communications systems.
 1. Include design calculations and details of trapeze hangers.
 2. Include design calculations for seismic restraints.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section "Quality Requirements," to design hanger and support systems as required.

B. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 1. Flame Rating: Class 1.
 2. Self-extinguishing according to ASTM D635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch-(10-mm-) diameter holes at a maximum of 8 inches (200 mm) o.c. in at least one surface.
 1. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
 3. Channel Width: Selected for applicable load criteria.
 4. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
 5. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
 6. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
 7. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
 8. Channel Dimensions: Selected for applicable load criteria.

B. Aluminum Slotted Support Systems: Extruded aluminum channels and angles with minimum 13/32-inch-(10-mm-) diameter holes at a maximum of 8 inches (200 mm) o.c. in at least one surface.
 1. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
4. Channel Width: Selected for applicable load criteria.
5. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
6. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
7. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
8. Channel Dimensions: Selected for applicable load criteria.

C. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with minimum 13/32-inch- (10-mm-) diameter holes at a maximum of 8 inches (200 mm) o.c., in at least one surface.
 1. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
 2. Channel Width: Selected for applicable load criteria.
 3. Fittings and Accessories: Products provided by channel and angle manufacturer and designed for use with those items.
 4. Fitting and Accessory Materials: Same as those for channels and angles.
 5. Rated Strength: Selected to suit applicable load criteria.
 6. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

D. Conduit and Cable Support Devices: Steel clamps, hangers, and associated fittings, designed for types and sizes of raceway or cable to be supported.

E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored communications conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

F. Structural Steel for Fabricated Supports and Restraints: ASTM A36/A36M steel plates, shapes, and bars; black and galvanized.

G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 1. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 2. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
 3. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
 4. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM F3125/F3125M, Grade A325 (Grade A325M).
 5. Toggle Bolts: All-steel springhead type.
2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.

B. Materials: Comply with requirements in Section "Miscellaneous Steel" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:

1. NECA 1.
2. NECA/BICSI 568.
3. TIA-569-D.
4. NECA 101.
5. NECA 102.
6. NECA 105.
7. NECA 111.

B. Comply with requirements in Section "Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.

C. Comply with requirements for pathways specified in Section 270528 "Pathways for Communications Systems."

D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.

E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps.

F. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Raceway Support Methods: In addition to methods described in NECA 1, EMT may be supported by openings through structure members, according to NFPA 70.
B. Strength of Support Assemblies: Where not indicated, select sizes of components, so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).

C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten communications items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Use approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Use expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated-driven threaded studs, provided with lock washers and nuts, may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
6. To Steel: Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section "Miscellaneous Steel" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor communications materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).
B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas, and apply galvanizing-repair paint to comply with ASTM A780.

END OF SECTION 270529
SECTION 270536 - CABLE TRAYS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Ladder Cable Tray
 2. Cable tray accessories.
 3. Warning signs.

B. Related Requirements:
 1. Section 270536 "Cable Trays for Electrical Systems" for cable trays and accessories serving electrical systems.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of cable tray.
 1. Include data indicating dimensions and finishes for each type of cable tray indicated.

B. Shop Drawings: For each type of cable tray.
 1. Show fabrication and installation details of cable trays, including plans, elevations, and sections of components and attachments to other construction elements. Designate components and accessories, including clamps, brackets, hanger rods, splice-plate connectors, expansion-joint assemblies, straight lengths, and fittings.
 2. Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 a. Vertical and horizontal offsets and transitions.
 b. Clearances for access above and to sides of cable trays.
 c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.

C. Delegated-Design Submittal: For seismic restraints.
 1. Seismic-Restraint Details: Signed and sealed by a qualified professional engineer, licensed in the state where Project is located, who is responsible for their preparation.
2. Design Calculations: Calculate requirements for selecting seismic restraints.
3. Detail fabrication, including anchorages and attachments to structure and to supported cable trays.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans and sections, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Scaled cable tray layout and relationships between components and adjacent structural, electrical, and mechanical elements.
 2. Vertical and horizontal offsets and transitions.
 3. Clearances for access above and to side of cable trays.
 4. Vertical elevation of cable trays above the floor or below bottom of ceiling structure.

B. Seismic Qualification Data: Certificates, for cable trays, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, to design cable tray supports and seismic bracing as required.

B. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes in cable tray installed outdoors.
 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 GENERAL REQUIREMENTS FOR CABLE TRAYS

A. Cable Trays and Accessories: Identified as defined in NFPA 70 and marked for intended location, application, and grounding.
 1. Source Limitations: Obtain cable trays and components from single manufacturer.
B. Sizes and Configurations: See the Cable Tray Schedule on Drawings for specific requirements for types, materials, sizes, and configurations.

C. Structural Performance: See articles for individual cable tray types for specific values for the following parameters:

1. Uniform Load Distribution: Capable of supporting a uniformly distributed load on the indicated support span when supported as a simple span and tested according to NEMA VE 1.
2. Concentrated Load: A load applied at midpoint of span and centerline of tray.
3. Load and Safety Factors: Applicable to both side rails and rung capacities.

2.3 LADDER CABLE TRAY

A. Description:

1. Configuration: Two longitudinal side rails with transverse rungs swaged or welded to side rails, complying with NEMA VE 1.
2. Width as indicated on Drawings.
3. Minimum Usable Load Depth: 4 inches (100 mm).
4. Straight Section Lengths: 12 feet (3.7 m), except where shorter lengths are required to facilitate tray assembly.
5. Rung Spacing: 6 inches (150 mm) o.c.
6. Radius-Fitting Rung Spacing: 9 inches (225 mm) at center of tray's width.
7. Minimum Cable-Bearing Surface for Rungs: 7/8-inch (22 mm) width with radius edges.
8. No portion of the rungs shall protrude below the bottom plane of side rails.
9. Structural Performance of Each Rung: Capable of supporting a maximum cable load, with a safety factor of 1.5, plus a 200-lb (90-kg) concentrated load, when tested according to NEMA VE 1.
10. Fitting Minimum Radius: 12 inches (300 mm) 48 inches (1200 mm).
11. Splicing Assemblies: Bolted type using serrated flange locknuts.
12. Splice-Plate Capacity: Splices located within support span shall not diminish rated loading capacity of cable tray.

B. Materials and Finishes:

1. Steel:
 a. Straight Section and Fitting Side Rails and Runugs: Steel complies with the minimum mechanical properties of ASTM A1011/A1011M, SS, Grade 33.
 b. Steel Tray Splice Plates: ASTM A1011/A1011M, HSLAS, Grade 50, Class 1.
 c. Fasteners: Steel complies with the minimum mechanical properties of ASTM A510/A510M, Grade 1008.
 1) Hardware: Galvanized, ASTM B633 [Stainless steel, Type 316].
 1) Hardware: Galvanized, ASTM B633.
 1) Hardware: Galvanized, ASTM B633.
 g. Finish: Epoxy-resin paint.
1) Powder-Coat Enamel: Cable tray manufacturer’s recommended primer and corrosion-inhibiting treatment, with factory-applied powder-coat paint.
2) Epoxy-Resin Prime Coat: Cold-curing epoxy primer, MPI# 101.
3) Epoxy-Resin Topcoat: Epoxy, cold-cured gloss, MPI# 77.
4) Hardware: Chromium-zinc plated, ASTM F1136.
 h. Finish: Factory-standard primer, ready for field painting, with chromium-zinc-plated hardware according to ASTM F1136.
 i. Finish: Black oxide finish for support accessories and miscellaneous hardware according to ASTM D769.

2. Aluminum:
 a. Materials: Alloy 6063-T6 according to ANSI H35.1/H 35.1M for extruded components, and Alloy 5052-H32 according to ANSI H35.1/H 35.1M for fabricated parts.
 c. Hardware for Aluminum Cable Tray Used Outdoors: Stainless steel, Type 316, ASTM F593 and ASTM F594.

3. Stainless Steel:
 b. Hardware for Stainless-Steel Cable Tray Used Outdoors: Stainless steel, Type 316, ASTM F593 and ASTM F594.

2.4 CABLE TRAY ACCESSORIES

A. Fittings: Tees, crosses, risers, elbows, and other fittings as indicated, of same materials and finishes as cable tray.

B. Barrier Strips: Same materials and finishes as for cable tray.

C. Cable tray supports and connectors, including bonding jumpers, as recommended by cable tray manufacturer.

2.5 WARNING SIGNS

A. Comply with requirements for identification in Section 270553 "Identification for Communications Systems."

B. Lettering: 1-1/2-inch- (40-mm-) high, black letters on yellow background with legend "Warning! Not To Be Used as Walkway, Ladder, or Support for Ladders or Personnel."

2.6 SOURCE QUALITY CONTROL

A. Testing: Test and inspect cable trays according to NEMA FG 1.
PART 3 - EXECUTION

3.1 CABLE TRAY INSTALLATION

A. Install cable trays according to NEMA FG 1.

B. Install cable trays as a complete system, including fasteners, hold-down clips, support systems, barrier strips, adjustable horizontal and vertical splice plates, elbows, reducers, tees, crosses, cable dropouts, adapters, covers, and bonding.

C. Install cable trays so that the tray is accessible for cable installation and all splices are accessible for inspection and adjustment.

D. Remove burrs and sharp edges from cable trays.

E. Join aluminum cable tray with splice plates; use four square neck-carriage bolts and locknuts.

F. Fasten cable tray supports to building structure.

G. Design fasteners and supports to carry cable tray, the cables, and a concentrated load of 200 lb (90 kg). Comply with requirements in Section 270529 "Hangers and Supports for Communications Systems."

H. Place supports so that spans do not exceed maximum spans on schedules and provide clearances shown on Drawings. Install intermediate supports when cable weight exceeds the load-carrying capacity of the tray rungs.

I. Construct supports from channel members, threaded rods, and other appurtenances furnished by cable tray manufacturer. Arrange supports in trapeze or wall-bracket form as required by application.

J. Support bus assembly to prevent twisting from eccentric loading.

K. Install center-hung supports for single-rail trays designed for 60 versus 40 percent eccentric loading condition, with a safety factor of 3.

L. Locate and install supports according to NEMA FG 1. Do not install more than one cable tray splice between supports.

M. Make connections to equipment with flanged fittings fastened to cable trays and to equipment. Support cable trays independent of fittings. Do not carry weight of cable trays on equipment enclosure.

N. Install expansion connectors where cable trays cross building expansion joints and in cable tray runs that exceed dimensions recommended in NEMA FG 1. Space connectors and set gaps according to applicable standard.

O. Make changes in direction and elevation using manufacturer's recommended fittings.
P. Make cable tray connections using manufacturer's recommended fittings.

Q. Seal penetrations through fire and smoke barriers. Comply with requirements in Section 078413 "Penetration Firestopping."

R. Install capped metal sleeves for future cables through firestop-sealed cable tray penetrations of fire and smoke barriers.

S. Install cable trays with enough workspace to permit access for installing cables.

T. Install barriers to separate cables of different systems, such as EVIDS and Common Use, communications, power cables should not be installed in common cable trays.

U. Install permanent covers, if used, after installing cable. Install cover clamps according to NEMA VE 2.

V. Clamp covers on cable trays installed outdoors with heavy-duty clamps.

W. Install warning signs in visible locations on or near cable trays after cable tray installation.

3.2 CABLE TRAY GROUNDING

A. Ground cable trays according to NFPA 70 unless additional grounding is specified. Comply with requirements in Section 270526 "Grounding and Bonding for Communications Systems."

B. Cable trays shall be bonded together with splice plates listed for grounding purposes or with listed bonding jumpers.

C. Cable trays with single-conductor power conductors shall be bonded together with a grounding conductor run in the tray along with the power conductors and bonded to the tray at 72-inch (1800-mm) intervals. The grounding conductor shall be sized according to NFPA 70, Article 250.122, "Size of Equipment Grounding Conductors," and Article 392, "Cable Trays."

D. When using epoxy- or powder-coat painted cable trays as a grounding conductor, completely remove coating at all splice contact points or ground connector attachment. After completing splice-to-grounding bolt attachment, repair the coated surfaces with coating materials recommended by cable tray manufacturer.

E. Bond cable trays to power source for cables contained within with bonding conductors sized according to NFPA 70, Article 250.122, "Size of Equipment Grounding Conductors."

3.3 CABLE INSTALLATION

A. Install cables only when each cable tray run has been completed and inspected.

B. Fasten cables on vertical runs to cable trays every 18 inches (450 mm).

C. Fasten and support cables that pass from one cable tray to another or drop from cable trays to equipment enclosures. Fasten cables to the cable tray at the point of exit and support cables
independent of the enclosure. The cable length between cable trays or between cable tray and
closure shall be no more than 72 inches (1800 mm).

D. Tie MI cables down every 36 inches (900 mm) where required to provide a 2-hour fire rating
and every 72 inches (1800 mm) elsewhere.

3.4 CONNECTIONS

A. Remove paint from all connection points before making connections. Repair paint after the
connections are completed.

B. Connect pathways to cable trays according to requirements in NEMA VE 2 and NEMA FG 1.

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. After installing cable trays and after electrical circuitry has been energized, survey for
compliance with requirements.

2. Visually inspect cable insulation for damage. Correct sharp corners, protuberances in
cable trays, vibrations, and thermal expansion and contraction conditions, which may
cause or have caused damage.

3. Verify that the number, size, and voltage of cables in cable trays do not exceed that
permitted by NFPA 70. Verify that communications or data-processing circuits are
separated from power circuits by barriers or are installed in separate cable trays.

4. Verify that there are no intruding items such as pipes, hangers, or other equipment in the
cable tray.

5. Remove dust deposits, industrial process materials, trash of any description, and any
blockage of tray ventilation.

6. Visually inspect each cable tray joint and each ground connection for mechanical
continuity. Check bolted connections between sections for corrosion. Clean and retorque
in suspect areas.

7. Check for improperly sized or installed bonding jumpers.

8. Check for missing, incorrect, or damaged bolts, bolt heads, or nuts. When found, replace
with specified hardware.

9. Perform visual and mechanical checks for adequacy of cable tray grounding; verify that
all takeoff raceways are bonded to cable trays. Test entire cable tray system for
continuity. Maximum allowable resistance is 1 ohm.

3.6 PROTECTION

A. Protect installed cable trays and cables.

1. Install temporary protection for cables in open trays to safeguard exposed cables against
falling objects or debris during construction. Temporary protection for cables and cable
trays can be constructed of wood or metal materials and shall remain in place until the risk
of damage is over.
2. Repair damage to galvanized finishes with zinc-rich paint recommended by cable tray manufacturer.
3. Repair damage to paint finishes with matching touchup coating recommended by cable tray manufacturer.

END OF SECTION 270536
SECTION 270543 - UNDERGROUND PATHWAYS AND STRUCTURES FOR COMMUNICATION SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Related Requirements outside of Division 27:
 1. Section 260543 for "Underground Ducts and Raceways for Electrical Systems."

1.2 SUMMARY

A. Section Includes:
 1. Metal conduit and fittings, including GRC and PVC-coated GRC.
 2. Rigid nonmetallic duct.
 3. Duct accessories, including rigid innerduct and fabric innerduct.
 5. Precast manholes.

1.3 DEFINITIONS

A. Direct-Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials, such as concrete.

B. Duct: A single duct or multiple ducts. Duct may be either installed singly or as component of a duct bank.

C. Duct Bank:
 1. Two or more ducts installed in parallel, with or without additional casing materials.
 2. Multiple duct banks.

D. GRC: Galvanized rigid conduit.

E. RGS: Rigid Galvanized Steel

F. IMC: Intermediate metal conduit.

G. RNC: Rigid nonmetallic conduit.

H. Trafficways: Locations where vehicular or pedestrian traffic is a normal course of events.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include duct-bank materials, including spacers and miscellaneous components.
 2. Include duct and conduits and their accessories, including elbows, end bells, bends, fittings, duct spacers and solvent cement.
 3. Include accessories for manholes, handholes, boxes, and other utility structures.
 4. Include underground-line warning tape, or trace wire for locating purposes.

B. Shop Drawings:
 1. Precast or Factory-Fabricated Underground Utility Structures:
 a. Include plans, elevations, sections, details, attachments to other work, and accessories.
 b. Include duct entry provisions, including location and duct size.
 c. Include reinforcement details.
 d. Include frame and cover design and manhole chimneys.
 e. Include ladder details.
 f. Include grounding details.
 g. Include dimensioned locations of cable rack inserts, pulling-in and lifting irons, and sumps.
 h. Include joint details.
 2. Factory-Fabricated Handholes and Boxes Other Than Precast Concrete:
 a. Include dimensioned plans, sections, and elevations, and fabrication and installation details.
 b. Include duct entry provisions, including location and duct size.
 c. Include cover design.
 d. Include grounding details.
 e. Include dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

1.5 INFORMATIONAL SUBMITTALS

A. Duct and Duct-Bank Coordination Drawings: Show duct profiles and coordination with other utilities and underground structures using BIM.
 1. Include plans and sections, drawn to scale, and show bends and locations of expansion fittings.
 2. Drawings shall be signed and sealed by a qualified professional engineer.

B. Product Certificates: For concrete and steel used in precast concrete manholes and handholes, as required by ASTM C858.

C. Qualification Data: For professional engineer and testing agency responsible for testing nonconcrete handholes and boxes.
D. Source quality-control reports.

E. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E329 for testing indicated.

1.7 FIELD CONDITIONS

A. Interruption of Existing Communications Service: Do not interrupt communications service to facilities occupied by Owner or others unless permitted under the following conditions, and then only after arranging to provide temporary communications service according to requirements indicated:

1. Notify Owner no fewer than ten days in advance of proposed interruption of communications service.
2. Do not proceed with interruption of communications service without Owner's written permission.

B. Ground Water: Assume ground-water level is at grade level unless a lower water table is noted on Drawings.

C. Ground Water: Assume ground-water level is 36 inches (900 mm) below ground surface unless a higher water table is noted on Drawings.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. GRC: Comply with ANSI C80.1 and UL 6.

B. PVC-Coated Steel Conduit: PVC-coated GRC.

1. Comply with NEMA RN 1.
2. Coating Thickness: 0.040 inch (1 mm), minimum.

C. General Requirements for Metal Conduits and Fittings:

1. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
2. Comply with TIA-569-D and TIA-758-C.
2.2 RIGID NONMETALLIC DUCTS

A. Underground Plastic Utilities Duct: Type EPC-40-PVC RNC, complying with NEMA TC 2 and UL 651, with matching fittings complying with NEMA TC 3 by same manufacturer as duct.

B. Underground Plastic Utilities Duct: Type DB-60-PVC RNC, complying with NEMA TC 6 & 8 and with ASTM F512 for direct burial, with matching fittings complying with NEMA TC 9 by same manufacturer as duct.

C. Underground Plastic Utilities Duct: Type EB-20 PVC RNC, complying with NEMA TC 6 & 8, ASTM F512, and UL 651, with matching fittings complying with NEMA TC 9 by same manufacturer as duct.

D. General Requirements for Nonmetallic Ducts and Fittings:

1. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
2. Comply with TIA-569-D and TIA-758-C.

E. Solvents and Adhesives: As recommended by duct manufacturer.

2.3 FLEXIBLE NONMETALLIC DUCTS

A. HDPE Duct: Type EPEC 40-HDPE complying with NEMA TC 7 and UL 651A.

1. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
2. Comply with TIA-569-D and TIA-758-C.

2.4 DUCT ACCESSORIES

A. Fabric Innerduct: Continuous, polyester, multi-pocket fabric innerduct, with internal pull tape and tracer wire. Underground or exterior conduit may not contain fabric innerduct splices.

B. Duct Spacers: Factory-fabricated rigid PVC interlocking spacers, sized for type and size of duct with which used, and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.

2.5 PRECAST CONCRETE HANDHOLES AND BOXES

A. Description: Monolithically poured, factory-fabricated, reinforced-concrete walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or box.

B. Comply with ASTM C858 for design and manufacturing processes.
C. Frame and Cover: Weatherproof cast-iron frame, with cast-iron cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.

D. Frame and Cover: Weatherproof steel frame, with steel cover with recessed cover hook eyes and tamper-resistant, captive, cover-securing bolts.

E. Frame and Cover: Weatherproof steel frame, with hinged steel access door assembly with tamper-resistant, captive, cover-securing bolts.
 1. Cover Hinges: Concealed, with hold-open ratchet assembly.
 2. Cover Handle: Recessed.

F. Frame and Cover: Weatherproof aluminum frame, with hinged aluminum access door assembly with tamper-resistant, captive, cover-securing bolts.
 1. Cover Hinges: Concealed, with hold-open ratchet assembly.
 2. Cover Handle: Recessed.

G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.

H. Cover Legend: Molded lettering, "COMMUNICATIONS."

I. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.

J. Extensions and Slabs: Designed to mate with bottom of enclosure, and made of same material as enclosure.
 1. Extension shall provide increased depth of 12 inches (300 mm).
 2. Slab: Same dimensions as bottom of enclosure, and arranged to provide closure.

K. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.

L. Knockout Panels: Precast openings in walls, arranged to match dimensions and elevations of approaching duct and duct banks, plus an additional 6 inches (150 mm) vertically and horizontally to accommodate alignment variations.
 1. Knockout panels shall be located no less than 6 inches (150 mm) from interior surfaces of walls, floors, or frames and covers of handholes, but close enough to corners to facilitate racking of cables on walls.
 2. Knockout panel opening shall have cast-in-place, welded-wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct banks.
 3. Knockout panel openings shall be framed with at least two additional No. 3 steel reinforcing bars in concrete around each opening.
 4. Knockout panels shall be 1-1/2 to 2 inches (38 to 50 mm) thick.

M. Duct Entrances in Handhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.
1. Type and size shall match fittings to duct or conduit to be terminated.
2. Fittings shall align with elevations of approaching duct and be located near interior corners of handholes to facilitate racking of cable.

N. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.6 POLYMER CONCRETE HANDBOLES AND BOXES WITH POLYMER CONCRETE COVER

A. Description: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two.
B. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
C. Color: Gray.
D. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.
E. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
F. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
G. Cover Legend: Molded lettering, "COMMUNICATIONS."
H. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or end-bell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.
I. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.
J. Handholes 12 inches wide by 24 inches long (300 mm wide by 600 mm long) and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.7 PRECAST MANHOLES

A. Description: One-piece units and units with interlocking mating sections, complete with accessories, hardware, and features.
B. Standard: Comply with ASTM C858.
C. Structural Design Loading: Comply with requirements in "Underground Enclosure Application" Article.
D. Knockout Panels: Precast openings in walls, arranged to match dimensions and elevations of approaching duct and duct banks, plus an additional 6 inches (150 mm) vertically and horizontally to accommodate alignment variations.

1. Center window location.
2. Knockout panels shall be located no less than 6 inches (150 mm) from interior surfaces of walls, floors, or roofs of manholes, but close enough to corners to facilitate racking of cables on walls.
3. Knockout panel opening shall have cast-in-place, welded-wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct banks.
4. Knockout panel openings shall be framed with at least two additional No. 3 steel reinforcing bars in concrete around each opening.
5. Knockout panels shall be 1-1/2 to 2 inches (38 to 50 mm) thick.

E. Duct Entrances in Manhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.

1. Type and size shall match fittings to duct or conduit to be terminated.
2. Fittings shall align with elevations of approaching duct and be located near interior corners of manholes to facilitate racking of cable.

F. Ground Rod Sleeve: Provide a 3-inch (75-mm) PVC sleeve in manhole floors 2 inches (50 mm) from the wall adjacent to, but not underneath, the duct routed from the facility.

G. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.

2.8 UTILITY STRUCTURE ACCESSORIES

A. Accessories for Utility Structures: Utility equipment and accessory items used for utility structure access and utility support, listed and labeled for intended use and application.

B. Manhole Frames, Covers, and Chimney Components: Comply with structural design loading specified for manhole.

1. Frame and Cover: Weatherproof, with milled cover-to-frame bearing surfaces; 26-inch (660-mm) 29-inch (725-mm) diameter.
 a. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 b. Special Covers: Recess in face of cover designed to accept finish material in paved areas.

2. Cover Legend: Cast in. Selected to suit system.

3. Manhole Chimney Components: Precast concrete rings, with dimensions matched to those of roof opening.
 a. Mortar for Chimney Ring and Frame and Cover Joints: Comply with ASTM C270, Type M, except for quantities of less than 2.0 cu. ft. (60 L), where packaged mix complying with ASTM C387, Type M, may be used.
b. Seal joints watertight using preformed plastic or rubber conforming to ASTM C990. Install sealing material according to the sealant manufacturers' printed instructions.

C. Manhole Sump Frame and Grate: ASTM A48/A48M, Class 30B, gray cast iron.

D. Pulling Eyes in Concrete Walls: Eyebolt with reinforcing-bar fastening insert, 2-inch- (50-mm-) diameter eye, and 1-by-4-inch (25-by-100-mm) bolt.
 1. Working Load Embedded in 6-Inch (150-mm), 4000-psi (27.6-MPa) Concrete: 13,000-lbf (58-kN) minimum tension.

E. Pulling Eyes in Nonconcrete Walls: Eyebolt with reinforced fastening, 1-1/4-inch- (31-mm-) diameter eye, rated 2500-lbf (11-kN) minimum tension.

F. Pulling-In and Lifting Irons in Concrete Floors: 7/8-inch- (22-mm-) diameter, hot-dip galvanized, bent steel rod; stress relieved after forming; and fastened to reinforcing rod. Exposed triangular opening.
 1. Ultimate Yield Strength: 40,000-lbf (180-kN) shear and 60,000-lbf (270-kN) tension.

G. Bolting Inserts for Concrete Utility Structure Cable Racks and Other Attachments: Flared, threaded inserts of noncorrosive, chemical-resistant, nonconductive thermoplastic material; 1/2-inch (13-mm) ID by 2-3/4 inches (69 mm) deep, flared to a minimum of 1-1/4 inches (31 mm) at base.
 1. Tested Ultimate Pullout Strength: 12,000 lbf (53 kN) minimum.

H. Ground Rod Sleeve: 3-inch (75-mm), PVC duct sleeve in manhole floors 2 inches (50 mm) from the wall adjacent to, but not underneath, the duct entering the structure.

I. Expansion Anchors for Installation after Concrete Is Cast: Zinc-plated, carbon-steel-wedge type with stainless-steel expander clip, with 1/2-inch (13-mm) bolt, 5300-lbf (24-kN) rated pullout strength, and minimum 6800-lbf (30-kN) rated shear strength.

J. Cable Rack Assembly: Nonmetallic. Components fabricated from nonconductive, fiberglass-reinforced polymer.
 1. Stanchions: Nominal 36 inches (900 mm) high by 4 inches (100 mm) wide, with minimum of nine holes for arm attachment.
 2. Arms: Arranged for secure, drop-in attachment in horizontal position at any location on cable stanchions, and capable of being locked in position. Arms shall be available in lengths ranging from 3 inches (75 mm) with 450-lb (204-kg) minimum capacity to 20 inches (500 mm) with 250-lb (114-kg) minimum capacity. Top of arm shall be nominally 4 inches (100 mm) wide, and arm shall have slots along full length for cable ties.

K. Duct-Sealing Compound: Nonhardening, safe for contact with human skin, not deleterious to cable insulation, and workable at temperatures as low as 35 deg F (2 deg C). Capable of withstanding temperature of 300 deg F (150 deg C) without slump and adhering to clean surfaces of plastic duct, metallic duct, duct coatings, concrete, masonry, lead, cable sheaths, cable jackets, insulation materials, and common metals.
L. Fixed Manhole Ladders: Arranged for attachment to wall of manhole. Ladder, mounting brackets, and braces shall be fabricated from hot-dip galvanized steel.

M. Cover Hooks: Heavy duty, designed for lifts 60 lbf (270 N) and greater. required.

2.9 SOURCE QUALITY CONTROL

A. Test and inspect precast concrete utility structures according to ASTM C1037 and commissioning plan.

PART 3 - EXECUTION

3.1 PREPARATION

A. Coordinate layout and installation of duct, duct bank, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.

B. Coordinate elevations of duct and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct runs drain to manholes and handholes, and as approved by Architect.

C. Clear and grub vegetation to be removed, and protect vegetation to remain according to Section "Site Clearing." Remove and stockpile topsoil for reapplication according to Section "Site Clearing."

3.2 UNDERGROUND DUCT APPLICATION

A. Duct for Communications: Type EPC-40-PVC RNC, in concrete-encased duct bank unless otherwise indicated.

B. Stub-Ups for Communications: Concrete-encased GRC.

3.3 UNDERGROUND ENCLOSURE APPLICATION

A. Handholes and Boxes for Communications:

1. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-20 structural load rating.

2. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Precast concrete, AASHTO HB 17, H-20 structural load rating.
4. Units Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, structurally tested according to SCTE 77 with 3000-lbf (13 345-N) vertical loading.
5. Cover design load shall not exceed the design load of the handhole or box.

B. Manholes: Precast or cast-in-place concrete.
 1. Units Located in Roadways and Other Deliberate Traffic Paths by Heavy or Medium Vehicles: H-20 structural load rating according to AASHTO HB 17.
 2. Units Not Located in Deliberate Traffic Paths by Heavy or Medium Vehicles: H-10 load rating according to AASHTO HB 17.

3.4 EARTHWORK
 A. Section applies to those responsible for earthwork associated with Manholes, Handholes even if not the contractor supplying and installing the underground duct and structures.
 B. Excavation and Backfill: Comply with Section "Earth Moving," but do not use heavy-duty, hydraulic-operated, compaction equipment.
 C. Restoration: Replace area after construction in immediate area is complete.
 D. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated.
 E. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching.
 F. Cut and patch existing pavement in the path of underground duct, duct bank, and utility structures according to the "Cutting and Patching" Article in Section "Execution."

3.5 DUCT AND DUCT-BANK INSTALLATION
 A. Where indicated on Drawings, install duct, spacers, and accessories into the duct configuration shown. Duct installation requirements in this Section also apply to duct bank.
 B. Install duct and duct bank according to NEMA TCB 2 and TIA-758-C.
 C. Slope: Pitch duct and duct bank a minimum slope of 1:100 down toward manholes and handholes and away from buildings and equipment. Slope duct and duct bank from a high point in runs between two manholes, to drain in both directions.
 D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches (1200 mm) 12.5 feet (4 m), both horizontally and vertically, at other locations unless otherwise indicated.
1. Duct and duct banks shall have maximum of two 90-degree bends, or the total of all bends shall be no more 180 degrees between pull points.

E. Joints: Use solvent-cemented joints in duct and fittings, and make watertight according to manufacturer's written instructions. Stagger couplings, so those of adjacent ducts do not lie in same plane.

F. Installation Adjacent to High-Temperature Steam Lines: Where duct or duct banks are installed parallel to underground steam lines, perform calculations showing the duct or duct bank will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct or duct bank crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.

G. End-Bell Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 6 inches (150 mm) o.c. for 4-inch (100-mm) duct, and vary proportionately for other duct sizes.
 1. Begin change from regular spacing to end-bell spacing 10 feet (3 m) from the end bell without reducing duct slope and without forming a trap in the line.
 2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight-line direct-buried duct and duct banks, with calculated expansion of more than 3/4 inch (19 mm).
 3. Grout end bells into structure walls from both sides to provide watertight entrances.

H. Terminator Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use manufactured, cast-in-place duct terminators, with entrances into structure spaced approximately 6 inches (150 mm) o.c. for 4-inch (100-mm) duct, and vary proportionately for other duct sizes.
 1. Begin change from regular spacing to terminator spacing 10 feet (3 m) from the terminator without reducing duct slope and without forming a trap in the line.
 2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight-line duct or duct bank, with calculated expansion of more than 3/4 inch (19 mm).

I. Building Wall Penetrations: Make a transition from underground duct to GRC at least 10 feet (3 m) outside the building wall, without reducing duct slope away from the building or forming a trap in the duct. Use fittings manufactured for RNC duct-to-GRC conduit transition. Install GRC penetrations of building walls as specified in Section 270544 "Sleeves and Sleeve Seals for Communications Pathways and Cabling."

J. Sealing: Provide temporary closure at terminations of duct that has cables pulled. Seal spare ducts at terminations. Use sealing compound and plugs to withstand at least 15-psig (1.03-MPa) hydrostatic pressure.

K. Innerduct: Install immediately after mandreling duct. Provide three innerducts per duct.
L. Pulling Cord: Install 200-lbf- (1000-N-m) test nylon cord in empty duct and innerduct.

M. Concrete-Encased Duct and Duct Bank:

1. Excavate trench bottom to provide firm and uniform support for duct or duct bank. Prepare trench bottoms as specified in Section 312000 "Earth Moving" for pipes less than 6 inches (150 mm) in nominal diameter.

2. Width: Excavate trench 12 inches (300 mm) wider than duct or duct bank on each side.

3. Width: Excavate trench 3 inches (75 mm) wider than duct or duct bank on each side.

4. Depth: Install top of duct and duct bank at least 24 inches (600 mm) below finished grade in areas not subject to deliberate traffic, and at least 30 inches (750 mm) below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.

5. Support duct and duct bank on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.

6. Minimum Space Between Duct: 3 inches (75 mm) between edge of duct and exterior envelope wall, 2 inches (50 mm) between ducts for like services, and 4 inches (100 mm) between power and communications ducts.

7. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers. Secure spacers to earth and duct to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around duct or duct bank.

 a. Couple GRC to duct with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.

 b. Stub-Ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of base. Install insulated grounding bushings on terminations at equipment.

 1) Stub-ups shall be minimum 4 inches (100 mm) above finished floor and minimum 3 inches (75 mm) from conduit side to edge of slab.

 c. Stub-Ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches (1500 mm) from edge of wall. Install insulated grounding bushings on terminations at equipment.

 1) Stub-ups shall be minimum 4 inches (100 mm) above finished floor and no less than 3 inches (75 mm) from conduit side to edge of wall.

10. Reinforcement: Reinforce concrete-encased duct and duct bank where they cross disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.
11. Forms: Use trench walls to form side walls of duct and duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.

12. Concrete Cover: Install a minimum of 3 inches (75 mm) of concrete cover between edge of duct to exterior envelope wall, 2 inches (50 mm) between ducts, and 4 inches (100 mm) between power and communications duct.

13. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.
 a. Start at one end and finish at the other, allowing for expansion and contraction of duct as its temperature changes during and after the pour. Use expansion fittings installed according to manufacturer's written recommendations, or use other specific measures to prevent expansion-contraction damage.
 b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch (19-mm) reinforcing-rod dowels extending a minimum of 18 inches (450 mm) into concrete on both sides of joint near corners of envelope.

14. Pouring Concrete: Comply with requirements in "Concrete Placement" Article in Section 033000 "Cast-in-Place Concrete." Place concrete carefully during pours to prevent voids under and between ducts and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto duct. Allow concrete to flow to center of bank and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-bank application.

N. Direct-Buried Duct and Duct Banks:

1. Excavate trench bottom to provide firm and uniform support for duct and duct bank. Comply with requirements in Section 312000 "Earth Moving" for preparation of trench bottoms for duct less than 6 inches (150 mm) in nominal diameter.

2. Install duct with a minimum of 3 inches (75 mm) between duct for like services and 6 inches (150 mm) between power and signal duct.

3. Width: Excavate trench 12 inches (300 mm) wider than duct or duct bank on each side.

4. Width: Excavate trench 3 inches (75 mm) wider than duct or duct bank on each side.

5. Depth: Install top of duct or duct bank at least 36 inches (900 mm) below finished grade unless otherwise indicated.

6. Set elevation of bottom of duct or duct bank below frost line.

7. Support duct on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.

8. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet (6 m) of duct. Place spacers within 24 inches (600 mm) of duct ends. Stagger spacers approximately 6 inches (150 mm) between tiers. Secure spacers to earth and duct to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around duct or duct bank.

10. Install manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct.
a. Couple GRC to duct with adapters designed for this purpose, and encase coupling with 3 inches (75 mm) of concrete.

b. For equipment mounted on outdoor bases, extend GRC horizontally a minimum of 60 inches (1500 mm) from edge of equipment pad or foundation. Install insulated grounding bushings on terminations at equipment.

11. After installing first tier of duct, backfill and compact. Start at tie-in point and work toward end of duct run, leaving duct at end of run free to move with expansion and contraction, as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches (100 mm) over duct and hand tamp. Firmly tamp backfill around duct to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction. Comply with requirements in Section 312000 "Earth Moving" for installation of backfill materials.

a. Place minimum of 3 inches (75 mm) of sand as a bed for duct and duct bank. Place sand to a minimum of 6 inches (150 mm) above top level of duct and duct bank.

b. Place minimum of 6 inches (150 mm) of engineered fill above concrete encasement of duct bank.

O. Underground-Line Warning Tape: Bury conducting underground-line warning tape SHALL BE no less than 12 inches (300 mm) above all concrete-encased duct and duct bank and approximately 12 inches (300 mm) below grade. Align tape parallel to and within 3 inches (75 mm) of centerline of duct bank. Provide an additional warning tape for each 12-inch (300-mm) increment of duct-bank width over a nominal 18 inches (450 mm). Space additional tapes 12 inches (300 mm) apart, horizontally.

3.6 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND BOXES

A. Precast Concrete Handhole and Manhole Installation:

1. Comply with ASTM C891 unless otherwise indicated.
2. Install units level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances.
3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch (25-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.

B. Elevations:

1. Manhole Roof: Install with rooftop at least 15 inches (380 mm) below finished grade.
2. Manhole Frame: In paved areas and trafficways, set frames flush with finished grade. Set other manhole frames 1 inch (25 mm) above finished grade.
3. Install handholes with bottom below frost line, 36 inches below grade.
4. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.
5. Where indicated, cast handhole cover frame integrally with handhole structure.
C. Drainage: Install drains in bottom of manholes where indicated. Coordinate with drainage provisions indicated.

D. Manhole Access: Circular opening in manhole roof; sized to match cover size.
 1. Manholes with Fixed Ladders: Offset access opening from manhole centerlines to align with ladder.
 2. Install chimney, constructed of precast concrete collars and rings, to support cast-iron frame to connect cover with manhole roof opening. Provide moisture-tight masonry joints and waterproof grouting for frame to chimney.

E. Waterproofing: Apply waterproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. Waterproofing materials and installation are specified in. After duct has been connected and grouted, and before backfilling, waterproof joints and connections, and touch up abrasions and scars. Waterproof exterior of manhole chimneys after mortar has cured at least three days.

F. Dampproofing: Apply dampproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. Dampproofing materials and installation are specified in Section 071113 "Bituminous Dampproofing." After duct has been connected and grouted, and before backfilling, dampproof joints and connections, and touch up abrasions and scars. Dampproof exterior of manhole chimneys after mortar has cured at least three days.

G. Hardware: Install removable hardware, including pulling eyes, cable stanchions, and cable arms, and insulators, as required for installation and support of cables and conductors and as indicated.

H. Fixed Manhole Ladders: Arrange to provide for safe entry with maximum clearance from cables and other items in manholes.

I. Field-Installed Bolting Anchors in Manholes and Concrete Handholes: Do not drill deeper than 3-7/8 inches (97 mm) for manholes and 2 inches (50 mm) for handholes, for field-installed anchor bolts installed. Use a minimum of two anchors for each cable stanchion.

3.7 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of duct and duct bank, and seal joint between box and extension as recommended by manufacturer.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch (12.5-mm) sieve to No. 4 (4.75-mm) sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas and trafficways, set cover flush with finished grade. Set covers of other handholes 1 inch (25 mm) above finished grade.

D. Install handholes and boxes with bottom below frost line, 36” below grade.
E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in enclosure.

F. Field cut openings for duct according to enclosure manufacturer’s written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

3.8 GROUNDING

A. Ground underground duct, duct bank, and utility structures according to Section 270526 "Grounding and Bonding for Communications Systems."

3.9 FIELD QUALITY CONTROL

A. Perform the following tests and inspections and prepare test reports:

1. Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and utility structures.
2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch- (300-mm-) long mandrel equal to duct size minus 1/4 inch (6 mm). If obstructions are indicated, remove obstructions and retest.
3. Test manhole and handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 270526 "Grounding and Bonding for Communications Systems."

B. Correct deficiencies and retest as specified above to demonstrate compliance.

3.10 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris.

B. Clean internal surfaces of manholes, including sump.

1. Sweep floor, removing dirt and debris.
2. Remove foreign material.

END OF SECTION 270543
SECCION 270544 - SLEEVES AND SLEEVE SEALS FOR COMMUNICATIONS PATHWAYS AND CABLEING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Sleeves for pathway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.

B. Related Requirements:
 1. Section "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:
 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch (0.6-mm) minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
C. PVC-Pipe Sleeves: ASTM D1785, Schedule 40.

D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

E. Molded-PE or PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

F. Sleeves for Rectangular Openings:
 2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches (1270 mm) and with no side larger than 16 inches (400 mm), thickness shall be 0.052 inch (1.3 mm).
 b. For sleeve cross-section rectangle perimeter 50 inches (1270 mm) or more and one or more sides larger than 16 inches (400 mm), thickness shall be 0.138 inch (3.5 mm).

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and pathway or cable.
 1. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 2. Pressure Plates: Carbon steel.
 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

D. Packaging: Premixed and factory packaged.
2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:

 a. Seal annular space between sleeve and pathway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."

 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

 3. Size pipe sleeves to provide 1/4-inch (6.4-mm) annular clear space between sleeve and pathway or cable unless sleeve seal is to be installed.

 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches (50 mm) above finished floor level. Install sleeves during erection of floors.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at pathway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for pathway or cable material and size. Position pathway or cable in center of sleeve. Assemble mechanical
sleeve seals and install in annular space between pathway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 270544
SECTION 270553 - IDENTIFICATION FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Color and legend requirements for labels and signs.
2. Labels.
4. Tapes.
5. Signs.
6. Cable ties.
7. Fasteners for labels and signs.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for communications identification products.

B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.

C. Identification Schedule:

1. Outlets: Scaled drawings indicating location and proposed designation.
2. Backbone Cabling: Riser diagram showing each communications room, backbone cable, and proposed backbone cable designation.
3. Racks: Scaled drawings indicating location and proposed designation.
4. Patch Panels: Enlarged scaled drawings showing rack row, number, and proposed designations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Comply with NFPA 70 and TIA 606-B.

B. Comply with ANSI Z535.4 for safety signs and labels.

C. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

A. Equipment Identification Labels:
 1. Yellow letters on a green field.

2.3 LABELS

A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.

B. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters of raceway or cable they identify, that stay in place by gripping action.

C. Self-Adhesive Wraparound Labels: Preprinted, 3-mil- (0.08-mm-) thick, vinyl flexible labels with acrylic pressure-sensitive adhesive.
 1. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating protective shields over the legend. Labels sized such that the clear shield overlaps the entire printed legend.
 2. Marker for Labels: Permanent, waterproof black ink marker recommended by tag manufacturer.
 3. Marker for Labels: Machine-printed, permanent, waterproof black ink recommended by printer manufacturer.

D. Self-Adhesive Labels: Vinyl, thermal, transfer-printed, 3-mil- (0.08-mm-) thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
 1. Minimum Nominal Size:
 a. 1-1/2 by 6 inches (37 by 150 mm) for raceway and conductors.
 b. 3-1/2 by 5 inches (76 by 127 mm) for equipment.
 c. As required by authorities having jurisdiction.

2.4 BANDS AND TUBES

A. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches (50 mm) long, with diameters sized to suit diameters of raceway or cable they identify, that stay in place by gripping action.
2.5 UNDERGROUND-LINE WARNING TAPE

A. Tape:

1. Recommended by manufacturer for the method of installation and suitable to identify and locate underground communications utility lines.
2. Printing on tape shall be permanent and shall not be damaged by burial operations.
3. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.

B. Color and Printing:

2. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL-FIBER CABLE".

C. Tag: Type I

1. Detectable three-layer laminate, consisting of a printed pigmented polyolefin film, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core; bright colored, compounded for direct-burial service.
2. Width: 3 inches (75 mm).
3. Overall Thickness: 5 mils (0.125 mm).
4. Foil Core Thickness: 0.35 mil (0.00889 mm).
5. Weight: 28 lb/1000 sq. ft. (13.7 kg/100 sq. m).
6. Tensile according to ASTM D882: 70 lbf (311.3 N) and 4600 psi (31.7 MPa).

2.6 SIGNS

A. Baked-Enamel Signs:

1. Preprinted aluminum signs punched or drilled for fasteners, with colors, legend, and size required for application.
2. 1/4-inch (6.4-mm) grommets in corners for mounting.
3. Nominal Size: 7 by 10 inches (180 by 250 mm).

B. Metal-Backed Butyrate Signs:

1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396-inch (1-mm) galvanized-steel backing, punched and drilled for fasteners, and with colors, legend, and size required for application.
2. 1/4-inch (6.4-mm) grommets in corners for mounting.
3. Nominal Size: 10 by 14 inches (250 by 360 mm).

C. Laminated-Acrylic or Melamine-Plastic Signs:

1. Engraved legend.
2. Thickness:
 a. For signs up to 20 sq. in. (129 sq. cm), minimum 1/16 inch (1.6 mm) thick.
 b. For signs larger than 20 sq. in. (129 sq. cm), 1/8 inch (3.2 mm) thick.
 c. Engraved legend with black letters on yellow face.
2.7 CABLE TIES

A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 1. Minimum Width: 3/16 inch (5 mm).
 2. Tensile Strength at 73 deg F (23 deg C) according to ASTM D638: 12,000 psi (82.7 MPa).
 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).

B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 1. Minimum Width: 3/16 inch (5 mm).
 2. Tensile Strength at 73 deg F (23 deg C) according to ASTM D638: 12,000 psi (82.7 MPa).
 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).

C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.
 1. Minimum Width: 3/16 inch (5 mm).
 2. Tensile Strength at 73 deg F (23 deg C) according to ASTM D638: 7000 psi (48.2 MPa).
 3. UL 94 Flame Rating: 94V-0.
 4. Temperature Range: Minus 50 to plus 284 deg F (Minus 46 to plus 140 deg C).
 5. Color: Black.

2.8 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.
PART 3 - EXECUTION

3.1 PREPARATION
 A. Self-Adhesive Identification Products: Before applying communications identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION
 A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
 B. Install identifying devices before installing acoustical ceilings and similar concealment.
 C. Verify identity of each item before installing identification products.
 D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
 E. Apply identification devices to surfaces that require finish after completing finish work.
 F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of communications systems and connected items.
 G. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.
 H. Vinyl Wraparound Labels:
 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
 3. Provide label 6 inches (150 mm) from cable end.
 I. Snap-Around Labels:
 1. Secure tight to surface at a location with high visibility and accessibility.
 2. Provide label 6 inches (150 mm) from cable end.
 J. Self-Adhesive Wraparound Labels:
 1. Secure tight to surface at a location with high visibility and accessibility.
 2. Provide label 6 inches (150 mm) from cable end.
 K. Self-Adhesive Labels:
1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.

2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.

L. Snap-Around, Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.

M. Underground-Line Warning Tape:

1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches (150 to 200 mm) below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches (400 mm) overall.

2. Limit use of underground-line warning tape to direct-buried cables.

3. Install underground-line warning tape for direct-buried cables and cables in raceways.

N. Cable Ties: General purpose, except as listed below:

1. Outdoors: UV-stabilized nylon.

2. In Spaces Handling Environmental Air: Plenum rated.

3.3 IDENTIFICATION SCHEDULE

A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations with high visibility. Identify by system and circuit designation.

C. Accessible Fittings for Raceways and Cables within Buildings: Identify covers of each junction and pull box with self-adhesive labels containing wiring system legend.

1. System legends shall be as follows:
 a. Systems shall be individually identified
 1) SS/SA (Security CCTV)
 2) Fiber Optic Cable
 3) Public Address
 4) Etc…

D. Faceplates: Label individual faceplates with self-adhesive labels. Place label at top of faceplate. Each faceplate shall be labeled with its individual, sequential designation, composed of the following, in the order listed:

1. Wiring closet designation.

2. Colon.

3. Faceplate number.
E. Equipment Room Labeling:

1. Racks, Frames, and Enclosures: Identify front and rear of each with self-adhesive labels.
2. Patch Panels: Label individual rows and outlets, starting at to left and working down, with self-adhesive labels.
3. Data Outlets: Label each outlet with a self-adhesive label indicating the following, in the order listed:
 a. Room number being served.
 b. Colon.
 c. Faceplate number.

F. Backbone Cables: Label each cable with a vinyl-wraparound label indicating the location of the far or other end of the backbone cable. Patch panel or punch down block where cable is terminated should be labeled identically.

G. Horizontal Cables: Label each cable with a self-adhesive wraparound label indicating the following, in the order listed:

1. Room number, cabinet Number, Patch Panel Number
2. Colon.
3. Faceplate number.

I. Instructional Signs: Self-adhesive labels.

J. Warning Labels for Indoor Cabinets, Boxes, and Enclosures: Self-adhesive labels.

1. Apply to exterior of door, cover, or other access.

K. Equipment Identification Labels:

1. Indoor Equipment: Laminated-acrylic or melamine-plastic sign.
2. Outdoor Equipment: Laminated-acrylic or melamine-plastic sign.
3. Equipment to Be Labeled:
 a. Communications cabinets.
 b. Uninterruptible power supplies.
 c. Computer room air conditioners.
 d. Fire-alarm and suppression equipment.
 e. Egress points.
 f. Power distribution components.

END OF SECTION 270553
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This item shall consist of work for communications equipment room fitting including the following:
 1. Telecommunications mounting elements.
 2. Telecommunications equipment racks and cabinets.

B. Refer to the following related sections:
 1. Section 271500 "Communications Horizontal Cabling" for voice and data cabling associated with system panels and devices.

1.3 DEFINITION

2. LAN: Local area network.
3. RCDD: Registered Communications Distribution Designer.

1.4 ACTION SUBMITTAL

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for equipment racks and cabinets.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For communications equipment room fittings. Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Equipment Racks and Cabinets: Include workspace requirements and access for cable connections.
 3. Grounding: Indicate location of grounding bus bar and its mounting detail showing standoff insulators and wall mounting brackets.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.

B. Seismic Qualification Certificates: For equipment frames from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. Base certification on the maximum number of components capable of being mounted in each rack type. Identify components on which certification is based.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 1. Layout Responsibility: Preparation of Shop Drawings shall be under the direct supervision of RCDD.
 2. Installation Supervision: Installation shall be under the direct supervision of Registered Technician, who shall be present at all times when Work of this Section is performed at Project site.
 3. Field Inspector: Currently registered by BICSI as Commercial Installer, Level 2 to perform the on-site inspection.

PART 2 - MATERIALS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Equipment frames shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

B. Equipment Frames
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hubbell Premise Wiring.

C. General Frame Requirements:
 1. Distribution Frames: Freestanding modular-steel units designed for telecommunications terminal support and coordinated with dimensions of units to be supported.
 2. Module Dimension: Width compatible with EIA 310-D standard, 19-inch (480-mm) panel mounting.
 3. Finish: Manufacturer's standard, baked-polyester powder coat.

D. Floor-Mounted Racks: Modular-type, steel construction.
 2. Uprights: 1/4” web thickness.
 3. Finish: Durable black powder coat.
 4. Weight capacity: 500 lbs. (static) when properly secured to floor.
 5. UL Listed - 7N69 Communications Circuit Accessory.
 6. EIA-310-D universal spacing tapped #12-24 front and rear.
 7. Vertical and horizontal cable management channels, top and bottom cable troughs, grounding lug, and 2 vertical power strips.

E. Cable Management for Equipment Frames:
 1. 6 inch hinged vertical channels, aluminum, with integral wire retaining fingers.
 2. Baked-polyester powder coat finish, Black.
 3. Vertical cable management panels shall have front and rear channels, with covers.
2.2 GROUNDING
 A. Comply with requirements in Section "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.
 B. Telecommunications Main Bus Bar:
 1. Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.
 2. Ground Bus Bar: Copper, minimum 1/4 inch thick by 4 inches wide (6 mm thick by 100 mm wide) with 9/32-inch (7.14-mm) holes spaced 1-1/8 inches (28 mm) apart.
 3. Stand-Off Insulators: Comply with UL 891 for use in switchboards, 600 V. Lexan or PVC, impulse tested at 5000 V.
 C. Comply with J-STD-607-A.

2.3 LABELING
 A. Comply with TIA/EIA-606-A and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

PART 3 - EXECUTION
3.1 ENTRANCE FACILITIES
 A. Contact the IT staff and arrange for installation of demarcation point, protected entrance terminals, and a housing when so directed by the authority.
 B. Comply with requirements in Section "Pathways for Electrical Systems" for materials and installation requirements for underground pathways.

3.2 INSTALLATION
 A. Comply with NECA 1.
 B. Comply with BICSI TDMM for layout and installation of communications equipment rooms.
 C. Bundle, lace, and train conductors and cables to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
 D. Coordinate layout and installation of communications equipment with Owner's telecommunications and LAN equipment and service suppliers. Coordinate service entrance arrangement with local exchange carrier.
 1. Meet jointly with telecommunications and LAN equipment suppliers, local exchange carrier representatives, and Owner to exchange information and agree on details of equipment arrangements and installation interfaces.
 2. Record agreements reached in meetings and distribute them to other participants.
 3. Adjust arrangements and locations of distribution frames, cross-connects, and patch panels in equipment rooms to accommodate and optimize arrangement and space requirements of telephone switch and LAN equipment.
 4. Adjust arrangements and locations of equipment with distribution frames, cross-connects, and patch panels of cabling systems of other communications, electronic safety and security, and related systems that share space in the equipment room.
 5. Coordinate location of power raceways and receptacles with locations of communications equipment requiring electrical power to operate.
3.3 SLEEVE AND SLEEVE SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS
 A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section "Sleeves and Sleeve Seals for Electrical Pathways and Cabling."
 B. Comply with TIA-569-B, Annex A, "Firestopping."
 C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.4 GROUNDING
 A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
 B. Comply with J-STD-607-A.
 C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch (50-mm) clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
 D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.
 E. a. Bond the shield of shielded cable to the grounding bus bar in communications rooms and spaces.

3.5 IDENTIFICATION
 A. Paint and label colors for equipment identification shall comply with TIA/EIA-606-A for Class 2 level of administration.
 B. Labels shall be preprinted or computer-printed type.

END OF SECTION
SECTION 271500 - COMMUNICATIONS HORIZONTAL CABLEING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. Related Requirements outside of Division 27:
 1. Section 260526 “Grounding and Bonding for Electrical Systems.”
 2. Section 260543 for "Underground Ducts and Raceways for Electrical Systems."

1.2 SUMMARY

A. Section Includes:
 1. UTP cabling.
 2. Optical Fiber Cabling
 3. Cable connecting hardware, patch panels, and cross-connects.
 4. Telecommunications outlet/connectors.
 5. Cabling system identification products.

B. Related Requirements:
 1. Section 260526 “Grounding and Bonding for Electrical Systems.”
 2. Section 260543 for "Underground Ducts and Raceways for Electrical Systems."

1.3 DEFINITIONS

B. Consolidation Point: A location for interconnection between horizontal cables extending from building pathways and horizontal cables extending into furniture pathways.

C. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.

D. EMI: Electromagnetic interference.

E. IDC: Insulation displacement connector.

F. LAN: Local area network.

G. MUTOA: Multiuser telecommunications outlet assembly, a grouping in one location of several telecommunications outlet/connectors.

H. Outlet/Connectors: A connecting device in the work area on which horizontal cable or outlet cable terminates.

I. RCDD: Registered Communications Distribution Designer.

J. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

A. Coordinate layout and installation of telecommunications cabling with Owner's telecommunications and LAN equipment and service suppliers.
B. Coordinate telecommunications outlet/connector locations with location of power receptacles at each work area.

1.5 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. For all cable, include the following installation data for each type used:
 1. Nominal OD.
 2. Minimum bending radius.
 3. Maximum pulling tension.
 4. Cable Performance Specifications

1.6 INFORMATIONAL SUBMITTALS
A. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.
 1. Submit copies of the certification of the company and names of staff that will be performing the installation and termination of the installation to provide proof of compliance of this spec.
 2. Submit proof from manufacturer of contractor’s good standing in manufacturer’s program.

B. Source quality-control reports.

C. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS
A. Maintenance Data: For splices and connectors to include in maintenance manuals.

B. Test result documentation on system acceptance testing specified in paragraph 3.16 of this section.

C. As-Built documentation as outlined in paragraph 3.10 of this section.

1.8 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Patch Cables: Provide 20% spare.
 2. Faceplates and connecting hardware: Provide 20% spare.

1.9 QUALITY ASSURANCE
A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 1. Layout Responsibility: Preparation of Shop Drawings Cabling Administration Drawings, and field testing program development by an RCDD.
 2. Installation Supervision: Installation shall be under the direct supervision of Registered Technician who shall be present at all times when Work of this Section is performed at Project site.
 3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

B. Testing Agency Qualifications: An NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.
1.10 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.
 1. Test each pair of UTP cable for open and short circuits.

1.11 WARRANTY

A. Twenty (20)/Twenty-Five (25) Year Extended Product Warranty
 1. The 20/25 Year Extended Product Warranty shall ensure against product defects, that all approved cabling components exceed the specifications of TIA/EIA 568A and ISO/IEC IS 11801, exceed the attenuation and NEXT requirements of TIA/EIA TSB 67 and ISO/IEC IS 11801 for cabling links/channels, that the installation will exceed the loss bandwidth requirements of TIA/EIA TSB 67 and ICO/IEC IS 11801 for fiber links/channels, for a twenty (20)/twenty-five (25) year period. The end-to-end passive product shall be capable of delivering 1Gb/s half-duplex mode/2Gb/s full-duplex mode to the workstation. The warranty shall apply to all passive telecommunications components.
 2. The Twenty (20)/ Twenty-Five (25) Year Extended Product Warranty shall cover the replacement or repair of defective product(s) and labor for the replacement or repair of such defective product(s) for a twenty (20)/twenty-five (25) year period.

B. Twenty (20) Year Application Assurance
 1. The Twenty (20)/Twenty-Five (25) Year Application Assurance shall cover the failure of the wiring system to support the application which it was designed to support, as well as additional application(s) introduced in the future, up to 1Gb/s parallel transmission schemes, by recognized standards or user forums that use the TIA/EIA or ISO/IEC IS 11801 component and link/channel specifications for cabling, for a twenty (20)/twenty-five (25) year period.

C. System Certification
 1. Upon successful completion of the installation and subsequent inspection, the customer shall be provided with a numbered certificate, from the manufacturing company, registering the installation. Digital Copies shall be sent to the owner’s representative with the product submittal.

PART 2 - PRODUCTS

2.1 HORIZONTAL CABLING DESCRIPTION

A. Horizontal cable and its connecting hardware provide the means of transporting signals between the telecommunications outlet/connector and the horizontal cross-connect located in the communications equipment room. This cabling and its connecting hardware are called a "permanent link," a term that is used in the testing protocols.
 1. TIA/EIA-568-B.1 requires that a minimum of two telecommunications outlet/connectors be installed for each work area.
 2. Horizontal cabling shall contain no more than one transition point or consolidation point between the horizontal cross-connect and the telecommunications outlet/connector.
 3. Bridged taps and splices shall not be installed in the horizontal cabling.
 4. Splitters shall not be installed as part of the optical fiber cabling.
B. A work area is approximately 100 sq. ft., and includes the components that extend from the telecommunications outlet/connectors to the station equipment.

C. The maximum allowable horizontal cable length is 295 feet. This maximum allowable length does not include an allowance for the length of 16 feet to the workstation equipment or in the horizontal cross-connect.

2.2 BACKBONE CABLE DESCRIPTION

A. Backbone cabling system shall provide interconnections between communications equipment rooms, main terminal space, and entrance facilities in the telecommunications cabling system structure. Cabling system consists of backbone cables, intermediate and main cross-connects, mechanical terminations, and patch cords or jumpers used for backbone-to-backbone cross-connection.

B. Backbone cabling cross-connects may be located in communications equipment rooms or at entrance facilities. Bridged taps and splitters shall not be used as part of backbone cabling.

C. All required backbone cabling cross-connects may not be indicated on contract drawings. Contractor shall be responsible for furnishing cross-connects required to create a fully operation system consistent with the design intent.

2.3 PERFORMANCE REQUIREMENTS

A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA/EIA-568-B.1 when tested according to test procedures of this standard.

B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

 1. Flame-Spread Index: 25 or less.
 2. Smoke-Developed Index: 50 or less.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.4 UTP CABLE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Berk-Tek Leviton; a Nexans/Leviton alliance.
 2. SYSTIMAX Solutions; a CommScope Inc. brand.
B. Description: 100-ohm, four-pair UTP, formed into 25-pair, binder groups covered with a blue thermoplastic jacket.
 1. Comply with ICEA S-90-661 for mechanical properties.
 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 1. Communications, Plenum Rated: Type CMP, complying with NFPA 262.

2.5 UTP CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. AMP NETCONNECT; a TE Connectivity Ltd. company.
 2. Belden CDT Networking Division/NORDX.
 3. Hubbell Premise Wiring.
 4. Leviton Manufacturing Co., Inc.
 5. Panduit Corp.
 7. Ortronics/Legrand
 8. SYSTIMAX Solutions; a CommScope Inc. brand.

B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-B.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.

C. Connecting Blocks: 110-style IDC for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

D. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
 1. Number of Terminals per Field: One for each conductor in assigned cables.

E. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.
 1. Number of Jacks per Field: One for each four-pair UTP cable indicated.

F. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.

G. Patch Cords: Factory-made, four-pair cables in 36-inch, 48-inch lengths; terminated with eight-position modular plug at each end.
1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.
2. Patch cords shall have color-coded boots for circuit identification.

2.6 UTP MODULAR PATCH PANELS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following manufacturers:

1. AMP NETCONNECT; a TE Connectivity Ltd. company.
2. Belden CDT Networking Division/NORDX.
3. Hubbell Premise Wiring.
4. Leviton Manufacturing Co., Inc.
5. Panduit Corp.
7. Ortronics/Legrand
8. SYSTIMAX Solutions; a CommScope Inc. brand.

B. The Modular Patch Panels shall

1. Meet category 6 component compliance and be verified by a third-party nationally recognized independent testing laboratory
2. Use low emission IDC contacts
3. Use dual reactance technology to enhance the signal-to-noise ratio
4. Require standard termination practices using a 110 impact tool
5. Use a single piece IDC housing designed to accept larger category 6 conductors
6. Support both t568b and t568a wiring
7. Include easy to follow wiring labels
8. Include label fields
9. Allow for the use of icons
10. Include full length metal rear cable management
11. Be available in standard or high density
12. Be backward compatible to category 3, 5 and 5e
13. Be center tuned to category 6 test specifications
14. Be available in both 24 and 48 port versions.
15. Manufacturer shall match that of the cable terminating on the IDC contacts

2.7 TELECOMMUNICATIONS OUTLET/CONNECTORS

B. Workstation Outlets: One to six port connector assemblies mounted in single faceplate.

1. Plastic Faceplate: High-impact plastic. Coordinate color existing conditiona
3. For use with snap-in jacks accommodating any combination of UTP, optical fiber, and coaxial work area cords.

 1. Flush mounting jacks, positioning the cord at a 45-degree angle.
 4. Retain one of three "Legend" subparagraphs below; retain first for metal faceplates.

5. Legend: Machine printed, in the field, using adhesive-tape label.

2.8 OPTICAL FIBER CABLE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. AMP NETCONNECT; a TE Connectivity Ltd. company.
2. Belden CDT Networking Division/NORDX.
3. BerkTek, Leviton
4. CommScope, Inc.
5. General Cable.

B. Description: Singlemode, 9/125-micrometer, 12-fiber, nonconductive, tight buffer, optical fiber cable.

1. Comply with ICEA S-83-596 for mechanical properties.
2. Comply with TIA/EIA-568-B.3 for performance specifications.
4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:

1. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.

5. Conductive cable shall be steel armored type.
6. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
7. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.

C. Jacket:

2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-C.
3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

D. Outdoor runs shall be OS2 type cable, no exceptions.

E. Innerduct:
1. All non-armored fiber optic cables shall be installed within innerduct (unless noted otherwise). Armored fiber optic cables shall not require innerduct (unless noted otherwise).

2. All innerduct installed in cable trays or ladder racks in plenum spaces shall be listed, labeled, and identified as suitable for use intended.

3. All innerducts shall have a plenum fire rating.

4. Any non-fabric innerduct shall be no more than 50% filled.

5. Innerducts shall be one of the following two types:

 1. Corrugated HDPE
 2. Plenum Rated MaxCell Fabric Innerduct

6. Minimal Innerduct Size:

 1. Corrugated HDPE – 1”
 2. MaxCell Fabric – 1” 3-Cell

2.9 OPTICAL FIBER CABLE HARDWARE

A. Cross-Connects and Patch Panels: Modular panels housing multiple-numbered, duplex cable connectors.

 1. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit specified expansion criteria.

B. Patch Cords: Factory-made, dual-fiber cables in 36-inch lengths.

C. Cable Connecting Hardware:

 2. Quick-connect, simplex and duplex, Type LC connectors. Insertion loss not more than 0.75 dB.
 3. Type SFF connectors may be used in termination racks, panels, and equipment packages.

D. Fiber Optic Termination Housing: Rack-mount, with multi-numbered, simplex connector insert adapter panels holding fiber optic strand connectors.

 1. Be modular in design with management clips that provide slack storage to comply with optical fiber bend radius and the recommended slack storage length.
 2. Be equipped with pull out tray for front access to fiber terminations and rear of adapter panels.
 3. Have an administrative labeling system for identification of individual fiber ports.
 4. Have anchor points and strain relief for the optical fiber cable entry to the unit.
 5. Acceptable Products:
1. Up to 144 ST High Density Connection.
2. Systemax is preferred manufacturer

2.10 IDENTIFICATION PRODUCTS
A. Comply with TIA/EIA-606-A and UL 969 for labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

PART 3 - EXECUTION
3.1 ENTRANCE FACILITIES
A. Coordinate backbone cabling with the protectors and demarcation point provided by the facility.

3.2 WIRING METHODS
A. Install all cabling in pathways using only plenum rated cabling. Conceal pathways and cables except in unfinished spaces.
 1. Install plenum cable in environmental air spaces, including plenum ceilings and conduit.
 2. Comply with requirements in Section 270528 "Pathways for Communications Systems."
B. Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
C. Wiring within Enclosures:
 1. Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii.
 2. Install lacing bars and distribution spools.
 3. Install conductors parallel with or at right angles to sides and back of enclosure.

3.3 INSTALLATION OF CABLES
A. Comply with NECA 1.
B. General Requirements for Cabling:
 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 3. Install 110-style IDC termination hardware unless otherwise indicated.
 4. Terminate conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 6. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
 7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
8. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.

9. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.

10. In the communications equipment room, install a 10-foot-long service loop on each end of cable.

11. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

12. Supply cross-connect cables, patch cords, and fiber patch cords for cross-connection and inter-connection of termination blocks and patch panels. The type of jumper-cables shall depend on the application and the termination block used.

C. UTP Cable Installation:
2. Do not untwist UTP cables more than 1/2 inch from the point of termination to maintain cable geometry.
3. All UTP cables shall be run using a star topology format from the telecommunication equipment room to every individual information outlet.
4. A blank cover plate shall be provided on all outlet boxes where cable is not initially installed

D. Optical Fiber Cable Installation:
2. Cable may be terminated on connecting hardware that is rack or cabinet mounted.

E. Group connecting hardware for cables into separate logical fields.

F. Separation from EMI Sources:
1. Comply with BICSI TDMM and TIA-569-B for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 1. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches.
 2. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 2. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.
4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 2. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.
5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.
6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.4 PULL STRINGS
A. Pull strings shall be installed in all conduit and remain in conduit after installation of cable. If original pull strings are removed, new ones of equal or greater pull strength shall be provided.

3.5 FIRESTOPPING
A. Comply with TIA-569-B, Annex A, "Firestopping."
B. Comply with BICSI TDMM, "Firestopping Systems" Article.
C. Fire stop systems shall be installed in all openings and around all penetrating elements or devices as required by the contract drawings, and as required by applicable design, building and construction codes subject to the interpretation of the local authority having jurisdiction.

3.6 GROUNDING
A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
B. Comply with J-STD-607-A.
C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.7 IDENTIFICATION
A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A. See Evaluations for discussion about designating the class of cabling plant administration and color-coding of cross-connect fields.
 1. Color-code cross-connect fields. Apply colors to voice and data service backboards, connections, covers, and labels.
B. Cable Schedule: Post in prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.
C. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, entrance pathways and cables, terminal hardware and positions, horizontal cables, work area terminal positions, grounding buses and pathways, and equipment grounding conductors. Follow convention of TIA/EIA-606-A. Furnish electronic record of all drawings, in software and format selected by Owner.
D. Cable and Wire Identification:
 1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.

3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.

4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 1. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with name and number of particular device as shown.
 2. Label each unit and field within distribution racks and frames.

5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.

E. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA-606-A.
 1. Cables use flexible vinyl or polyester that flex as cables are bent.

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 2. Visually confirm Category 6, marking of outlets, cover plates, outlet/connectors, and patch panels.
 3. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 4. Test UTP backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
 1. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in “Test Instruments (Normative)” Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 5. Optical Fiber Cable Tests:
 1. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 2. Post Installation Testing
1) All fiber optic cable strands shall be tested after installation and termination to assure that attenuation and continuity are within acceptable limits. These tests shall be performed with an OTDR and magnetic and hard copy of the trace and numeric boundaries of these tests will be provided to the Owner/Engineer. Any fiber strands failing the continuity or attenuation measurement tests will be repaired or replaced by the SCS Contractor at no additional cost to the Owner.

3. Passive Link Segments

1) Attenuation testing should be performed on each passive link segment of the cabling system. A link segment consists of the cable, connectors, couplings, and splices between two fiber optic termination units (patch panels, information outlets, etc.). Each terminated fiber within a link segment should be tested. The link segment attenuation measurement includes the representative attenuation of connectors at the termination unit interface on both ends of the link, but does not include the attenuation associated with the active equipment interface.

2) There are three basic types of link segments described in this document: Horizontal, Backbone, and Composite. A Horizontal Link Segment normally begins at the telecommunications outlet and ends at the horizontal cross-connect. The Horizontal Link Segment may also include a consolidation point interconnection or a transition point splice. A riser Backbone Link Segment usually begins at the main cross-connect and ends at the horizontal cross-connect. For the purpose of this document a tie cable (placed between two horizontal cross-connects) and a campus cable (typically placed between two main cross-connects) are both considered Backbone Link Segments. Single Point Administration architecture (i.e. Centralized Cabling) eliminates the horizontal cross-connect, and as a result, horizontal and backbone cabling are combined into a Composite Link Segment. In this case, the horizontal closet may contain a splice, interconnect, or pulled-through cable.

4. General Guidelines:

1) Singlemode Horizontal Link Segments should be tested in either one or both directions depending on manufacturers testing specifications at the 1310-nm or 1550-nm wavelength.

2) Singlemode Backbone and Composite Link Segments should be tested in either one or both directions depending on manufacturers testing specifications at both 1310-nm and 1550-nm wavelengths.

5. Link End-to-End Attenuation Tests:

1) Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.

2) Use TIA/EIA-526-14-A, Method B, One Reference Jumper method to test each link segment.

3) Link attenuation is calculated as:

 a) Link Attenuation = Cable Attenuation + Connector Insertion loss + Splice Insertion loss
where:

b) Cable Attenuation (dB) = Attenuation Coefficient (dB/km) × Length (km)

Attenuation Coefficients are:
3.5 dB/km @ 850 nm for multimode
1.5 dB/km @ 1300 nm for multimode
0.5 dB/km @ 1310 nm for singlemode outside plant cable
0.5 dB/km @ 1550 nm for singlemode outside plant cable
1.0 dB/km @ 1310 nm for singlemode inside plant cable
1.0 dB/km @ 1550 nm for singlemode inside plant cable

Connector Insertion loss (dB) = number of connector pairs × connector loss (dB)
Default Connector Insertion Loss Value: 0.75 dB

Splice Insertion loss (dB) = number of splices (S) × splice loss (dB)
Default Splice Insertion Loss Value: 0.3 dB

6. UTP Performance Tests:

1. Test for each outlet and MUTOA. Perform the following tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.2:

 1) Wire map.
 2) Length (physical vs. electrical, and length requirements).
 3) Insertion loss.
 4) Near-end crosstalk (NEXT) loss.
 5) Power sum near-end crosstalk (PSNEXT) loss.
 6) Equal-level far-end crosstalk (ELFEXT).
 7) Power sum equal-level far-end crosstalk (PSELFEXT).
 8) Return loss.
 9) Propagation delay.
 10) Delay skew.

7. Optical Fiber Cable Performance Tests: Perform optical fiber end-to-end link tests according to TIA/EIA-568-B.1 and TIA/EIA-568-B.3.

8. Final Verification Tests: Perform verification tests for UTP and optical fiber systems after the complete communications cabling and workstation outlet/connectors are installed.

1. Voice Tests: These tests assume that dial tone service has been installed. Connect to the network interface device at the demarcation point. Go off-hook.
and listen and receive a dial tone. If a test number is available, make and receive a local, long distance, and digital subscription line telephone call.

2. Data Tests: These tests assume the Information Technology Staff has a network installed and is available to assist with testing. Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network.

B. Document data for each measurement. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.

C. End-to-end cabling will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.9 INSPECTION

A. On-going inspections shall be performed during construction by the Project Manager and/or the SCS System Manager. All work shall be performed in a high quality manner and the overall appearance shall be clean, neat and orderly. The following points will be examined and must be satisfactorily complied with:

1. Is the design documentation complete? Are all cables properly labeled, from end-to-end?

2. Have all terminated cables been properly tested in accordance with the specifications for the specific category as well as tested for opens, shorts, polarity reversals, transposition and presence of AC and/or DC voltage?

3. Is the cable type suitable for its pathway? Are the cables bundled in parallel?

4. Have the pathway manufacturer's guidelines been followed? Are all cable penetrations installed properly and fire stopped according to code?

5. Has excessive cable bending been avoided?

6. Have potential EMI and RFI sources been considered?

7. Is cable fill ratio correct?

8. Are telecommunications closet terminations compatible with applications equipment?

9. Have patch panel instructions been followed?
 1. Jacket removal point
 2. Termination positions
 3. All pair terminations tight with minimal pair distortions
 4. Twists maintained up to Index Strip

10. Have Modular Panel instructions been followed?
 1. Cable dressing first
 2. Jackets remain up to the Connecting Block
 3. All pair terminations tight and undistorted
 4. Twists maintained up to the Connecting Block

11. Are connectors properly turned right side up in the outlets without cables wrapped or twisted around the mounting collars?

12. Are the correct outlet connectors used?

13. Is the jacket maintained right up to the jack?

14. Are identification markings uniform, permanent and readable?
3.10 FINAL DOCUMENTATION

A. Drawings and Diagrams
 1. Provide the following as-built documentation:
 1. Main Equipment Room and Telecommunication Equipment Room Diagrams - Includes:
 1) Cable routing
 2) Position of all components and apparatus
 3) Labeling plan
 2. Work Area Floor Plans - Includes:
 1. Detailed cable routes
 2. Approved labeling plan for all work areas
 3. Cross Connect Documentation - Includes:
 1. Cross connect records for all voice, and data devices
 2. Cable test results
 4. Riser Distribution Plan – Includes:
 1. Cable Tray, Conduit, and Raceway Plans
 2. Campus Distribution Plan
 5. Documentation should be in the following format:
 1. Four (4) copies and one reproducible sepia of all diagrams and drawings of size (22” x 34”).
 2. Two (2) copies of all cross connect documentation in printed form.

END OF SECTION
SECTION 281300 - SECURITY SYSTEM EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. The purpose of this section is to define the minimum system requirements regarding door controllers and various entry and exit modules. The door controller shall be the intermediate level of the security system. It will perform the functions of alarm acquisition, decoding and validating the state of cards and collecting data on the entry/exit of personnel. Shall one of the door controllers be defective; it shall not affect the operation of the others. The door controller shall be built on microprocessor-based technology and shall be adapted to proximity card readers. It shall have proven itself on similar access control applications.

B. This section specifies the minimum requirements for access control equipment, intrusion detection and monitoring/control provisions. The installation and testing of all security system related provisions shall occur at locations as shown on the drawings and in accordance with the established project construction schedule(s).

C. Furnish, install, and test the required access control equipment, intrusion detection and monitoring/control provisions and closed circuit television system. The installation and testing of all security system related provisions shall occur at locations as shown on the drawings and in accordance with the established project construction schedule(s).

D. Applicable access control equipment and egress provisions, as shown on the drawings, shall interface with the building’s fire alarm system.

E. The installation of the gate access control equipment as specified and shown on the drawings, shall ensure that the following operational requirements are achieved:
 1. The gate card reader shall operate through the buildings access control system. A valid card read shall activate the lift arm for free egress.
 2. A request to exit function will reside in the associated guard booth to provide manual access to unbadged visitors.

1.3 DEFINITIONS

A. ACL: Access Control List

B. ACS: Access Control System

C. CCTV: Closed-circuit television.

D. Controller: Door Controller that manages a specific door or a group of doors and reports back the head end.
E. CPU: Central processing unit.

F. Credential: Data assigned to an entity and used to identify that entity.

G. dpi: Dots per inch.

H. DTS: Digital Termination Service. A microwave-based, line-of-sight communication provided directly to the end user.

I. GFI: Ground fault interrupter.

J. Head End: Server or workstation running the ACS software that manages all door controllers and hardware. Typically also home to the ACL database.

K. Identifier: A credential card; keypad personal identification number; or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.

L. I/O: Input/Output.

M. LAN: Local area network.

N. Location: A Location on the network having a PC-to-controller communications link, with additional controllers at the Location connected to the PC-to-controller link with a TIA 485-A communications loop. Where this term is presented with an initial capital letter, this definition applies.

O. PC: Personal computer. Applies to the central station, workstations, and file servers.

P. PCI Bus: Peripheral Component Interconnect. A peripheral bus providing a high-speed data path between the CPU and the peripheral devices such as a monitor, disk drive, or network.

Q. PDF: Portable Document Format. The file format used by the Acrobat document-exchange-system software from Adobe.

R. RAS: Remote access services.

S. RF: Radio frequency.

T. ROM: Read-only memory. ROM data are maintained through losses of power.

U. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.

V. TWAIN: Technology without an Interesting Name. A programming interface that lets a graphics application, such as an image editing program or desktop publishing program, activate a scanner, frame grabber, or other image-capturing device.
W. UPS: Uninterruptible power supply.

X. USB: Universal serial bus.

Y. WAN: Wide area network.

Z. WAV: The digital audio format used in Microsoft Windows.

AA. WMP: Windows media player.

BB. Wiegand: Patented magnetic principle that uses specially treated wires embedded in the credential card.

CC. Windows: Operating system by Microsoft Corporation.

DD. Workstation: A PC with software that is configured for specific, limited security-system functions.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Reference each product to a location in the specifications. If Contractor bids an alternative to any specified system the Contractor shall (with the bid) provide technical information and catalogue cut sheets for the products being bid and a copy of the relevant section of this specification with each paragraph marked as comply or alternative.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Functional Block Diagram: Show single-line interconnections between components for signal transmission and control. Show cable types and sizes.
 2. Wiring Diagrams. For power, signal, and control wiring.
 3. Cable Administration Drawings: As specified in "Identification" Article.
 4. Battery and charger calculations for controllers.
 5. Programming Data Sheets: Show required programming changes/modifications to the Access Control system.

C. Parts Lists: Provide complete parts lists and breakdowns that identify each component (to the lowest repairable unit) as well as ordering information. The characteristics of each component shall also be shown, where applicable, to aid in obtaining substitute parts.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

B. Warranty information.
1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For security system to include in emergency, operation, and maintenance manuals.
 1. Hard copies of manufacturer's specification sheets, operating specifications, design guides, user's guides for software and hardware, and PDF files electronically submitted of the hard-copy submittal.
 2. System installation and setup guides with data forms to plan and record options and setup decisions.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses of all kinds, power and electronic, equal to 10 percent of amount installed for each size used, but no fewer than three units.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: An employer of workers trained and approved by manufacturer.
 1. Cable installer must have on staff a registered communication distribution designer certified by Building Industry Consulting Service International.
 2. Manufacturer shall be ISO 9001 certified with a minimum of five years’ experience in producing access control equipment.
 3. Installer shall be trained by the Manufacturer to install, configure and commission the access control system.

B. Source Limitations: Obtain controllers, Identifier readers, and all software through one source from single manufacturer.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NFPA 70, "National Electrical Code."

E. Comply with SIA DC-03 and SIA DC-03.

1.9 WARRANTY

A. Warranty Requirements: Contractor shall warrant the installation for a period of one (1) year from the final acceptance date that the Security System will, under normal use and service, be free from defects and faulty workmanship except as set forth below:
 1. Contractor’s obligation under this warranty is to repair or replace defective equipment, parts, and associated labor thereto at its expense. Contractor shall warrant that replacement or repaired equipment furnished hereunder and labor shall be in accordance with current industry standards.
 2. The foregoing warranty does not extend to the equipment or any part thereof which has been subjected to unauthorized modification, movement, misuse, neglect, or accident; faulty installation, maintenance, or repairs; or used in violation of instructions furnished by Contractor; removal, defacement, or
alteration of the date of manufacture or manufacturer’s serial number; or to any other external cause not attributable to defects in material or workmanship on the part of Contractor.

3. A copy of Contractor’s standard warranty agreement must be provided and must match or exceed manufacturer’s warranty.

1.10 DELIVERY, STORAGE, AND HANDLING

A. Deliver products to site under provisions of General Conditions.

B. Store and protect under provisions of General Conditions.

C. Comply with all manufacturers’ instructions and recommendations concerning environmental factors.

1.11 PROJECT CONDITIONS

A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:

1. Indoor, Controlled Environment: NEMA 250, Type 1 enclosure. System components, except the central-station control unit, installed in temperature-controlled indoor environments shall be rated for continuous operation in ambient conditions of 36 to 122 deg F dry bulb and 20 to 90 percent relative humidity, noncondensing.

PART 2 - PRODUCTS

2.1 ACCESS CONTROL SYSTEM CONTROLLER

A. Controller Functions:

1. The door controller shall control all the functions of local components attached to it. It shall monitor the opening times of each of the doors after an authorized access and start the buzzer in pulse mode to signify a pre-alarm when half of the opening time has elapsed and in permanent mode when the entire time has elapsed.

2. The controller shall allow the local decoding and validation of at least 100,000 access cards and authorize entry without the intervention of the gateway.

3. The response time between the moment when a card is presented at the reader and when the door is unlocked shall not exceed half a second. If an access card that is not locally memorized is decoded by the local controller, it shall communicate with the gateway that will perform the verification and authorize entry if the card is valid for the door in question. In such a case, the response time between the time when a card is presented at the reader and when the door is unlocked shall not exceed one second.

4. In case of communication failure, the door controller shall execute all its functions normally, store the last 20,000 events or alarms and send them to the gateway when the communication link is restored.

5. The controller shall be equipped with flash memory. Any new configuration or upgrading of the program shall be capable of being done from an access system
workstation. Head end shall automatically download the modifications without
the need for the operator to manually download the data. The maximum time for
completely charging all controllers shall not exceed five minutes.

6. The entire database can be stored in memory. In addition, the real-time clock will
remain active even if the emergency power fails.

7. The door controller shall be modular in design, allowing it to be expandable by
addition of entry/electronic modules. The door controller shall acquire alarms,
monitor states, manage and provide electrical power to the following local
components such as but not limited to:
 a. Magnetic contacts
 b. Electric strikes
 c. Card readers
 d. Exit request sensors
 e. Buzzers
 f. Motion sensors
 g. Glass break detectors

8. The Controller shall supervise up to 16 onboard monitoring points.
 a. From the head end, it shall be possible to determine for each of the points
 if they are none, single or double end of line supervision.
 b. All the onboard points shall be configured as the same supervision types or
 they shall be able to overwrite the default supervision setting and have
 other own.
 c. Each of the points shall inform the head end during an alarm, a short
 circuit, grounding, an open circuit or upon return to normal when
 programmed as double end of line supervision.
 d. The need to cut resistors or change jumper/dip switches on the Controller
 to change the supervision type shall be unacceptable.
 e. These points shall be located up to six hundred (600) meters away and be
 connected by a cable made up of 2 unshielded 22 gauge wires.
 f. Additional inputs points may be added on the controller by using
 expansion modules.

9. Each door controller shall be able to power the door opening devices such as
 strikes.
 a. Each door lock output shall output 12/24 volts DC 250/125mA.
 b. The controller shall supervise and report to the head end any fault or
 tampering with the lock devices.
 c. The Controller shall allow for additional power to be added for the lock
 outputs.
 1) On the dedicated external power input terminals on the controller, it
 shall have the possibility of providing a maximum of 12 to 24 volts
 DC 3 Amps of power to the 4 lock outputs.
 2) External power supply and the four lock outputs including the door
 locking devices shall be supervised by the controller and report
 faults or tampering to the head end.
 3) The need to have external relays wired to controller power supplies
 and locking devices shall be acceptable.
 d. Each door shall able to perform the following operations from the head end
 workstation
 1) Lock and unlock door
2) Temporarily unlock door using a customizable timer (ignores door contact) for allocated time.
3) Unlock a door as a “one time access”.
4) Return the door back to schedule
5) Enable and disable readers
6) Arm and disarm doors with alarm integration

10. Each controller shall support 2 different Wiegand card formats. The 2 card formats shall be functional on any of the 4 readers of the controller.
 a. From the head end, the operator can choose from an extensive list of already created drivers. If the driver is not existent new drivers can be created and then downloaded to the controller.

11. Each door shall support Americans with Disabilities Act (ADA) settings.
 a. Each door shall have main door unlock timer and door opened contact timer.
 b. Each door shall have a secondary unlock timer and door opened contact timer.
 c. Doors shall be able to activate the lock output and a relay based when triggered as ADA.
 d. Card holder shall be programmed in the head end as ADA.

12. For each door equipped with a card reader, the controller shall offer to connect two different supervision points as request to exit mechanical head end (REX).
 a. At a minimal level, the REX device shall shunt the door contact so that no alarm is generated when person is exiting the door.
 b. Each REX shall be programmed independent from each other REX device, as it shall be possible to determine
 1) if the REX will unlock the door locking device to follow the unlock time programmed in the head end door configuration
 2) In high traffic locations, the REX shall be programmed as a resettable REX, this function will reset the shunting time of the door contact.

13. The controller shall interface with any external alarm system thereby arming or disarming the system by presenting a valid card to an entry / exit door. It also shall be possible to associate a keypad with a reader forcing the cardholder to enter a number in the keypad after presenting a card. It shall be possible at a minimum to:
 a. Set a monitored input as an arming button
 b. Associate a usage schedule with an arming button
 c. Set the exit and entry delay
 d. Determine whether the system must wait for a valid access to arm
 e. Determine whether the system must wait for a valid access card swipe and appropriate pin number to disarm.
 f. Determine whether the door must relock on arming request
 g. Associate a monitored input with an alarm panel condition
 h. Lock a door unlocked by a schedule when armed

14. The controller shall have the ability to connect via key switch arming and inputs to virtually any intrusion panel. The external intrusion integration shall allow for specific access levels to have the right to arm and disarm. The access levels can be different for arming and disarming if needed by the administrator.
15. In all communication methods, the door controller shall retain in its memory all necessary data such as but not limited to card numbers, access levels, schedules, holidays, door, relays and input programming. In case of communication failure, the door controller shall execute all its functions normally without going into a degraded mode.

16. Each controller shall have LEDs to indicate the status of various controller components such as relay status, door, AC and battery status. The LED shall clearly indicate the SPI, RS-232, RS-485 and network status. The controller shall have multi indication heartbeat LED light that shall indicate the exact status of the Controller.

B. Controller Power Requirements

1. The controller shall have its own power unit and be able to support components connected to it using direct current. The battery charge current shall be limited to a maximum of 300 milliamps.

2. In case of power failure, a 12-volt 7 amp/hour battery shall maintain all system functions for at least 4 hours. When power at power terminals falls below a critical threshold, the controller shall shut down. This will avoid an erratic performance of the system that could generate bad commands or information.

 a. The battery backup shall be supervised by the controller and shall advise the head end if the battery is defective, low or not present.

3. When a door controller is affected by failure of alternating current or by a defect in external batteries, the head end shall be informed immediately. In addition, the controller that is located on the printed circuit card shall be equipped with a green LED indicating the status of the alternative power source.

4. Each controller shall have its own CSA/UL certified 16 VAC 75 VA transformer.

5. To prevent any damage from external sources, each of the protected power outputs of the door controller shall be equipped with a resettable fuse device against power overload that requires no human intervention when the overload is removed.

6. The CONTROLLER shall have a minimum of 64 MB of ram memory to retain the programming data such as cards, schedule relays doors and others. In case of AC and battery backup failure the information shall be retained.

C. Controller Input/Output Functionality

1. Inputs shall be programmed as any of the following functions but not limited to:

 a. Door contacts
 b. Request to Exit Detector buttons or sensors
 c. Interlock mantrap sensors and inputs
 d. External Alarm System Status (Armed / Disarmed)
 e. External Alarm System Alarm (Alarm / Secure)
 f. External Alarm System Zones
 g. Relays to trigger on each input in alarm event
 h. Input shunting: Single or group of inputs can be permanently or temporarily 'shunted' to a secure state. Shunt method includes:

 1) Input Shunting by another input - When an input in alarm is programmed to shunt another input / group of inputs.
 2) Input Shunting on Unlock - When an input is temporarily set to its actual state (alarm or secured) after an access granted.
3) Manual Shunt - Operator can manually 'Shunt' an input to a secure state.
4) Disarmed Door Shunt - When alarm system is disarmed, some inputs may be 'Shunted' to a secure state.
5) Entry / Exit Delay Shunt - When a user is in the process of disarming / arming the alarm system and entry / exit delay prevails, some inputs may be 'Shunted' to a secure state.

i. Arming / Disarming Request
j. Postpone Arming Request

2. A built-in tamper switch terminal shall be a non-programmable 'Fixed-Function' input. It shall be used to identify tampering of the controller cabinet.

3. Relays shall be programmed as any of the following functions limited to:
 a. Each relay shall have the option of being programmed to follow the lock output terminals.
 b. Each relay shall have the option to, but not limited to:
 1) Follow an activation schedule to activate automatically during this schedule
 2) Follow a disable relay schedule. This schedule will disable the relay from functioning and being activated from other components such as inputs and door actions.
 3) Manual operations from the head end.

D. Controller Communication Methods
1. The controller shall be able to communicate via RS-232, RS-485 or Encrypted Ethernet
 a. Encrypted Ethernet communication
 1) The first controller of every loop shall have the possibility to communicate with the headend software over a low bandwidth 128-bit AES Encrypted network.
 2) When communicating via Internet connection the communication shall be a secured 128-bit AES Encrypted Ethernet communication.
 3) The communication via Internet connection shall be extremely low bandwidth, no more than 5Kb/second when sending 10 messages and less than 1Kb/minute during standby. The controllers shall be able to communicate to the head end via DNS (domain name).
 4) The remote controller location shall not be required to have a static public IP address for their Internet connection
 5) The controller shall support:
 a) TCP and UDP protocols
 b) DHCP for communication and initial communication
 c) Default Static IP address for initial programming to be used with non DHCP networks
 d) Domain Name Resolution (DNS)
 6) The controller shall communicate with the head end software via Local Area Network (LAN) and Wide Area Network (WAN).
 a) If communicating over WAN; there shall not need for ports to be opened on the controller side.
 b) The controller side of the network shall have a public DHCP IP address or static IP address.
c) Controllers that require a public static IP address to communicate over WAN shall not be permitted.

b. RS-485
 1) The Controllers shall communicate with the head end software via rs-485 using a VC-485 or USB-485.
 2) The Controllers shall be wired in daisy chain using a RS-485 cable.

2. The controller shall be connected together on a loop that handles up to 32 controllers using two unshielded 24-gauge wires over a distance of 4,000 feet. They shall communicate at a speed of 115 200 bauds. Reference cable: Belden # 1227A.

E. Controller Expansion Modules
1. The door controller shall be equipped with a Serial Peripheral Interface (SPI), Combus or similar communication output to be used in connecting different expansion modules in order to increase the number of inputs, outputs and relays.
2. The communication output shall be able to provide sufficient power to meet the needs of the modules (500mA at 12 volts DC). However, envisage providing a separate power unit for external components that will be connected to these modules.
3. The expansion modules could be located up to 3 meters (36 inches) from the door controller. It shall be possible to combine several types of expansion modules on the same communication loop.
4. 16 Input Module: The controller shall have 16 onboard inputs Up to 240 more can be added through the addition of expansion modules for a total of 256 inputs, no or single end of line supervision
5. 16 Output Module: This module shall offer 16 independent low-voltage outputs (12VDC, 50mA). The output module shall convert and manage direct commands from the Controller. This module shall be directly powered by the door controller with no external power required
6. 8 Relay Module: The relay module shall convert and manage direct commands from the Controller to local components. The output shall be based on dry relay contact. Each of the relay shall be completely independent of the others so as to avoid a defective output from affecting the others. For a total of 256 relays per controller, they shall be added in groups of 8 relays at a time.

F. Controller Enclosure
1. Each of the controllers shall be mounted on a wall mounted cabinet with front access through a lockable door. A tamper switch shall be installed to monitor the opening of the door. The cabinet shall have a hinged door and shall be designed to contain all the equipment, modules, cabling and accessories required. No screw, bolt, attachment part or other shall be used on the external faces of cabinets. They shall be free of marks, scratches or defects.
2. The contractor shall provide the attachment parts for the assembly and anchoring of the cabinet on the wall. Input/output and power conduits shall be inserted from the top or bottom of the cabinet. The mounting of equipment shall be modular so as to facilitate maintenance and expansion. Adjustment and verification points shall be easy to access from the front. No equipment shall be mounted less than 40” or more than 70” from the floor.
2.2 ACCESS CONTROL APPLICATION SOFTWARE

A. Performance, Programming, Monitoring and Configuration

1. This section shall include all functions involved in the issuance of an access or ID card as well as database search and importation tools. During the addition or modification of a card, information about the card shall be sent to the door controllers affected by these new parameters as soon as the operator accepts the addition or modification. An additional command requiring a reloading of the cards database in the door controllers shall not be acceptable.

2. The system shall allow adding door access exceptions to the cardholder’s list of access rights.
 a. The system operator shall be able to provide a pre-defined access level and separately add a specific door to be part of the cardholder’s access rights.
 b. The door shall have its own schedule.
 c. The system operator shall have the option of allowing or disallowing access to that door based on that schedule.
 d. There shall be no limit to the number of doors that can have exceptions.
 e. The controller shall keep in memory the door access exceptions even in standalone mode.

3. The system shall enable the creation and definition of a user access card. There can be up to five cards per user, and users can be managed by cardholder name or card number. When creating user cards, the operator shall be able to select a card format directly from a Card dialog and enter the card number as it is printed on the card.

4. It shall be possible to associate a photograph, signature, and badge template to a card. The picture of the cardholder shall always be visible when the profile is active on the screen. The following user information shall be able to be saved in the user section:
 a. Five card numbers each with their own expiration date, trace and lost or stolen statuses.
 b. Each card numbers shall have their own expiration date and expiration hour.
 c. The card numbers shall have the option to be mandatory or not mandatory.
 d. First and last name.
 e. Card type.
 f. Additional information (10 fields).
 g. Start date
 h. Expiry date
 i. Personal ID number (PIN).
 j. State of the card
 k. Multi-swipe activation
 l. Comments
 m. User’s e-mail address

5. The system shall allow for the creation of an unlimited number of card templates to be used as ID cards. Template parameters include name, number of sides, and size. It shall be possible to directly print a template on an access card. The operator shall be able to design customized badging templates directly from the
access management software. No specific badging program or software other than the latter and no additional licensing shall be required for this function. Any workstation shall be capable of creating ID cards based on operator security level. The following items shall be capable of being added to and modified on a badge template:

- a. All information fields associated to a cardholder.
- b. Bar code
- c. Text zone
- d. Start date, expiry date, today’s date.
- e. Saved images and logos
- f. Borders
- g. Rectangles (including rounded rectangles, ellipse).
- h. Lines and arrows
- i. Photograph (can be cropped)
- j. A background

6. The system shall allow for the creation of a day pass to be issued to visitors for a single day. The system shall also have the ability to create temporary ID visitor cards.

7. The system shall offer the possibility of modifying the parameters of a group of cards simultaneously based on Card Type. The system shall enable the creation of an unlimited number of card types. The following fields shall be modifiable:

- a. Card status (valid, invalid, lost, stolen).
- b. Card monitored (yes, no).
- c. Start date (schedule).
- d. End date (schedule).
- e. Delete after expiration (yes, no).
- f. Wait on keypad (yes, no).
- g. Access group (selection menu).
- h. Template model (selection menu).

8. The operator shall be able to search for a card by last or first name, card creation date, card number, or any of the ten fields of user definable information.

9. The system shall display the last card transactions, namely the latest sixteen denied access events, authorized events, database events, and/or time & attendance events.

10. The system shall offer an extended last card transactions window; to get a complete access events report the system operators shall simply enter the start date and time, and the end date and time.

11. The operator shall be able to quickly search by username directly on the card window. The system shall automatically provide the 24 first search results by simply typing the value and then expanding the dropdown list.

12. The operator shall be able to view quickly the cardholder's door list.

- a. Operators shall be able to export the door access list.
- b. A detailed view of the door’s schedule shall be show when selecting a door.

13. The operator shall have the option of expanding the comments field in the user section for better viewing.
14. The system shall enable the creation of an unlimited number of import/export models, give them a name, select required fields, select their layout, and determine the filed delimiter. This shall allow for acceleration of the data entry process by importing databases from a spreadsheet.

15. The system shall allow the operator to import and export cards using a unique card identifier. If required, the unique identifier can replace the card number for importing and exporting card numbers.
 a. The system shall allow operators to quickly add a door to a list of access levels.
 b. The system operator shall select a door and see a list of access levels.
 c. The system shall return to the access level assigned to the door shown on the schedule. If the door is not assigned to an access level, it shall show none.
 d. The system operator shall be able to change any of the doors assigned access levels by simply changing the schedule.

16. The system shall allow for 250 access levels programmed per loop/site of controllers. Every card shall be assigned an access level, which shall determine where and when the access card will be valid. When the system consists of several sites or gateways, it shall be possible to use batch programming of access levels.

17. The system shall allow of importing and exporting of tenant lists. The operator shall have the ability to choose which fields to import and export.
 a. The following tenant information shall be able to be saved for each tenant:
 b. Tenant name
 c. Tenant ID (customizable in length per tenant list).
 d. Primary telephone number.
 e. Secondary telephone number
 f. Tenant PIN (customizable in length per tenant list).
 g. Pin access schedule
 h. Tenant level
 i. Tenant language
 j. Card number
 k. Disable card trace
 l. Start/end date
 m. No disturb schedule
 n. Prioritized tenant in the display list.
 o. Call second phone number, option schedule.
 p. Ability to call the second phone number only (does not call primary) during valid schedule.

18. The system shall allow for a card number to be assigned to a specific tenant.

19. The system shall allow for an unlimited amount of card types. Cards types shall be used to group cards together for ease of management. Card types shall have the option of being assigned a card access group template. Card access groups shall be copied to the cardholder’s profile to give the cardholder’s access levels.

20. The system shall provide the possibility to perform card batch operations. The mass card modifications shall take effect in real time. Each batch operation shall
allow for a batch of cards to be changed based on their card type. The batch card modification shall be able to change the following:

a. Card state
b. Supervisor level
c. Card count value
d. Card tracing
e. Start date
f. End date
g. With deletion on expiration.
h. Waiting for keypad
i. Card access group
j. Replacing access levels
k. Updating access levels
l. Adding new access levels.
m. Updating and adding new access levels.
n. Card badge layout

21. All events that occur shall appear in real time. The text shall include at least the date, time, and a pertinent description of the event as well as its condition. The display of this screen shall be customizable, and a different background and message color can be used for every type of event.

a. Background colors shall be chosen per operator. Events shall appear in their defined color or the operator shall have the option to choose a text color for the events.

b. All component modification events shall be tagged with an addition (+), modification (=) or deletion (-) tag.

c. Every in-coming event shall be documented by one or more icons representing video images, photos, access card, server, gateway, controller, card reader, and relay or supervision point. It shall be possible to classify the events on the screen by sequence, date and time, type of event, or type of message. In addition, a text filter shall be available to facilitate searching. It shall be possible to access the last up to 100,000 transactions from this window without the need to request a special report.

d. It shall be possible to see the origin of the event so that the operator shall be able to see the event’s parent. For example, door and access events shall show the location (site) of the event.

e. It shall be possible to right click on an event and perform edit or other functions linked to the event.

22. Alarms that require an acknowledgement by an operator shall be displayed on this screen in text form only. The text shall include at least the date, time and description of the alarm, and its condition. It shall be possible to classify events on the screen by sequence, date and time, type of event, or type of message. A text filter shall be available in order to facilitate the search.

a. When the system pop-up is acknowledged by e-mail, the system shall display the operator’s name based on the e-mail that acknowledged it.

b. If instructions about an alarm are envisaged, they shall automatically appear in a second window on the screen. If a graphic is associated with the alarm, it shall appear automatically on the screen defined to this effect.
The icon associated to the control point shall be represented and show the actual state of the point.

c. The operator shall be able to access a log book in order to document the alarm that occurred. Once this information is recorded in the log it shall not be erasable or modifiable. Operators shall also be able to see previous comments or system logs added for this event.
d. Operators shall be able to run a report of the alarms from this window.
e. It shall be possible to associate video call-up with an alarm. When this occurs, the main screen shall become the video screen, not the alarm screen.

B. Alarm Interface

1. The system shall interface with any external alarm system thereby arming or disarming the system by presenting a valid card to an entry/exit door. It also shall be possible to associate a keypad with a reader forcing the cardholder to enter a number in the keypad after presenting a card. It shall be possible at a minimum to complete the following:
 a. Set a monitored input as an arming button.
 b. Associate a usage schedule with an arming button.
 c. Set the exit and entry delay.
 d. Determine whether the system must wait for a valid access to arm.
 e. Determine whether the system must wait for a valid access card swipe and appropriate pin number to disarm. Determine whether the door must relock on arming request.
 f. Associate a monitored input with an alarm panel condition.
 g. Lock a door unlocked by a schedule when armed.

2. Duress Alarm and Panic Button interface: The Duress Button shall interface with a door controller or I/O module and have the capability to report via the system to the following devices
 a. ACS monitoring stations
 b. Mobile device via text message
 c. Landline through external dialer.

C. Integrations

1. LDAP- Operator synchronization (Active directory).
The system shall interface with the Active Directory (LDAP) for operator management. The system shall receive operators from the LDAP system these operators shall be modified and deleted as required.
 a. The system shall sync from the Active Directory (LDAP) on a configurable time. Operator changes will flow from LDAP into the system. The system shall allow operators force a sync manually instead of waiting for the next sync cycle.
 b. The LDAP shall be the authority manager for all operators synced with the system.
 c. The system shall allow the creation of system operators that shall not be synced with LDAP.
 d. The system shall be able to sync but not limited to following LDAP fields:
 1. Display name
2. User principal name
3. User account control (active or inactive).
4. Password last set
5. Bad password time
6. Bad password count
7. Maximum passwords before change.
8. Account expiration date
9. Picture
10. E-mail

e. The system shall allow for as many security level/workstation configurations as needed. The Active Directory shall send down via profiles the proper rights.

f. The system shall give the option for operators to log into the system manually if active directory credentials do not match.

g. Certain operators shall be separate from the LDAP sync and shall be managed manually.

h. The system shall manage the LDAP integration and licensed per LDAP.

i. The system shall support up to ten different LDAP connections.

2. Single Sign On (SSO)
 a. The system shall allow the system workstation to offer single sign on when using the LDAP integration.
 b. Operators shall simply need to login to Windows using their Windows domain login and open the workstation.
 c. The system shall also allow a manual login to the client software.
 d. The need to enter a username and password is not required with single sign on.

3. LDAP – Cardholder Synchronization
 a. The system shall interface with the Active Directory (LDAP) for cardholder management. The system shall receive LDAP users from the LDAP system, these users shall be modified and deleted as required.
 b. The system shall sync from the Active Directory (LDAP) on a configurable time. Cardholder changes will flow from LDAP into the system. The system shall allow system operators to force a sync manually instead of waiting for the next sync cycle.
 c. The LDAP shall be the authority manager for all operators synced with the system.
 d. The system shall allow the creation of system cardholders that shall not be synced with LDAP.
 e. The system administrator shall be able to pair the system field below to the LDAP Attributes. system values such as but not limited to the following:
 1. Display name
 2. E-mail
 3. Card state
1. The Card state shall be automatically linked to the LDAP “User is Disabled” value and disable/enable the system cardholder accordingly.

2. The system administrator shall be able to overwrite the default assignment and provide a custom LDAP numerical attribute instead. This configuration shall ignore the LDAP “User is Disabled” value.

4. Card numbers one to five.

5. Card number’s variables such as expiration date and hour.

6. Card type

7. Access levels via the card access groups.

8. Start/end date

9. Picture

10. E-mail

11. User definable fields one to 40.

4. When an system field is paired with an LDAP attribute, this such field shall be modifiable only from the LDAP. All other system fields shall be modifiable from the system client.

5. The system shall be allowed to pair any or all fields with the LDAP Attributes.

6. Certain system cardholders shall be separate from the LDAP sync and shall be managed manually.

7. The system shall manage the LDAP integration and may require a license per LDAP.

8. The system shall import as system Cardholders the LDAP users that are part of a LDAP group and its children groups.

9. The system shall support up to 10 different LDAP connections.

D. System Authentication and Access

1. The system shall define the profile of a system operator based on name, password, language, privileges, login schedule, security level, workspaces, and password expiry date. The system shall provide the possibility to force the operators to assign a mandatory card type to the users. The operator shall be able to provide a default card type for every card.

2. The system shall offer the option for the system administrators to force strong passwords for operators. The strong password settings shall be configurable by the system administrators.

3. The system shall determine access rights granted to an operator based on security levels. There shall be three predefined access levels called installer, administrator, and guard. The system shall have the ability to create an unlimited number of security levels that can be assigned to one or more operators. It shall be possible to determine from which system components the operator shall be authorized to receive events and take action. It shall be possible to specify for each programming window if the operator can (any combination):
 a. View the component in read only.
 b. Add new components
c. Modify existing components (cannot add new).
d. Delete components
e. Save as
f. Print components
g. View links

4. The system shall allow system administrators to grant or deny operators access to all system physical components such as gateways, sites, controllers, doors, relays, inputs, access levels, reports, schedules, tenant lists, video servers, card types using workspaces. This allows greater ease for larger sites to locate and assign components that pertain to specific gateways and sites. System administrators shall be able to tailor specific system applications and workstations Workspaces, therefore restricting access to information to all levels of operators. Operators shall be able to use temporary workspaces to narrow their fields of view when accomplishing specific tasks, and then easily revert back to their main workspace.

5. The system shall allow the configuration of a system wide feature that will automatically disable an operator who has not logged in at least once in 30 days.

6. The system administrator shall have the option to customize the inactivity timer from 30 days to 365. The system feature can also be turned off by the system administrators.

7. The system shall automatically notify the operator via e-mail 10 days prior to the deactivation.

E. Reporting

1. The system shall include templates for various types of reports to include the following:
 a. Card use reports.
 b. Manual operations reports.
 c. Alarm reports.
 d. Historical reports.
 e. Time & attendance reports.
 f. Detailed reports.
 g. Summary reports.
 h. Statistical reports.
 i. Roll call reports.

2. The system shall allow for the creation of custom reports based on any event or component in the system. The system shall support an unlimited amount of customized reports.

3. All reports shall be able to be displayed on screen, printed, or sent by e-mail on a daily, weekly, or monthly basis. All event reports can be automated to be generated and sent at a specific time for a specific time period.

4. The system shall support at a minimum the following report formats: Sybase, Dbase IV, CSV, XLS, PDF, RTF, and TXT.

5. The system shall be able to generate an access report in CSV with all the card information associated to that access event.
6. All component modification events shall be tagged with addition (+), modification (=) or deletion (-) tag. In all event driven reports the operator shall have the choice to specify a tag or all tags in order to further filter report.

7. The system shall support for the creation of custom time and attendance reports. Each time and attendance report shall support up to 32 rules for masking the entry and exit times of each card. Also each report shall support a “First entry and last exit” feature.

8. Time and attendance reports shall have the possibility to compile the report in using fractions base (percentage) or actual hours and minute base.

9. The system shall allow the creation of custom roll call reports, which can without operator intervention be e-mailed to multiple people and/or printed on multiple printers. The roll call report shall be a system wide feature.

10. Each report, quick report, historical report and time attendance report shall have a priority number assigned to it. When multiple reports are requested. The system shall prioritize the creation of the report based on their priority number. From the report queue management window the operator shall have the possibility to promote the report to a higher priority. The operator shall also have the ability to request more processing power form the computer in order to expedite the report creation.

11. Reports shall be prioritized from queue of 1 to 99. When the report is requested as priority one it shall be processed first. The default value for all new reports shall be set to 50. Operators shall be able to change it as needed.

12. The system shall have a statistical window showing all reports executed, the time of execution, the time lapse, the number of events, the requestor, and the application request. The report shall be exportable in CSV format.

13. The system shall include the ability to track all specific field changes made by the operators via Audit Trail Reporting. The following events are the minimum the system shall track:
 a. The operator that made the change.
 b. The time the change occurred.
 c. The component that was changed.
 d. The field that was changed.
 e. The value of the field prior to the save.
 f. The value of the field after the save.

F. System Status

1. The system shall allow operators to view the state of various access system components in text or numerical form. A specific controller’s state shall also be able to be viewed in graphic form via the picture of the controller with the status of each terminal. Workstation and database status shall also be able to be displayed.
 a. The system shall offer an active status count of all operators in the system.

2. The system shall offer the ability to run reports on login counts so that operators can run trends on operator peak usage.

3. The system shall offer the ability to have a window displaying all the current logins in the system. The system logins shall be filterable and sortable by type of application such as Web, mobile workstation or database applications.
a. The system all allow the operator to force logout operators thus ending immediately their sessions in the workstation, web and mobile clients.
b. The system all allow the operator to force logout and permanently disable the operator thus ending immediately their sessions in the workstation, web and mobile clients. The operator won’t be able to login until reactivated manually.
c. The list shall be exportable in CSV file format.

G. The system Shall perform the following tasks:
1. Allow card access management for one or more buildings.
2. Control access to various doors equipped with a card reader. Allow the ability to set card use count options to limit the number of times a card can be used.
3. Monitor all defined alarm points as well as all doors controlled by card readers based on programmed schedules.
4. Send transactions for which printing is required to one or more printers, based on a set schedule.
5. Access the system using the main and secondary menus (to which access is limited by a password) to make additions and required changes to various data files so that they can be updated by the user without the manufacturer’s assistance.
6. Enable the entry of access code data for every card or group of cards.
7. Seamlessly connect to onsite alarm systems.
8. Interface with the EST Fire Panel preferred, thereby eliminating hardwired integration between the system controllers and the fire panel to receive events from the panel and view the virtual keypad.
9. Associate to each event a recording schedule for each destination (hard drive, monitor).
10. Automatically display all alarms on screen in text with optional graphic or picture and trigger a sound requiring an acknowledgement on the keyboard to stop the alarm.
11. Alarm pop-ups can be sent to many workstations. An alarm pop-up shall be acknowledged once by one operator.
12. Mandatory comments can be added by the operator when acknowledging the alarm pop-up.
13. In the case of an unacknowledged alarm within a customizable time; the alarm shall be sent to all active operators with additional log information.
14. Each event shall print on a log printer and generated in a daily report. For security reasons, each event shall be incremented with a print number. Numbering shall start from zero every day.
15. Generate reports and view them on the screen, output them to a printer, or send them to an e-mail address.
16. Supervise based on programmed schedules of specific points such as door contacts, volumetric detectors, mechanical points, high and low temperature sensors, or any other equipment necessary for good building management.
17. View and/or save video images.
18. When integrated into a DVR/NVR system, allow the management of the recordings of all the cameras via access system workstations.
19. The system shall offer the option to create four digit, five digit or six digit PIN for the cardholders.
20. The PIN length shall be defined system wide.
21. When connected to a digital video recording system, allow the recovery and storage of selected videos to an independent server.
22. Save the database manually or automatically backup following a schedule.
23. Uninterrupted backups. The operator shall be able to perform any task during a system backup.
24. The system shall remind system operators via e-mail and messages (pop-ups) of the system status.
25. The system reminder shall include but not be limited to system serial number tokens needed and system Edition.
26. The system shall offer administrators to post a message upon operator login. The message shall be customizable to be per operator and system wide.
27. The login message shall be configurable in both system languages and appear on the system workstation or system web in the operator’s respective languages. The login message shall be configurable to specific timeframe (per operator):
 a. Never.
 b. Always requires acknowledgement.
 c. Only one acknowledgement.
 d. Always requires acknowledgement until a specific date.
 e. Only one acknowledgement until a specific date.
28. The administrator shall be able to force strong password rules. The system shall allow the administrators to select the password settings. Password settings shall be configurable with the following rules:
 a. Password length between 8 and 20 characters.
 b. Upper case characters between 0 and 20.
 c. Numeric characters between 0 and 20.
 d. Special characters between 0 and 20
30. When the access control system manages parking lot entry and exit, it shall be possible to set a maximum number of vehicles authorized to simultaneously access the parking area. Once the parking lot is full, the system shall prevent access to any cardholder for as long as a parking space has not become available.
32. Save events on a hard drive according to required criteria.
33. The system shall allow storing the live transactions (events) portion of the system on a different local drive. This shall speed up performance of the system.
34. Once activated the system shall allow that each door’s request-to-exit events shall be ignored and not stored.
 a. The events shall not be stored or viewed on the screen
 b. Operators shall be able to ignore request-to-exit events on a per door basis by schedule.
35. It shall be possible to program on a controller reader to bypass a door contact on a schedule. The bypass shall be at the controller level and at the software level.
36. It shall be possible to bypass the door contact for door forced events, and door open too long events. It shall be possible to have the door open too long event be an optional bypass on a door basis.
38. Operators shall be able at any time to bypass the door contact manually from the system workstation.
39. It shall be possible to program on controller readers a double and triple switch function.
40. It shall be possible to have the multi-swipe function activating a predetermined schedule.
41. The double and triple swipes shall be able to be activated on reader simultaneously each with their respective actions.
42. The multi-swipe function shall be able to but not limited to:
 a. Toggle door unlock.
 b. Unlock door.
 c. Relock door.
 d. Temporarily unlock door.
 e. Activate Relay.
 f. Temporarily activate relay.
43. Each cardholder shall have the option of having the multi-swipe function active.
44. A specific event shall be generated for any valid or invalid, double or triple swipes.
45. Each door shall have two readers on the same reader port. The installation shall be simple and not require any extra modules to be added.
46. The readers shall communicate to the controller over RS-485 on COM2 or standard Wiegand.
47. Power, LED/piezo outputs shall be shared with the entry/exit reader.
48. The system shall offer specific exit reader functionalities but not limited to:
 a. Assigning a specific access level schedule to each reader independently.
 b. Enabling/disabling the entry/exit reader separately.
 c. Running reports on the readers separately or together.
 d. Follow the entry reader door name with a suffix of “-exit”.
 e. Share the same locking output.
 f. Share the same door contact.
 g. Share the same unlock schedule.
 h. Share the same unlock time and open time.
 i. All eight readers shall be used if needed in a controller based anti-passback.
49. First person in, shall unlock the door on a schedule:
 a. A one-hour grace period shall be configurable. The cardholder shall be able to enter within that grace period time and keep the door locked. When the door schedule activates the door shall go on a schedule.
 b. If no cardholder has presented their card within the grace period or within the schedule the door shall remain locked.
 c. The “first person in” shall be configurable on a per door basis.
 d. Save events on a hard drive according to required criteria.
50. Perform the following operations from all workstations:
 a. Lock or unlock, one time unlock, return to schedule one door or a group of doors.
 b. View the last access event on the door.
 c. Bypass the door contact and keep door locked.
d. Temporarily unlock a door using a custom timer for additional door unlocking on controller doors.

e. Disable and enable readers.

f. Activate or deactivate a relay or a group of relays.

g. Activate or deactivate the recording of one camera or a group of cameras.

h. Activate or deactivate a point or a group of points.

i. Program or modify one card or a group of cards.

j. Assign single door access exception to the card.

k. Validate or invalidate one card or a group of cards.

l. Change time and date.

m. Demand the system state in text or graphic mode.

n. Query, create and/or modify data on: access levels, schedules and holidays, access card, instructions, reports and log, doors, supervision points and relays, operator levels, and graphics.

o. Ability to use an easy to use system tree view to select the components.

p. View, which cards are in the roll call sectors.

q. View the card’s last known access in the roll call sector.

54. The operator shall be able to double click on components on the operation screen to automatically view the status in detailed text values.

a.

2.3 STANDARD WORKSTATION HARDWARE

A. Workstation shall be available that is consist of a standard unmodified PC with accessories and peripherals that configure the workstation for a specific duty. Coordinate workstation location and specifications with PRPA directly. Contractor to install client ACS software on monitoring workstations and connect to server architecture.

2.4 STANDARD SERVER HARDWARE

A. ACS Server shall meet the following requirements

1. Rack mountable in a standard 19"

2. Quad-Core i7 or AMD equivalent

3. 8 GB DDR4 DIMM RAM

4. 500GB SAS HDD

5. Windows Server 2016

 a. May run as an instance on a VM with adequate resources.

6. 17” rack mountable:

 a. LED Monitor

 b. Keyboard

 c. Mouse

2.5 ACCESS CONTROL SYSTEM DOOR HARDWARE COMPONENTS

A. Card-Readers:

1. Response Time: Card reader shall respond to passage requests by generating a signal that is sent to the controller. Response time shall be 300 ms or less, from
the time the card reader finishes reading the credential card until a response
signal is generated.
2. The access control devices shall communicate with the controller via ANSI/ABA
Weigand Protocol. The reader should have LED and audible indicators to notify
users that their card has been accepted (unless otherwise noted).
4. Specify the standard card size of 2-1/8 by 3-3/8 inches (54 by 85 mm) unless a
different size card is needed. If a nonstandard size card is specified, verify that
the card size will work with the photo badging system and the card reader
specified.
5. Card Size and Dimensional Stability: Credential cards shall be 2-1/8 by 3-3/8
inches. The credential card material shall be dimensionally stable so that an
undamaged card with deformations resulting from normal use shall be readable
by the card reader.
6. Card Material: Abrasion resistant, nonflammable, nontoxic, and impervious to
solar radiation and effects of ultraviolet light. White PVC.

B. Door Contacts:
1. Preferred installation method of door contacts is concealed for new doors, surface
for roll ups.
2. Triple biased balanced magnetic switched (BMS) are to be used for alerting the
system of doors opened or ajar. BMS wires are to be concealed and protected
from harm. They should be installed concealed in a tamper resistant manner.
Door and frame cutouts are to be coordinated.
3. Wiring shall be no smaller than #18 AWG, in steel conduit.
4. The door alarm contacts shall detect a ¼ inch or less of separation relative
movement between the magnet and the switch housing. Upon detecting such
movement, it shall transmit an alarm signal to the Security System CPU.
5. The housing of door recess mounted switches and magnets shall be made of
nonferrous metal or plastic.
6. Spacers shall be tamper resistant.
7. Exposed fasteners shall be tamper resistant.

C. Electric strike:
1. Use end-of-line resistors to provide power-line supervision. Signal switches shall
transmit data to controller to indicate when the bolt is not engaged and the strike
mechanism is unlocked, and they shall report a forced entry. Power and signal
shall be from the controller. Electric strikes are specified in Section 087100
"Door Hardware."
2. All wiring shall be installed and concealed in a tamper resistant manner
3. Specifications:
 a. Static Strength: 1500 lbs
 b. Endurance 500,000 cycles
 c. 12VDC
 d. Internally Mounted Solenoid
 e. Strike Body Depth: 1-1/16”
 f. Satin stainless steel finish

D.
2.6 **SURGE AND TAMPER PROTECTION**

A. **Surge Protection**: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor-entry connection to components.

B. **Tamper Protection**: Tamper switches on enclosures, control units, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled.

2.7 **CABLES**

A. **General Cable Requirements**: Comply with requirements in Section 280513 "Conductors and Cables for Electronic Safety and Security" and as recommended by system manufacturer for integration requirement.

B. **PVC-Jacketed, TIA 232-F Cables**:
 1. Two pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, and individual aluminum-foil/polyester-tape shielded pairs with 100 percent shield coverage; PVC jacket.
 2. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 3. NFPA 70, Type CM.

C. **Plenum-Type, TIA 232-F Cables**:
 1. Two pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum-foil/polyester-tape shielded pairs with 100 percent shield coverage; plastic jacket.
 2. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 3. NFPA 70, Type CMP.

D. **PVC-Jacketed, TIA 485-A Cables**: Two pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, PVC insulation, unshielded, PVC jacket, and NFPA 70, Type CMG.

E. **Plenum-Type, TIA 485-A Cables**:
 1. Two pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and fluorinated-ethylene-propylene jacket.
 2. NFPA 70, Type CMP.

F. **Multiconductor, PVC, Reader and Wiegand Keypad Cables**:
 1. No. 22 AWG, paired and twisted multiple conductors, stranded (7x30) tinned copper conductors, semirigid PVC insulation, overall aluminum-foil/polyester-
tape shield with 100 percent shield coverage, plus tinned copper braid shield with 65 percent shield coverage, and PVC jacket.

2. NFPA 70, Type CMG.
4. For TIA 232-F applications.

G. Paired, PVC, Reader and Wiegand Keypad Cables:
1. Three pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, individual aluminum-foil/polyester-tape shielded pairs each with No. 22 AWG, stranded tinned copper drain wire, 100 percent shield coverage, and PVC jacket.
2. NFPA 70, Type CM.

H. Paired, PVC, Reader and Wiegand Keypad Cables:
1. Three pairs, twisted, No. 20 AWG, stranded (7x28) tinned copper conductors, polyethylene (polyolefin) insulation, individual aluminum-foil/polyester-tape shielded pairs each with No. 22 AWG, stranded (19x34) tinned copper drain wire, 100 percent shield coverage, and PVC jacket.
2. NFPA 70, Type CM.

I. Paired, Plenum-Type, Reader and Wiegand Keypad Cables:
1. Three pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, individual aluminum-foil/polypropylene-tape shielded pairs each with No. 22 AWG, stranded tinned copper drain wire, 100 percent shield coverage, and fluorinated-ethylene-propylene jacket.
2. NFPA 70, Type CMP.

J. Multiconductor, Plenum-Type, Reader and Wiegand Keypad Cables:
1. Six conductors, No. 20 AWG, stranded (7x28) tinned copper conductors, fluorinated-ethylene-propylene insulation, overall aluminum-foil/polyester-tape shield with 100 percent shield coverage plus tinned copper braid shield with 85 percent shield coverage, and fluorinated-ethylene-propylene jacket.
2. NFPA 70, Type CMP.

K. Paired, Lock Cables:
1. One pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
2. NFPA 70, Type CMG.

L. Paired, Plenum-Type, Lock Cables:
1. One pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
2. NFPA 70, Type CMP.
M. Paired, Lock Cables:
 1. One pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors,
 PVC insulation, unshielded, and PVC jacket.
 2. NFPA 70, Type CMG.

N. Paired, Plenum-Type, Lock Cables:
 1. One pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors,
 fluorinated-ethylene-propylene insulation, unshielded, and plastic jacket.
 2. NFPA 70, Type CMP.

O. Paired, Input Cables:
 1. One pair, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors,
 polypropylene insulation, overall aluminum-foil/polyester-tape shield with
 No. 22 AWG, stranded (7x30) tinned copper drain wire, 100 percent shield
 coverage, and PVC jacket.
 2. NFPA 70, Type CMR.

P. Paired, Plenum-Type, Input Cables:
 1. One pair, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors,
 fluorinated-ethylene-propylene insulation, aluminum-foil/polyester-tape shield
 (foil side out), with No. 22 AWG drain wire, 100 percent shield coverage, and
 plastic jacket.
 2. NFPA 70, Type CMP.

Q. Paired, AC Transformer Cables:
 1. One pair, twisted, No. 18 AWG, stranded (7x26) tinned copper conductors, PVC
 insulation, unshielded, and PVC jacket.
 2. NFPA 70, Type CMG.

R. Paired, Plenum-Type, AC Transformer Cables:
 1. One pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors,
 fluorinated-ethylene-propylene insulation, unshielded, and plastic jacket.
 2. NFPA 70, Type CMP.

S. LAN Cabling:
 1. Comply with requirements in Section 280513 "Conductors and Cables for
 Electronic Safety and Security."
 2. NFPA 262.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.

B. Examine roughing-in for LAN and control cable conduit systems to PCs, controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Comply with recommendations in SIA CP-01.

B. Comply with TIA/EIA 606-A, "Administration Standard for Commercial Telecommunications Infrastructure."

C. Obtain detailed Project planning forms from manufacturer of access-control system; develop custom forms to suit Project. Fill in all data available from Project plans and specifications and publish as Project planning documents for review and approval.
 1. Record setup data for control station and workstations.
 2. For each Location, record setup of controller features and access requirements.
 3. Propose start and stop times for time zones and holidays, and match up access levels for doors.
 4. Set up groups, facility codes, linking, and list inputs and outputs for each controller.
 5. Assign action message names and compose messages.
 6. Set up alarms. Establish interlocks between alarms, intruder detection, and video surveillance features.
 7. Prepare and install alarm graphic maps.
 8. Develop user-defined fields.
 10. Propose setups for guard tours and key control.
 11. Discuss badge layout options; design badges.
 12. Complete system diagnostics and operation verification.
 13. Prepare a specific plan for system testing, startup, and demonstration.
 14. Develop acceptance test concept and, on approval, develop specifics of the test.
 15. Develop cable and asset-management system details; input data from construction documents. Include system schematics and Visio Technical Drawings in electronic format.

D. In meetings with Architect and Owner, present Project planning documents and review, adjust, and prepare final setup documents. Use final documents to set up system software.
3.3 CABLING

A. Comply with NECA 1, "Good Workmanship in Electrical Construction."

B. Install cables and wiring according to requirements in Section 280513 "Conductors and Cables for Electronic Safety and Security."

C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters. Conceal raceway and wiring except in unfinished spaces.

D. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces and in gypsum board partitions where unenclosed wiring method may be used. Use NRTL-listed plenum cable in environmental airspaces, including plenum ceilings. Conceal raceway and cables except in unfinished spaces.

E. Install LAN cables using techniques, practices, and methods that are consistent with Category 5E rating of components and fiber-optic rating of components, and that ensure Category 6 and fiber-optic performance of completed and linked signal paths, end to end.

F. Boxes and enclosures containing security-system components or cabling, and which are easily accessible to employees or to the public, shall be provided with a lock. Boxes above ceiling level in occupied areas of the building shall not be considered accessible. Junction boxes and small device enclosures below ceiling level and easily accessible to employees or the public shall be covered with a suitable cover plate and secured with tamperproof screws.

G. Install end-of-line resistors at the field device location and not at the controller or panel location.

3.4 CABLE APPLICATION

A. Comply with TIA 569-B, "Commercial Building Standard for Telecommunications Pathways and Spaces."

B. Cable application requirements are minimum requirements and shall be exceeded if recommended or required by manufacturer of system hardware.

C. TIA 232-F Cabling: Install at a maximum distance of 50 ft.

D. TIA 485-A Cabling: Install at a maximum distance of 4000 ft.

E. Card Readers and Keypads:
 1. Install number of conductor pairs recommended by manufacturer for the functions specified.
 2. Unless manufacturer recommends larger conductors, install No. 22 AWG wire if maximum distance from controller to the reader is 250 ft., and install No. 20 AWG wire if maximum distance is 500 ft.
3. For greater distances, install "extender" or "repeater" modules recommended by manufacturer of the controller.

4. Install minimum No. 18 AWG shielded cable to readers and keypads that draw 50 mA or more.

F. Install minimum No. 16 AWG cable from controller to electrically powered locks. Do not exceed 500 ft.

G. Install minimum No. 18 AWG ac power wire from transformer to controller, with a maximum distance of 25 ft.

3.5 GROUNDING

A. Comply with Section 280526 "Grounding and Bonding for Electronic Safety and Security."

B. Comply with IEEE 1100, "Recommended Practice for Power and Grounding Electronic Equipment."

C. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.

D. Bond shields and drain conductors to ground at only one point in each circuit.

E. Signal Ground:
 1. Terminal: Locate in each equipment room and wiring closet; isolate from power system and equipment grounding.
 2. Bus: Mount on wall of main equipment room with standoff insulators.
 3. Backbone Cable: Extend from signal ground bus to signal ground terminal in each equipment room and wiring closet.

3.6 INSTALLATION

A. Push Buttons: Where multiple push buttons are housed within a single switch enclosure, they shall be stacked vertically with each push-button switch labeled with 1/4-inch-high text and symbols as required. Push-button switches shall be connected to the controller associated with the portal to which they are applied, and shall operate the appropriate electric strike, electric bolt, or other facility release device.

B. Install card readers, keypads, push buttons, and biometric readers.

3.7 IDENTIFICATION

A. In addition to requirements in this article, comply with applicable requirements in Section 260553 "Identification for Electrical Systems" and with TIA/EIA 606-A.

B. Using software specified in "Cable and Asset Management Software" Article, develop cable administration drawings for system identification, testing, and management. Use unique, alphanumeric designation for each cable, and label cable and jacks, connectors,
and terminals to which it connects with the same designation. Use logical and systematic designations for facility's architectural arrangement.

C. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
1. All wiring conductors connected to terminal strips shall be individually numbered, and each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with the name and number of the particular device as shown.
2. Each wire connected to building-mounted devices is not required to be numbered at the device if the color of the wire is consistent with the associated wire connected and numbered within the panel or cabinet.

D. At completion, cable and asset management software shall reflect as-built conditions.

3.8 SYSTEM SOFTWARE AND HARDWARE

A. Develop, install, and test software and hardware, and perform database tests for the complete and proper operation of systems involved. Assign software license to Owner.

B. The software shall be entered into the SMS computer systems and debugged. The contractor shall be responsible for documenting and entering the initial database into the system. The contractor shall provide the necessary blank forms with instructions to fill-in all the required data information that will make up the database. The database shall then be reviewed by the contractor and entered into the system. Prior to full operation, a complete demonstration of the computer real-time functions shall be performed. A printed validation log shall be provided as proof of operation for each software application package. In addition, a point utilization report shall be furnished listing each point, the associated programs utilizing that point as an input or output and the programs which that point initiates.

C. Upon satisfactory on-line operation of the system software, the entire installation including all subsystems shall be inspected. The contractor shall perform all tests, furnish all test equipment and consumable supplies necessary and perform any work as required to establish performance levels for the system in accordance with the specifications. Each device shall be tested as a working component of the completed system. All system controls shall be inspected for proper operation and response.

D. Tests shall demonstrate the response time and display format of each different type of input sensor and output control device. Response time shall be measured with the system functioning at full capacity. Computer operation shall be tested with the complete data file.

E. The contractor shall maintain a complete log of all inspections and tests. Upon final completion of system tests, a copy of the log records shall be submitted as part of the as-built documentation.

F. The contractor shall provide a competent trainer who has extensive experience on the installed systems and in delivering training to provide the instruction. As an alternate, the contractor may propose the use of factory training personnel and coordinate the number of personnel to be trained.
3.9 FIELD QUALITY CONTROL

A. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:
 1. LAN Cable Procedures: Inspect for physical damage and test each conductor signal path for continuity and shorts. Use Class 2, bidirectional, Category 5 tester. Test for faulty connectors, splices, and terminations. Test according to TIA/EIA 568-B.1, "Commercial Building Telecommunications Cabling Standards - Part 1: General Requirements." Link performance for UTP cables must comply with minimum criteria in TIA/EIA 568-B.1.
 2. Test each circuit and component of each system. Tests shall include, but are not limited to, measurements of power-supply output under maximum load, signal loop resistance, and leakage to ground where applicable. System components with battery backup shall be operated on battery power for a period of not less than 10 percent of the calculated battery operating time. Provide special equipment and software if testing requires special or dedicated equipment.
 3. Operational Test: After installation of cables and connectors, demonstrate product capability and compliance with requirements. Test each signal path for end-to-end performance from each end of all pairs installed. Remove temporary connections when tests have been satisfactorily completed.

C. Devices and circuits will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.10 STARTUP SERVICE

A. Engage a factory-authorized service representative to supervise and assist with startup service.
 1. Complete installation and startup checks according to approved procedures that were developed in "Preparation" Article and with manufacturer's written instructions.
 2. Enroll and prepare badges and access cards for Owner's operators, management, and security personnel.

3.11 PROTECTION

A. Maintain strict security during the installation of equipment and software. Rooms housing the control station, and workstations that have been powered up shall be locked and secured with an activated burglar alarm and access-control system reporting to a central station complying with UL 1610, "Central-Station Burglar-Alarm Units," during periods when a qualified operator in the employ of Contractor is not present.
3.12 DEMONSTRATION

A. Engage a factory-authorized service representative to train. Owner's maintenance personnel to adjust, operate, and maintain security access system.

B. Develop separate training modules for the following:
 1. Computer system administration personnel to manage and repair the LAN and databases and to update and maintain software.
 2. Operators who prepare and input credentials to man the control station and workstations and to enroll personnel.
 4. Hardware maintenance personnel.
 5. Corporate management.

END OF SECTION
SECTION 284621.11 - ADDRESSABLE FIRE-ALARM SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Fire-alarm control unit.
3. System smoke detectors.
6. Device guards.
8. Addressable interface device.

B. Related Requirements:

1. Section 271513 "Communications Copper Horizontal Cabling" for cables and conductors for fire-alarm systems.

1.3 DEFINITIONS

A. EMT: Electrical Metallic Tubing.

B. FACP: Fire Alarm Control Panel.

C. NICET: National Institute for Certification in Engineering Technologies.

D. PC: Personal computer.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of fire alarm panels, devices and supporting equipment, including furnished options and accessories necessary for this project.

1. Include construction details, material descriptions, dimensions, profiles, and finishes.
2. Include rated capacities, operating characteristics, and electrical characteristics.
B. Shop Drawings: For fire-alarm system.

1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
2. Include plans, elevations, sections, details, and attachments and interconnection to other work.
3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
4. Detail assembly and support requirements.
5. Include voltage drop calculations for notification-appliance circuits.
6. Include battery-size calculations.
7. Include input/output matrix.
8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
9. Include performance parameters and installation details for each detector.
10. Verify that each duct smoke detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
11. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale; coordinate location(s) of duct smoke detectors and access to them.

 a. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators.
 b. Show field wiring required for HVAC unit shutdown on alarm.
 c. Locate detectors according to manufacturer's written recommendations.
12. Include floor plans to indicate final device and equipment locations including address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.

C. General Submittal Requirements:

1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
2. Shop Drawings shall be prepared by persons with the following qualifications:

 a. NICET-certified, fire-alarm technician; Level IV minimum.

D. Delegated-Design Submittal: For notification appliances and smoke and heat detectors, in addition to submittals listed above, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Drawings showing the location of each notification appliance and smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the device.
2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72. Calculate spacing and intensities for strobe signals and sound-pressure levels for audible appliances.
3. Indicate audible appliances required to produce square wave signal per NFPA 72.
1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following and deliver copies to authorities having jurisdiction:

 a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 c. Complete wiring diagrams showing connections between all devices and equipment. Each conductor shall be numbered at every junction point with indication of origination and termination points.
 d. Riser diagram.
 e. Device addresses.
 f. Record copy of site-specific software.
 g. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:

 1) Equipment tested.
 2) Manufacturer's user training manuals.

 h. Manufacturer's required maintenance related to system warranty requirements.
 i. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.

B. Software and Firmware Operational Documentation:

 1. Software operating and upgrade manuals.
 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Remote Alarm Indicating LED Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
2. Stand-Alone Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than one unit.
3. Combination Horn/Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than two units.
4. Smoke Detectors, Heat Detectors and Duct Smoke Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than two units of each type.
5. Detector Bases: Quantity equal to two percent of amount of each type installed, but no fewer than one unit of each type.
6. Keys and Tools: One extra set for access to locked or tamperproofed components.
7. Audible and Visual Notification Appliances: Two of each type installed.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.

B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level II technician, minimally.

1.9 PROJECT CONDITIONS

A. Use of Devices during Construction: Protect devices during construction unless devices are placed in service to protect the facility during construction.

1.10 SEQUENCING AND SCHEDULING

A. Fire-Alarm Equipment: As new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service.

1.11 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.

1. Warranty Extent: All equipment and components not covered in a Maintenance Service Agreement.
2. Warranty Period: Three years from date of Beneficial Use.

B. Warranties specified in Division 01 Specification Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.
PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Source Limitations for Fire-Alarm System and Components: Components shall be compatible with and operate as a system. Provide system manufacturer's certification that all components provided have been tested as, and will operate as, a system.

B. Noncoded, addressable system, with multiplexed signal transmission and horn/strobe evacuation.

C. Automatic sensitivity control of certain smoke detectors.

D. All components provided shall be listed for use with the selected system.

E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:

2. Heat detectors.
3. Smoke detectors.
4. Duct smoke detectors.
5. Carbon monoxide detectors.
6. Automatic sprinkler system water flow.
7. Preaction system.
8. Fire-extinguishing system operation.
9. Fire standpipe system.
10. Dry system pressure flow switch.
11. Fire pump running.

B. Fire-alarm signal shall initiate the following actions:

1. Continuously operate alarm notification appliances.
2. Identify alarm and specific initiating device at fire-alarm control unit, and remote annunciators.
3. Transmit an alarm signal to the remote alarm receiving station.
4. Unlock electric door locks in designated egress paths, where applicable.
5. Release fire and smoke doors held open by magnetic door holders, where applicable.
6. Record events in the system memory.

C. Supervisory signal initiation shall be by one or more of the following devices and actions:

1. Valve supervisory (tamper) switch.
2. High- or low-air-pressure switch of a dry-pipe or preaction sprinkler system.
3. Fire pump running.
5. Fire-pump low oil pressure.
6. Independent fire-detection and -suppression systems.
7. User disabling of zones or individual devices.

D. System trouble signal initiation shall be by one or more of the following devices and actions:

1. Open circuits, shorts, and grounds in designated circuits.
2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
3. Loss of communication with any addressable sensor, input module, relay, control module, remote annunciator, printer interface, or Ethernet module.
4. Loss of primary power at fire-alarm control unit.
5. Ground or a single break in internal circuits of fire-alarm control unit.
6. Abnormal AC voltage at fire-alarm control unit.
7. Break in standby battery circuitry.
8. Failure of battery charging.
9. Abnormal position of any switch at fire-alarm control unit or annunciator.

E. System Supervisory Signal Actions:

1. Initiate designated supervisory notification appliances, where applicable.
2. Identify specific device initiating the event at fire-alarm control unit, and remote annunciators.

2.3 FIRE-ALARM CONTROL UNIT

A. Basis-of-Design Product: Subject to compliance with requirements, provide Potter Electric Signal Company, LLC; IPA Series control panel or a comparable product by one of the following:

1. Potter Electric Signal Company, LLC.
3. Fire-Lite Alarms, Inc.; a Honeywell International company.
4. Silent Knight.

B. General Requirements for Fire-Alarm Control Unit:

1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.
 a. System software and programs shall be held in nonvolatile flash, electrically erasable, programmable, read-only memory, retaining the information through failure of primary and secondary power supplies.
 b. Include a real-time clock for time annotation of events on the event recorder and printer.
 c. Provide communication between the FACP and remote circuit interface panels, annunciators, and displays.
d. The FACP shall be listed for connection to a central-station signaling system service.

e. Provide nonvolatile memory for system database, logic, and operating system and event history. The system shall require no manual input to initialize in the event of a complete power down condition. The FACP shall provide a minimum 4000-event history log.

2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.

3. Addressable Control Circuits for Operation of Notification Appliances.

C. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.

1. Annunciator and Display: Liquid-crystal type, four lines of 40 characters, minimum.
2. Keypad: Arranged to permit entry and execution of display, and control commands.

D. Initiating-Device, Notification-Appliance, and Signaling-Line Circuits:

1. Pathway Class Designations: NFPA 72, Class B.
2. Pathway Survivability: Level 0.
3. Serial Interfaces:
 a. One dedicated RS 485 port for remote station operation using point ID DACT.
 b. One RS 485 port for remote annunciators, Ethernet module, or multi-interface module (printer port).
 c. One Ethernet port for PC configuration.

E. Smoke-Alarm Verification:

1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.
2. Activate an approved "alarm-verification" sequence at fire-alarm control unit and detector.
3. Sound general alarm if the alarm is verified.
4. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.

F. Notification-Appliance Circuit:

1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
2. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.

G. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings. Allow controls to be used to program repetitive, time-scheduled, and automated
changes in sensitivity of specific detector groups. Record sensitivity adjustments and sensitivity-adjustment schedule changes in system memory.

H. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.

I. Primary Power: 24-VDC obtained from 120-VAC service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory signals supervisory and digital alarm communicator transmitters shall be powered by 24-VDC source.

1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.

J. Secondary Power: 24-VDC supply system with batteries, automatic battery charger, and automatic transfer switch.

1. Batteries: Sealed, lead acid.

K. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.4 MANUAL FIRE-ALARM BOXES

A. Basis-of-Design Product: Subject to compliance with requirements, provide Potter Electric Signal Company, LLC manual fire-alarm boxes or comparable products by one of the following:

1. Potter Electric Signal Company, LLC.
3. Fire-Lite Alarms, Inc.; a Honeywell International company.
4. Silent Knight.

B. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be die-cast construction finished in red with operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.

1. Double-action mechanism requiring two actions to initiate an alarm, lift-cover pull-lever type; with integral or attached addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
2. Station Reset: Key-operated switch.
3. Indoor Protective Shield: Factory-fabricated, manufacturer approved clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm.
4. Weatherproof Gasketed Protective Shield: Factory-fabricated, manufacturer approved clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm.
2.5 SYSTEM SMOKE DETECTORS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Potter Electric Signal Company, LLC system smoke detectors or comparable products by one of the following:

1. Potter Electric Signal Company, LLC.
3. Fire-Lite Alarms, Inc.; a Honeywell International company.
4. Silent Knight.

B. General Requirements for System Smoke Detectors:

1. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
2. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
3. Non-Self-Restoring: Detectors shall require resetting from the fire alarm control unit after actuation to restore them to normal operation.
4. Integral Visual-Indicating Light: LED type, indicating detector has operated.
5. Remote Control: Unless otherwise indicated, detectors shall be digital-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.

 a. Rate-of-rise temperature characteristic of combination smoke- and heat-detection units shall be selectable at fire-alarm control unit for 15 deg F per minute.
 b. Fixed-temperature sensing characteristic of combination smoke- and heat-detection units shall be independent of rate-of-rise sensing and shall be settable at fire-alarm control unit to operate at 135 deg F.
 c. Multiple levels of detection sensitivity for each sensor.
 d. Sensitivity levels based on time of day.

C. Photoelectric Smoke Detectors:

1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:

 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

D. Addressable Duct Smoke Detectors: Photoelectric type complying with UL 268A.

1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:

 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

3. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.

2.6 HEAT DETECTORS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Potter Electric Signal Company, LLC heat detectors or comparable products by one of the following:

 1. Potter Electric Signal Company, LLC.
 3. Fire-Lite Alarms, Inc.; a Honeywell International company.
 4. Silent Knight.

B. General Requirements for Heat Detectors: Comply with UL 521.

 1. Temperature sensors shall test for and communicate the sensitivity range of the device.

C. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or a rate of rise that exceeds 15 deg F per minute unless otherwise indicated.

 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

D. Heat Detector, Fixed-Temperature Type: Actuated by temperature that exceeds a fixed temperature of 185 deg F.

 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.7 NOTIFICATION APPLIANCES

A. Basis-of-Design Product: Subject to compliance with requirements, provide Potter Electric Signal Company, LLC notification appliances or comparable products by one of the following:

 1. Potter Electric Signal Company, LLC.
2. Gentex Corporation.
3. Harrington Signal, Inc.

B. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.

1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.

C. Horns: Electronic-polarized type, 24-VDC. Comply with UL 464. Horns shall produce a sound-pressure level of 75 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol.

D. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear lens mounted on an aluminum faceplate. The word "FIRE" is displayed in minimum 1-inch-high letters.

1. Rated Light Output:
 a. 15/30/75/110 cd, selectable in the field.

2. Mounting: Wall mounted unless otherwise indicated.
3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
4. Flashing shall be in a temporal pattern, synchronized with other units.
5. Strobe Leads: Factory connected to screw terminals.

2.8 REMOTE ANNUNCIATOR

A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.

1. Mounting: Semi-Flush or Semi-Recessed Surface cabinet, NEMA 250, Type 1.

B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.9 ADDRESSABLE INTERFACE DEVICE

A. General:

1. Include address-setting means on the module.
2. Store an internal identifying code for control panel use to identify the module type.
B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.

C. Integral Relay: Capable of providing a direct signal for designated functions.
 1. Allow the control panel to switch the relay contacts on command.
 2. Have a minimum of one normally open and one normally closed contact available for field wiring.

D. Control Module:
 1. Operate notification devices.
 2. Operate solenoids for use in sprinkler service.
 3. Operate additional designated functions.

2.10 DIGITAL ALARM COMMUNICATOR TRANSMITTER

A. Digital alarm communicator transmitter shall be acceptable to the remote monitoring station and shall comply with UL 632.

B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire-alarm control unit and automatically capture up to two telephone line(s) and dial a preset number for a remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.

C. Local functions and display at the digital alarm communicator transmitter shall include the following:
 1. Verification that both telephone lines are available.
 2. Programming device.
 3. LED display.
 5. Communications failure with the central station or fire-alarm control unit.

D. Digital data transmission shall include the following:
 1. Address of the alarm-initiating device.
 2. Address of the supervisory signal.
 3. Address of the trouble-initiating device.
 4. Loss of ac supply.
 5. Loss of power.
 6. Low battery.
 7. Abnormal test signal.
E. Secondary Power: Integral rechargeable battery and automatic charger.

F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

G. Approved alternate code-compliant methods shall be acceptable in lieu of a digital alarm communicator.

2.11 DEVICE GUARDS

A. Description: Welded wire mesh of size and shape for the manual station, smoke detector, gong, or other device requiring protection.
 1. Factory fabricated and furnished by device manufacturer.
 2. Factory fabricated and approved by device manufacturer
 3. Finish: Paint of color to match the protected device, unless designated otherwise.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.
 1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed, before installation begins.

B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION

A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."
 1. Devices placed in service before all other trades have completed cleanup shall be replaced prior to acceptance.
 2. Devices installed but not yet placed in service shall be protected from construction dust, debris, dirt, moisture, and damage according to manufacturer's written storage instructions.

B. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.
C. Manual Fire-Alarm Boxes:

1. Install manual fire-alarm box in the normal path of egress within 60 inches of the exit doorway.
3. The operable part of manual fire-alarm box shall be between 42 inches and 48 inches above floor level. All devices shall be mounted at the same height unless otherwise indicated.

D. Smoke- or Heat-Detector Spacing:

1. Comply with the "Smoke-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for smoke-detector spacing.
2. Comply with the "Heat-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for heat-detector spacing.
3. Smooth ceiling spacing shall not exceed 30 feet.
4. Spacing of detectors for irregular areas, for irregular ceiling construction, and for high ceiling areas shall be determined according to Annex A or Annex B in NFPA 72.
5. HVAC: Locate detectors not closer than 36 inches, minimally, from air-supply diffuser or return-air opening.
6. Lighting Fixtures: Locate detectors not closer than 12 inches, minimally, from any part of a lighting fixture and not directly above pendant mounted or indirect lighting.

E. Install a cover on each smoke detector that is not placed in service during construction. Cover shall remain in place except during system testing. Remove cover prior to system turnover.

F. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches long shall be supported at both ends.

1. Do not install smoke detector in duct smoke-detector housing during construction. Install detector only during system testing and prior to system turnover.

G. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.

H. Stand-Alone Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install horns on surface- or flush-mounted back boxes with the device-operating mechanism concealed behind a grille or faceplate. Install all similar devices at the same height unless otherwise indicated.

I. Stand-Alone Visible Alarm-Indicating Devices: Install at least 6 inches below the ceiling.

3.3 PATHWAYS

A. Pathways shall be installed in EMT.

B. Exposed EMT shall be painted to match surrounding area(s) and labeled. Refer to project drawings for conduit labels.
C. Pathway junction boxes shall have the covers painted red and labeled. Refer to project drawings for junction box labels.

3.4 CONNECTIONS

A. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.

1. Alarm-initiating connection to conventional type heat detectors and manual pull stations.
2. Smoke dampers in air ducts of designated HVAC duct systems.
3. Magnetically held-open doors, where applicable.
4. Electronically locked doors and access gates, where applicable.
5. Supervisory connections at valve supervisory switches.
6. Supervisory connections at low-air-pressure switch of each dry-pipe sprinkler system.
7. Data communication circuits for connection to building management system, where applicable.
8. Supervisory connections at fire-pump power failure including a dead-phase or phase-reversal condition.
9. Supervisory connections at fire-pump engine control panel.

3.5 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals.

B. Install framed instructions in a location visible from fire-alarm control unit and remote annunciators.

3.6 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

B. Ground shielded cables at the control panel location only. Insulate shield at device locations.

3.7 FIELD QUALITY CONTROL

A. Field tests shall be witnessed by authorities having jurisdiction and/or designated representatives.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.
D. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Visual Inspection: Conduct visual inspection prior to testing.
 a. Inspection shall be based on completed record Drawings and system documentation that is required by the "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.

3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.

4. Test audible appliances for the private operating mode according to manufacturer's written instructions.

5. Test visible appliances for the public operating mode according to manufacturer's written instructions.

6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

E. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.

F. Fire-alarm system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Annual Test and Inspection: One year after date of Substantial Completion, the fire alarm system must be tested complying with visual and functional testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.8 MAINTENANCE SERVICE

A. Maintenance Service Agreement: Beginning at Substantial Completion, maintenance service shall include a minimum of 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

1. Include visual inspections according to the "Visual Inspection Frequencies" table in the "Testing" paragraph of the "Inspection, Testing and Maintenance" chapter in NFPA 72.

3.9 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.

C. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule access to system and to upgrade computer equipment if necessary.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.
SECTION 31 10 00 - SITE CLEARING

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes:

1. Protecting existing vegetation to remain.
2. Removing existing vegetation.
3. Clearing and grubbing.
4. Stripping and stockpiling topsoil.
5. Removing above- and below-grade site improvements.
6. Disconnecting, capping or sealing, and abandoning site utilities in place.
7. Temporary erosion- and sedimentation-control measures.

1.02 DEFINITIONS

A. Subsoil: All soil beneath the topsoil layer of the soil profile, and typified by the lack of organic matter and soil organisms.

B. Surface Soil: Soil that is present at the top layer of the existing soil profile at the Project site. In undisturbed areas, the surface soil is typically topsoil; but in disturbed areas such as urban environments, the surface soil can be subsoil.

C. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing in-place surface soil and is the zone where plant roots grow. Its appearance is generally friable, pervious, and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects more than 2 inches in diameter; and free of subsoil and weeds, roots, toxic materials, or other non-soil materials.

D. Plant-Protection Zone: Area surrounding individual trees, groups of trees, shrubs, or other vegetation to be protected during construction, and indicated on Drawings.

E. Tree-Protection Zone: Area surrounding individual trees or groups of trees to be protected during construction, and indicated on Drawings.

F. Vegetation: Trees, shrubs, groundcovers, grass, and other plants.

1.03 MATERIAL OWNERSHIP

A. Cleared materials shall become Contractor's property and shall be removed from Project site.

1.04 INFORMATIONAL SUBMITTALS
A. Existing Conditions: Documentation of existing trees and plantings, adjoining construction, and site improvements that establishes preconstruction conditions that might be misconstrued as damage caused by site clearing.

1. Use sufficiently detailed photographs or videotape.
2. Include plans and notations to indicate specific wounds and damage conditions of each tree or other plants designated to remain.

B. Record Drawings: Identifying and accurately showing locations of capped utilities and other subsurface structural, electrical, and mechanical conditions.

1.05 QUALITY ASSURANCE

A. Preinstallation Conference: Conduct conference at Project site.

1.06 PROJECT CONDITIONS

A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.

1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.

B. Utility Locator Service: Notify PA One Call for area where Project is located before site clearing.

C. Do not commence site clearing operations until temporary erosion- and sedimentation-control measures are in place.

D. Soil Stripping, Handling, and Stockpiling: Perform only when the topsoil is dry or slightly moist.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Satisfactory Soil Material: Requirements for satisfactory soil material are specified in Section 312000 "Earth Moving."

1. Obtain approved borrow soil material off-site when satisfactory soil material is not available on-site.

PART 3 - EXECUTION

3.01 PREPARATION
A. Protect and maintain benchmarks and survey control points from disturbance during construction.

B. Locate and clearly identify trees, shrubs, and other vegetation to remain or to be relocated. Wrap a 1-inch blue vinyl tie tape flag around each tree trunk at 54 inches above the ground.

C. Protect existing site improvements to remain from damage during construction.
 1. Restore damaged improvements to their original condition, as acceptable to Owner.

3.02 TEMPORARY EROSION AND SEDIMENTATION CONTROL

A. Provide temporary erosion- and sedimentation-control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to approved erosion- and sedimentation-control Drawings and requirements of authorities having jurisdiction.

B. Inspect, maintain, and repair erosion- and sedimentation-control measures during construction until permanent vegetation has been established.

C. Remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal.

3.03 EXISTING UTILITIES

A. Locate, identify, disconnect, and seal or cap utilities indicated to be removed or abandoned in place.
 1. Arrange with utility companies to shut off indicated utilities.

B. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 1. Notify Engineer not less than two days in advance of proposed utility interruptions.
 2. Do not proceed with utility interruptions without Engineer’s written permission.

C. Excavate for and remove underground utilities indicated to be removed.

D. Removal of underground utilities is included in earthwork sections.

3.04 CLEARING AND GRUBBING

A. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.
 1. Do not remove trees, shrubs, and other vegetation indicated to remain or to be relocated.
 2. Use only hand methods for grubbing within protection zones.
B. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.

1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches, and compact each layer to a density equal to adjacent original ground.

3.05 TOPSOIL STRIPPING

A. Remove sod and grass before stripping topsoil.

B. Strip topsoil to depth of 6 inches in a manner to prevent intermingling with underlying subsoil or other waste materials.

1. Remove subsoil and nonsoil materials from topsoil, including clay lumps, gravel, and other objects more than 2 inches in diameter; trash, debris, weeds, roots, and other waste materials.

C. Stockpile topsoil away from edge of excavations without intermixing with subsoil. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.

1. Limit height of topsoil stockpiles to 72 inches.
2. Do not stockpile topsoil within protection zones.
3. Dispose of surplus topsoil. Surplus topsoil is that which exceeds quantity indicated to be stockpiled or reused.
4. Stockpile surplus topsoil to allow for respreading deeper topsoil.

3.06 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.

B. Contractor is responsible for all costs related to surplus soil removal, testing, and disposal.

END OF SECTION 31 10 00
SECTION 31 20 00 - EARTH MOVING

PART 1 - GENERAL

1.01 SUMMARY

A. Section Includes:

1. Preparing subgrades for slabs-on-grade, walks, pavements, turf and grasses and plants.
2. Excavating and backfilling for buildings and structures.
3. Drainage course for concrete slabs-on-grade.
4. Subbase course for concrete walks and pavements.
5. Subbase course and base course for asphalt paving.
6. Subsurface drainage backfill for walls and trenches.
7. Excavating and backfilling trenches for utilities and pits for buried utility structures.

1.02 DEFINITIONS

A. Backfill: Soil material or controlled low-strength material used to fill an excavation.

1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
2. Final Backfill: Backfill placed over initial backfill to fill a trench.

B. Base Course: Aggregate layer placed between the subbase course and hot-mix asphalt paving.

C. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.

D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.

E. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.

F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.

1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Engineer and authorized by the Owner.
2. Bulk Excavation: Excavation more than 10 feet in width and more than 30 feet in length.
3. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Engineer. Unauthorized excavation, as well as remedial work directed by Engineer, shall be without additional compensation.

G. Fill: Soil materials used to raise existing grades.
H. Rock: Rock material in beds, ledges, unstratified masses, conglomerate deposits, and boulders of rock material that exceed 1 cu. yd. for bulk excavation or 3/4 cu. yd. for footing, trench, and pit excavation that cannot be removed by rock excavating equipment equivalent to the following in size and performance ratings, without systematic drilling, ram hammering, ripping, or blasting, when permitted:

1. Excavation of Footings, Trenches, and Pits: Late-model, track-mounted hydraulic excavator; equipped with a 42-inch-wide, maximum, short-tip-radius rock bucket; rated at not less than 138-hp flywheel power with bucket-curling force of not less than 28,700 lbf and stick-crowd force of not less than 18,400 lbf with extra-long reach boom; measured according to SAE J-1179.

2. Bulk Excavation: Late-model, track-mounted loader; rated at not less than 230-hp flywheel power and developing a minimum of 47,992-lbf breakout force with a general-purpose bare bucket; measured according to SAE J-732.

I. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.

J. Subbase Course: Aggregate layer placed between the subgrade and base course for hot-mix asphalt pavement, or aggregate layer placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.

K. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.

L. Utilities: On-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.

1.03 ACTION SUBMITTALS

A. Product Data: For each type of the following manufactured products required:

1. Geotextiles.
2. Warning tapes.

B. Samples for Verification: For the following products, in sizes indicated below:

2. Warning Tape: 12 inches long; of each color.

1.04 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Material Test Reports: For each on-site soil material proposed for fill and backfill as follows:

1. Classification according to ASTM D 2487.
2. Laboratory compaction curve according to ASTM D 698.

C. Pre-excavation Photographs or Videotape: Show existing conditions of adjoining construction and site improvements, including finish surfaces, that might be misconstrued as damage caused by earth moving operations. Submit before earth moving begins.

1.05 QUALITY ASSURANCE

A. Geotechnical Testing Agency Qualifications: Qualified according to ASTM E 329 and ASTM D 3740 for testing indicated.

B. Pre-excavation Conference: Conduct conference at Project site.

1.06 PROJECT CONDITIONS

A. Utility Locator Service: Notify PA One Call for area where Project is located before beginning earth moving operations.

B. Do not commence earth moving operations until temporary erosion- and sedimentation-control measures are in place per the approved E&S drawings.

PART 2 - PRODUCTS

2.01 SOIL MATERIALS

A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations. Refer to geotechnical report for requirements.

B. Satisfactory Soils: Soil Classification Groups GW, GP, GM, SW, SP, and SM according to ASTM D 2487 or a combination of these groups; free of rock or gravel larger than 3 inches in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.

1. Satisfactory soils also include soils that meet the definition of clean fill as defined in the Pennsylvania Department of Environmental Protection “PADEP” Management of fill document, (Document 258-2182-773, dated April 24, 2004, modified August 7, 2010).

2. Unsatisfactory soils also include soils which do not meet the definition of clean fill as defined in the Pennsylvania Department of Environmental Protection “PADEP” Management of fill document, (Document 258-2182-773, dated April 24, 2004, modified August 7, 2010).

C. Unsatisfactory Soils: Soil Classification Groups GC, SC, CL, ML, OL, CH, MH, OH, and PT according to ASTM D 2487 or a combination of these groups.

1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.
D. Subbase Material: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.

E. Base Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 95 percent passing a 1-1/2-inch sieve and not more than 8 percent passing a No. 200 sieve.

F. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch sieve and not more than 20 percent passing a No. 200 sieve.

G. Bedding Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; except with 100 percent passing a 1-inch sieve and not more than 8 percent passing a No. 200 sieve.

H. Drainage Course: Narrowly graded mixture of crushed stone, or crushed or uncrushed gravel; ASTM D 448; coarse-aggregate grading Size 57; with 100 percent passing a 1-1/2-inch sieve and 0 to 5 percent passing a No. 8 sieve.

I. Filter Material: Narrowly graded mixture of natural or crushed gravel, or crushed stone and natural sand; ASTM D 448; coarse-aggregate grading Size 67; with 100 percent passing a 1-inch sieve and 0 to 5 percent passing a No. 4 sieve.

J. Sand: ASTM C 33; fine aggregate.

K. Impervious Fill: Clayey gravel and sand mixture capable of compacting to a dense state.

2.02 GEOTEXTILES

A. Subsurface Drainage Geotextile: Nonwoven needle-punched geotextile, manufactured for subsurface drainage applications, made from polyolefins or polyesters; with elongation greater than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:

1. Survivability: Class 2; AASHTO M 288.
2. Grab Tensile Strength: 157 lbf; ASTM D 4632.
3. Sewn Seam Strength: 142 lbf; ASTM D 4632.
4. Tear Strength: 56 lbf; ASTM D 4533.
5. Puncture Strength: 56 lbf; ASTM D 4833.
6. Apparent Opening Size: No. 40 sieve, maximum; ASTM D 4751.
7. Permittivity: 0.5 per second, minimum; ASTM D 4491.
8. UV Stability: 50 percent after 500 hours' exposure; ASTM D 4355.

2.03 ACCESSORIES

A. Detectable Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide
and 4 mils thick, continuously inscribed with a description of the utility, with metallic core enclosed in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored as follows:

2. Yellow: Gas, oil, steam, and dangerous materials.
3. Orange: Telephone and other communications.
4. Blue: Water systems.
5. Green: Sewer systems.

PART 3 - EXECUTION

3.01 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth-moving operations.

B. Protect and maintain erosion and sedimentation controls during earth-moving operations.

C. Strip and remove all topsoil, vegetation, concrete, and pavement from areas of proposed construction.

D. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

E. Install settlement monitoring devices prior to performing site grading. Protect and maintain settlement monitoring devices during earth-moving operation until ground floor slab is prepared to be poured. Settlement monitoring devices to be determined by the Geotechnical Engineer.

3.02 DEWATERING

A. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.

B. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.

1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.

3.03 EXPLOSIVES

A. Explosives: Do not use explosives.
3.04 EXCAVATION, GENERAL

A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions, including abandoned utilities and foundations or structures. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of any obstructions.

1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.

3.05 EXCAVATION FOR STRUCTURES

A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch. If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.

1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.

2. Excavation for Utility Structures: Excavate to elevations and dimensions indicated within a tolerance of plus or minus 1 inch. Do not disturb bottom of excavations intended as bearing surfaces.

3.06 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.07 SUBGRADE INSPECTION

A. Notify Engineer/Geotechnical Advisor when excavations have reached required subgrade.

B. If Engineer/Geotechnical Advisor determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.

C. Proof-roll subgrade below the pavements in the presence of Engineer/Geotechnical Advisor with a pneumatic-tired and loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.

1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.

2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Engineer/Geotechnical Advisor, and replace with compacted backfill or fill as directed.
D. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Engineer/Geotechnical Advisor, without additional compensation.

3.08 UNAUTHORIZED EXCAVATION

A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500 psi, may be used when approved by Engineer.

1. Fill unauthorized excavations under other construction, pipe, or conduit as directed by Engineer.

3.09 STORAGE OF SOIL MATERIALS

A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.

1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.10 BACKFILL

A. Place backfill on subgrades free of mud, frost, snow, or ice.

B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.

C. Backfill voids with satisfactory soil while removing shoring and bracing.

D. Place and compact initial backfill of subbase material, free of particles larger than 1 inch in any dimension, to a height of 12 inches over the pipe or conduit.

1. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.

E. Place and compact final backfill of satisfactory soil to final subgrade elevation. Not to exceed 12 inch lifts.

F. Contractor to ensure stone in compacted between the two perforated pipes in infiltration trench, and between the pipe and sidewall.

G. Compaction Requirements:
1. Foundations and floor slabs: Compact to at least 98%, of the laboratory determined maximum dry density, ASTM D698.

2. Porous turf subgrade: Compacted to maximum 85% of the laboratory determined maximum dry density, ASTM D698.

3. Pavements and utility trenches, behind walls: Compacted to at least 95% of the laboratory determined maximum dry density in accordance with ASTM D698.

H. Install warning tape directly above utilities, 6-8 below finished grade.

3.11 SOIL FILL

A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.

B. Place and compact fill material in layers to required elevations as follows:

1. Under grass and planted areas, use satisfactory soil material.
2. Under walks and pavements, use satisfactory soil material.
3. Under steps and ramps, use engineered fill.
4. Under porous turf, infiltration trench, footings and foundations, use engineered fill.

C. Place soil fill on subgrades free of mud, frost, snow, or ice.

3.12 SOIL MOISTURE CONTROL

A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.

1. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

3.13 GRADING

A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.

1. Provide a smooth transition between adjacent existing grades and new grades.
2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.

B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:

1. Unpaved Areas: Plus or minus 1 inch.
2. Walks: Plus or minus 1 inch.
3. Pavements: Plus or minus 1/2 inch.

3.14 SUBBASE AND BASE COURSES UNDER PAVEMENTS AND WALKS

A. Place subbase course and base course on subgrades free of mud, frost, snow, or ice.

B. On prepared subgrade, place subbase course and base course under pavements and walks as follows:

1. Install separation geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
2. Place base course material over subbase course under hot-mix asphalt pavement.
3. Place subbase course and base course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
4. Compact subbase course and base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D 698.

3.15 CONTROL

A. Special Inspections: Owner will engage a qualified special inspector to perform the following special inspections:

1. Determine prior to placement of fill that site has been prepared in compliance with requirements.
2. Determine that fill material and maximum lift thickness comply with requirements.

B. Testing Agency: Owner will engage a qualified geotechnical engineering testing agency to perform tests and inspections.

C. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.

D. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Engineer.

E. Testing agency will test compaction of soils in place according to ASTM D 1556, ASTM D 2167, ASTM D 2922, and ASTM D 2937, as applicable. Tests will be performed at the following locations and frequencies:

1. Paved and Building Slab Areas: At subgrade and at each compacted fill and backfill layer, at least one test for every 2000 sq. ft. or less of paved area or building slab, but in no case fewer than three tests.
2. Foundation Wall Backfill: At each compacted backfill layer, at least one test for every 100 linear feet or less of wall length, but no fewer than two tests.

3. Trench Backfill: At each compacted initial and final backfill layer, at least one test for every 150 linear feet or less of trench length, but no fewer than two tests.

F. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.16 SETTLEMENT MONITORING

A. The subgrades are expected to experience settlement. Settlement monitoring devices (i.e. settlement monitoring sensors etc.) shall be installed and monitored for the duration of approximately 6 months. Monitoring will be completed once 90% primary consolidation has occurred. Settlement monitoring should be evaluated by the Geotechnical Engineer of Record.

1. Settlement sensors should be monitored:
 a. daily during the placement of the site fills and for the first two weeks;
 b. once a week for the next 3 weeks; and
 c. bi-weekly thereafter.

2. There is a low probability of 90% primary consolidation not occurring within the 6 month duration. If this is the case, additional time may be required prior to placing the floor slab.

3.17 PROTECTION

A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.

B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.

1. Scarify or remove and replace soil material to depth as directed by Engineer; reshape and recompact.

C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.

1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.18 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property. The Contractor is responsible for all testing associated with removal of waste materials, including soil.
END OF SECTION 31 20 00
SECTION 312100 EROSION AND SEDIMENT CONTROL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 1 Specification Sections, apply to this Section.
 B. City of Philadelphia and PennDOT standard specifications. The most stringent
 requirements shall be considered the base requirements.

1.2 DESCRIPTION
 A. This work shall consist of temporary measures to control erosion and sediment during the
 life of the contract, as shown on the Plans and as approved by the Engineer.
 B. The temporary control provisions contained herein shall be coordinated with the
 permanent improvements (grass, pavement and other restorations) specified elsewhere in
 the contract to the extent practical to assure effective and continuous erosion and
 sediment control throughout the construction and post-construction period.
 C. The erosion and sediment control measures described herein shall be continued until the
 construction is complete and final restorations installed.

1.3 MATERIALS
 A. All materials and methods of construction shall be in accordance with the Pennsylvania
 Standards for Soil Erosion and Sediment Control.

1.4 METHODS OF CONSTRUCTION
 A. Contractor shall comply with the construction requirements shown on the plan entitled,
 "Erosion and Sediment Control Plan" and “Erosion and Sediment Control Details.”
 B. Contractor shall adhere, as closely at practicable, to the construction sequence provided
 on the plan entitled, "Erosion and Sediment Control Details".
 C. In the event of conflict between these requirements and pollution control laws, rules, or
 regulations of other federal or state or location agencies, the more restrictive laws, rules
 or regulations shall apply.
D. The Contractor will be responsible for maintaining all soil erosion and sediment control measures as specified on the Plans. All temporary measures shall be removed by the Contractor as approved by the Engineer.

E. In case of repeated failures on the part of the Contractor to control erosion, pollution, and/or siltation, the Owner reserves the right to employ outside assistance or to use his own forces to provide the necessary corrective measures. Further, the Soils Conservation District Office may order the Contractor to cease operations until all soil erosion and sediment control measures are satisfactory. Such incurred costs of remediation and time delays will be charged to the Contractor, with no additional costs to the Owner.

END OF SECTION 312100
SECTION 31 23 19 – DEWATERING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section includes construction dewatering.

B. Related Sections:

1. Division 31 Section "Earth Moving" for excavating, backfilling, site grading, and for site utilities.

1.03 PERFORMANCE REQUIREMENTS

A. Dewatering Performance: Design, furnish, install, test, operate, monitor, and maintain dewatering system of sufficient scope, size, and capacity to control hydrostatic pressures and to lower, control, remove, and dispose of ground water and permit excavation and construction to proceed on dry, stable subgrades.

1. Delegated Design: Design dewatering system, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

2. Continuously monitor and maintain dewatering operations to ensure erosion control, stability of excavations and constructed slopes, that excavation does not flood, and that damage to subgrades and permanent structures is prevented.

3. Prevent surface water from entering excavations by grading, dikes, or other means.

4. Accomplish dewatering without damaging existing buildings, structures, and site improvements adjacent to excavation.

5. Remove dewatering system when no longer required for construction.

6. Place filter bags on stable or well vegetated areas which are flatter that 5% and which will not erode when subjected to bag discharge. If stable or well vegetated area is unavailable discharge runoff to PWD combined sewer system. An industrial waste permit from PWD is required prior to pumping to PWD sewer.

1.04 ACTION SUBMITTALS
A. Shop Drawings: For dewatering system. Show arrangement, locations, and details of wells and well points; locations of risers, headers, filters, pumps, power units, and discharge lines; and means of discharge, control of sediment, and disposal of water.

B. Delegated-Design Submittal: For dewatering system indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.05 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Field quality-control reports.

C. Other Informational Submittals:
 1. Photographs: Show existing conditions of adjoining construction and site improvements that might be misconstrued as damage caused by dewatering operations.

1.06 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer that has specialized in dewatering work.

B. Regulatory Requirements: Comply with governing EPA notification regulations before beginning dewatering. Comply with hauling and disposal regulations of authorities having jurisdiction.

1.07 PROJECT CONDITIONS

A. Interruption of Existing Utilities: Do not interrupt any utility serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility according to requirements indicated:
 1. Notify Engineer no fewer than two days in advance of proposed interruption of utility.
 2. Do not proceed with interruption of utility without Engineer's written permission.

B. Project-Site Information: An infiltration test report has been prepared for this Project. The opinions expressed in this report are those of geotechnical engineer and represent interpretations of subsoil conditions, tests, and results of analyses conducted by geotechnical engineer. Owner will not be responsible for interpretations or conclusions drawn from this data.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION
3.01 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by dewatering operations.

1. Prevent surface water and subsurface or ground water from entering excavations, from ponding on prepared subgrades, and from flooding site and surrounding area.
2. Protect subgrades and foundation soils from softening and damage by rain or water accumulation.

B. Install dewatering system to ensure minimum interference with roads, streets, walks, and other adjacent occupied and used facilities.

1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.

C. Provide temporary grading to facilitate dewatering and control of surface water.

D. Monitor dewatering systems continuously.

E. Promptly repair damages to adjacent facilities caused by dewatering.

F. Protect and maintain temporary erosion and sedimentation controls, which are specified in Division 31 Section "Site Clearing" during dewatering operations.

3.02 INSTALLATION

A. Install dewatering system utilizing wells, well points, or similar methods complete with pump equipment, standby power and pumps, filter material gradation, valves, appurtenances, water disposal, and surface-water controls.

1. Space well points or wells at intervals required to provide sufficient dewatering.
2. Use filters or other means to prevent pumping of fine sands or silts from the subsurface.

B. Before excavating below ground-water level, place system into operation to lower water to specified levels. Operate system continuously until drains, sewers, and structures have been constructed and fill materials have been placed or until dewatering is no longer required.

C. Provide an adequate system to lower and control ground water to permit excavation, construction of structures, and placement of fill materials on dry subgrades. Install sufficient dewatering equipment to drain water-bearing strata above and below bottom of foundations, drains, sewers, and other excavations.

1. Do not permit open-sump pumping that leads to loss of fines, soil piping, subgrade softening, and slope instability.
D. Reduce hydrostatic head in water-bearing strata below subgrade elevations of foundations, drains, sewers, and other excavations.

1. Maintain piezometric water level a minimum of 24 inches below surface of excavation.

E. Dispose of water removed by dewatering in a manner that avoids endangering public health, property, and portions of work under construction or completed. Dispose of water and sediment in a manner that avoids inconvenience to others. Provide sumps, sedimentation tanks, and other flow-control devices as required by authorities having jurisdiction.

F. Provide standby equipment on site, installed and available for immediate operation, to maintain dewatering on continuous basis if any part of system becomes inadequate or fails. If dewatering requirements are not satisfied due to inadequacy or failure of dewatering system, restore damaged structures and foundation soils at no additional expense to Owner.

1. Remove dewatering system from Project site on completion of dewatering. Plug or fill well holes with sand or cut off and cap wells a minimum of 36 inches below overlying construction.

G. Damages: Promptly repair damages to adjacent facilities caused by dewatering operations.

END OF SECTION 31 23 19
SECTION 31 50 00 - EXCAVATION SUPPORT AND PROTECTION

PART 1 - GENERAL

1.01 SUMMARY
A. Section includes temporary excavation support and protection systems.
B. Related Requirements:
 1. Section 31 20 00 "Earth Moving" for excavating and backfilling and for controlling surface-water runoff and ponding.
 2. Section 31 23 19 "Dewatering" for dewatering excavations.

1.02 PREINSTALLATION MEETINGS
A. Pre-installation Conference: Conduct conference at Project site.
 1. Review geotechnical report.
 2. Review existing utilities and subsurface conditions.
 3. Review coordination for interruption, shutoff, capping, and continuation of utility services.
 4. Review proposed excavations.
 5. Review proposed equipment.
 6. Review monitoring of excavation support and protection system.
 7. Review coordination with waterproofing.
 8. Review abandonment or removal of excavation support and protection system.

1.03 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include construction details, material descriptions, performance properties, and dimensions of individual components and profiles, and calculations for excavation support and protection system.
B. Shop Drawings: For excavation support and protection system, signed and sealed by a qualified Pennsylvania professional engineer.
 1. Include plans, elevations, sections, and details.
 2. Show arrangement, locations, and details of soldier piles, piling, lagging, tiebacks, bracing, and other components of excavation support and protection system according to engineering design.
 3. Indicate type and location of waterproofing.
 4. Include a written plan for excavation support and protection, including sequence of construction of support and protection coordinated with progress of excavation.
C. Permit: Submit permit from Authorities having Jurisdiction to Owner and Architect for Excavation Support and Protection Plan.

1.04 INFORMATIONAL SUBMITTALS

A. Qualification Data: For professional engineer.

B. Contractor Calculations: For excavation support and protection system. Include analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

C. Existing Conditions: Using photographs or video recordings, show existing conditions of adjacent construction and site improvements that might be misconstrued as damage caused by inadequate performance of excavation support and protection systems. Submit before Work begins.

D. Record Drawings: Identify locations and depths of capped utilities, abandoned-in-place support and protection systems, and other subsurface structural, electrical, or mechanical conditions.

1.05 FIELD CONDITIONS

A. Interruption of Existing Utilities: Do not interrupt any utility serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility according to requirements indicated:

1. Notify Architect no fewer than two days in advance of proposed interruption of utility.
2. Do not proceed with interruption of utility without Owner's written permission.

B. Project-Site Information: A geotechnical report has been prepared for this Project and is available for information only. The opinions expressed in this report are those of a geotechnical engineer and represent interpretations of subsoil conditions, tests, and results of analyses conducted by a geotechnical engineer. Owner is not responsible for interpretations or conclusions drawn from the data.

1. Make additional test borings and conduct other exploratory operations necessary for excavation support and protection according to the performance requirements.
2. The geotechnical report is referenced elsewhere in Project Manual.

C. Survey Work: Engage a qualified land surveyor or professional engineer to survey adjacent existing buildings, structures, and site improvements; establish exact elevations at fixed points to act as benchmarks. Clearly identify benchmarks and record existing elevations.

PART 2 - PRODUCTS

2.01 PERFORMANCE REQUIREMENTS
A. Provide, design, monitor, and maintain excavation support and protection system capable of supporting excavation sidewalls and of resisting earth and hydrostatic pressures and superimposed and construction loads.

1. Contractor Design: Design excavation support and protection system, including comprehensive engineering analysis by a qualified professional engineer.
2. Prevent surface water from entering excavations by grading, dikes, or other means.
3. Install excavation support and protection systems without damaging existing buildings, structures, and site improvements adjacent to excavation.
4. Continuously monitor vibrations, settlements, and movements to ensure stability of excavations and constructed slopes and to ensure that damage to permanent structures is prevented.

2.02 MATERIALS

A. General: Provide materials that are either new or in serviceable condition.

B. Structural Steel: ASTM A 36/A 36M, ASTM A 690/A 690M, or ASTM A 992/A 992M.

C. Shotcrete: Comply with Section 033713 "Shotcrete" for shotcrete materials and mixes, reinforcement, and shotcrete application.

D. Cast-in-Place Concrete: ACI 301, of compressive strength required for application.

E. Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.

F. Tiebacks: Steel bars, ASTM A 722/A 722M.

PART 3 - EXECUTION

3.01 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards that could develop during excavation support and protection system operations.

1. Shore, support, and protect utilities encountered.

B. Install excavation support and protection systems to ensure minimum interference with roads, streets, walks, and other adjacent occupied and used facilities.

1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.

C. Locate excavation support and protection systems clear of permanent construction so that construction and finishing of other work is not impeded.
3.02 SHEET PILING

A. Before starting excavation, install one-piece sheet piling lengths and tightly interlock vertical edges to form a continuous barrier.

B. Accurately place the piling, using templates and guide frames unless otherwise recommended in writing by the sheet piling manufacturer. Limit vertical offset of adjacent sheet piling to 60 inches. Accurately align exposed faces of sheet piling to vary not more than 2 inches from a horizontal line and not more than 1:120 out of vertical alignment.

C. Cut tops of sheet piling to uniform elevation at top of excavation.

3.03 TIEBACKS

A. Drill, install, grout, and tension tiebacks.

B. Test load-carrying capacity of each tieback and replace and retest deficient tiebacks.
 1. Have test loading observed by a qualified professional engineer responsible for design of excavation support and protection system.

C. Maintain tiebacks in place until permanent construction is able to withstand lateral earth and hydrostatic pressures.

3.04 BRACING

A. Bracing: Locate bracing to clear columns, floor framing construction, and other permanent work. If necessary to move brace, install new bracing before removing original brace.
 1. Do not place bracing where it will be cast into or included in permanent concrete work unless otherwise approved by Architect.
 2. Install internal bracing if required to prevent spreading or distortion of braced frames.
 3. Maintain bracing until structural elements are supported by other bracing or until permanent construction is able to withstand lateral earth and hydrostatic pressures.

3.05 FIELD QUALITY CONTROL

A. Survey-Work Benchmarks: Resurvey benchmarks regularly during installation of excavation support and protection systems, excavation progress, and for as long as excavation remains open. Maintain an accurate log of surveyed elevations and positions for comparison with original elevations and positions. Promptly notify Architect if changes in elevations or positions occur or if cracks, sags, or other damage is evident in adjacent construction.

B. Promptly correct detected bulges, breakage, or other evidence of movement to ensure that excavation support and protection system remains stable.
C. Promptly repair damages to adjacent facilities caused by installation or faulty performance of excavation support and protection systems.

3.06 REMOVAL AND REPAIRS

A. Remove excavation support and protection systems when construction has progressed sufficiently to support excavation and earth and hydrostatic pressures. Remove in stages to avoid disturbing underlying soils and rock or damaging structures, pavements, facilities, and utilities.

1. Remove excavation support and protection systems to a minimum depth of 48 inches below overlying construction and abandon remainder.
2. Fill voids immediately with approved backfill compacted to density specified in Section 31 20 00 "Earth Moving."
3. Repair or replace, as approved by Architect, adjacent work damaged or displaced by removing excavation support and protection systems.

B. Leave excavation support and protection systems permanently in place.

END OF SECTION 31 50 00
SECTION 316330
CMC FOUNDATIONS

PART 1 - INTRODUCTION

1.01 Purpose

This Specification is to convey the performance criteria and basic requirements for CMC Rigid Inclusions for the referenced project.

1.02 Project Description

The project and associated foundation loads are provided on the Drawings.

1.03 Scope of Work

1.03.1 The work shall include providing all equipment, material, labor, supervision and related services including engineering, design, and installation of CMC Rigid Inclusions for the project described in Section 1.02.

1.03.3 Site clearing, grubbing, preliminary grading and any required excavation required for the execution of the CMC Rigid Inclusion work will be performed by others and is to be excluded from the CMC Rigid Inclusion Contractor’s scope of work.

1.03.4 All work that is to be performed on top of/following the CMC Rigid Inclusion work is to be excluded from the CMC Rigid Inclusion Contractor’s scope of work. These excluded items include but are not limited to grading, fill placement, LTP placement, all work associated with construction of the structure and its foundations, and settlement monitoring.

PART 2 - PERFORMANCE REQUIREMENTS

2.01 Buildings

2.01.1 Bearing Capacity Criteria is noted on the Drawings.

2.01.2 Settlement Criteria is provided in the project Geotechnical Report.
PART 3 - EXECUTION

3.01 Equipment and Procedures

3.01.1 The CMC Rigid Inclusion installation process involves displacement drilling until a specified termination criteria is achieved and casting columns in place with a concrete or grout mix delivered through the center of the hollow tool to the bottom of the hole. The tooling is retracted at a constant rate under low pressure to construct the grout column in a manner that achieves full contact with the surrounding soil along the entire column length. Where necessary, pre-drilling or pre-loosening may be required in order to penetrate through dense soil layers.

3.01.2 Install columns using a displacement tool consisting of a hollow stem probe that is drilled into the ground to the required depth by equipment with high torque capacity and high static downward thrust. The tooling shall displace the soil laterally and produce virtually no spoil or vibration. The grout or concrete shall be delivered to the top of the tooling through the use of a pump capable of furnishing a minimum output of 50 cy/hr.

3.01.3 The machine used for installation of the CMC Rigid Inclusions shall be outfitted with automated measuring equipment (AME) to record critical parameters throughout penetration and grouting, such as depth, speed, torque, crowd pressure, grout pressure, and grout volumes. Specific equipment and procedural details are left to the CMC Rigid Inclusion Contractor performing the work to achieve the specified criteria.

3.02 Testing and Inspection

3.02.1 The Owner will hire a third party Geotechnical Engineer to provide engineering review and site inspection to insure proper performance of the CMC Rigid Inclusion work. This inspection may include, but may not be limited to, the following:

3.02.1.1 Observance of the CMC Rigid Inclusion Contractor’s procedures and execution of work
3.02.1.2 Measurements and calculations of site settlements
3.02.1.3 Confirmation of depth and locations of CMC Rigid Inclusion elements
3.02.1.4 Testing of materials used for the installation of the CMC Rigid Inclusions
3.02.1.5 Quality control/inspection for placement of Working Platform and LTP

3.02.2 Testing to determine compliance with specified acceptance criteria will be performed by the CMC Rigid Inclusion Contractor. A comprehensive testing plan shall be proposed by the CMC Rigid Inclusion Contractor and approved by the Geotechnical Engineer.

PART 4 - CMC RIGID INCLUSION CONTRACTOR QUALIFICATIONS

4.01 The CMC rigid inclusion contractor shall have installed CMC Rigid Inclusions on a minimum of 20 similar projects.
PART 5 - SUBMITTALS

5.01 A summary of experience and evidence of successful performance of equivalent ground improvement projects, under similar geotechnical conditions and meeting performance requirements similar to those for this project.

5.02.1 Design Submittals

5.02.1.1 The following information is to be provided by the CMC Rigid Inclusion Contractor after project award, and before start of work in the field:

5.02.1.2 A summary of experience and evidence of successful performance of equivalent CMC Rigid Inclusion projects, under similar geotechnical conditions and meeting performance requirements similar to those for this project. The list shall demonstrate that the experience requirements of Section 4.0 are met.

5.02.1.3 Detailed drawings that show the CMC Rigid Inclusion work to be performed, indicating the CMC rigid inclusion elements, their dimensions and layout at each structure location. All planned test locations shall be indicated on the drawings. The drawings shall list the specifications related to the materials and construction of the CMC Rigid Inclusions. The drawings shall depict all associated site/civil work that is required in conjunction with the successful execution/performance of the CMC Rigid Inclusion work including but not limited to Working Platforms, spoil management areas, storage/laydown areas, limits of work areas, and LTP details. Cross sections must be provided that show the geometry of the CMC Rigid Inclusion elements with respect to the foundations.

5.02.1.4 Calculations for allowable soil bearing pressures, predicted settlements, stability and bearing capacity for each structure. Calculations shall be sealed by a licensed engineer registered in The Commonwealth of Pennsylvania.

5.02.1.5 A Method Statement for the planned CMC Rigid Inclusion work, describing design, installation, execution of work, tolerances, how obstructions will be overcome, spoils management, and inspection and testing. The Method Statement shall also describe the procedures for site/civil work related to the CMC Rigid Inclusions, such as working platform and LTP construction.

5.03 Submittals following Completion of Work

5.03.1 Upon completion of the CMC Rigid Inclusion work and construction of the LTP, the CMC Rigid Inclusion Contractor shall prepare a report that verifies that the work was performed in accordance with the approved design and that documents the results of any testing performed by the CMC Rigid Inclusion Contractor. The Completion Report shall include the following:

i) Installation records for each element/location
ii) Red-line drawings depicting locations of relocated work/elements

iii) Sealed letter stating that installation records, quality control and material testing records, red line drawings, and all documents relating to the execution of the work have been reviewed and that the CMC Rigid Inclusion work has been performed as specified.

PART 6 EXECUTION

6.01 Equipment and Procedures:

Specific equipment and procedural specifications are left to the Ground Improvement Contractor performing the work to achieve the specified criteria.

6.02 Testing and Inspection

6.02.1 Testing to determine compliance with specified acceptance criteria will be performed by the Geotechnical Engineer after ground improvement.

6.02.2 The comprehensive testing plan shall be proposed by the Ground Improvement Contractor.

6.02.3 The types and number of tests shall be based on the method of ground improvement.

6.02.4 The testing plan is subject to revision upon Contractor review of proposal.

6.02.1 The Ground Improvement Contractor shall hire a third party Geotechnical Engineer approved by the Contractor to provide engineering review and site inspection to insure performance of the ground improvement work. This inspection may include, but may not be limited to, the following:

6.03.1 Observance of the Ground Improvement Contractor’s procedures and actions.
6.03.2 Measurements and calculations of site settlements.
6.03.3 Confirmation of depth of improvement.

6.04 Rework

6.04.1 Areas of the site for which calculated settlement and bearing values do not meet the specified acceptance criteria based on test results, shall be reworked at the Ground Improvement Contractor’s expense.
6.04.2 Reworked areas shall be retested at the Ground Improvement Contractor’s expense to confirm that the acceptance criteria have been met. The same type of test failed to meet criteria shall be the type of test that is repeated after the area is reworked.

6.04.3 The Geotechnical Engineer shall determine the extent of the area to be reworked and the location of the retest.

END OF SECTION 316330
PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:

1. Hot-mix asphalt paving.
2. Asphalt surface treatments.
3. Pavement-marking paint.

B. Related Sections:

1. Division 32 Section "Concrete Paving Joint Sealants" for joint sealants and fillers at paving terminations.

1.03 DEFINITION

A. Hot-Mix Asphalt Paving Terminology: Refer to ASTM D 8 for definitions of terms.

1.04 SUBMITTALS

A. Product Data: For each type of product indicated. Include technical data and tested physical and performance properties.

1. Job-Mix Designs: For each job mix proposed for the Work.

B. Shop Drawings: Indicate pavement markings, lane separations, and defined parking spaces. Indicate, with international symbol of accessibility, spaces allocated for people with disabilities.

C. Material Certificates: For each paving material, from manufacturer.

D. Material Test Reports: For each paving material.

1.05 QUALITY ASSURANCE

A. Installer Qualifications: Imprinted-asphalt manufacturer's authorized installer who is trained and approved for installation of imprinted asphalt required for this Project.
B. Testing Agency Qualifications: Qualified according to ASTM D 3666 for testing indicated.

C. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of any regulatory agency for asphalt paving work.

D. Pre-installation Conference: Conduct conference at Project site.

 1. Review methods and procedures related to hot-mix asphalt paving including, but not limited to, the following:

 a. Review proposed sources of paving materials, including capabilities and location of plant that will manufacture hot-mix asphalt.
 b. Review condition of subgrade and preparatory work.
 c. Review requirements for protecting paving work, including restriction of traffic during installation period and for remainder of construction period.
 d. Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Deliver pavement-marking materials to Project site in original packages with seals unbroken and bearing manufacturer's labels containing brand name and type of material, date of manufacture, and directions for storage.

B. Store pavement-marking materials in a clean, dry, protected location within temperature range required by manufacturer. Protect stored materials from direct sunlight.

1.07 PROJECT CONDITIONS

A. Environmental Limitations: Do not apply asphalt materials if subgrade is wet or excessively damp, if rain is imminent or expected before time required for adequate cure, or if the following conditions are not met:

 1. Tack Coat: Minimum surface temperature of 60 deg F.
 2. Asphalt Base Course: Minimum surface temperature of 40 deg F and rising at time of placement.
 3. Asphalt Surface Course: Minimum surface temperature of 60 deg F at time of placement.

B. Pavement-Marking Paint: Proceed with pavement marking only on clean, dry surfaces and at a minimum ambient or surface temperature of 40 deg F for oil-based materials, and not exceeding 95 deg F.

PART 2 - PRODUCTS

2.01 AGGREGATES
A. General: Use materials and gradations that have performed satisfactorily in previous installations.

B. Coarse Aggregate: ASTM D 692, sound; angular crushed stone, crushed gravel, or cured, crushed blast-furnace slag.

C. Fine Aggregate: ASTM D 1073, sharp-edged natural sand or sand prepared from stone, gravel, cured blast-furnace slag, or combinations thereof.

2.02 ASPHALT MATERIALS

A. Asphalt Binder: AASHTO M 320, of required performance grade.

B. Asphalt Cement: ASTM D 3381 for viscosity-graded material.

C. Tack Coat: ASTM D 977 emulsified asphalt, of suitable grade and consistency for application.

D. Water: Potable.

2.03 AUXILIARY MATERIALS

A. Joint Sealant: ASTM D 6690, Type I, hot-applied, single-component, polymer-modified bituminous sealant.

B. Pavement-Marking Paint: Alkyd-resin type, lead and chromate free, ready mixed, complying with AASHTO M 248; colors complying with FS TT-P-1952.

 1. Color: As indicated.

C. Glass Beads: AASHTO M 247, Type 1.

2.04 MIXES

A. Hot-Mix Asphalt: Dense, hot-laid, hot-mix asphalt plant mixes approved by authorities having jurisdiction and complying with the following requirements:

 1. Provide mixes with a history of satisfactory performance in geographical area where Project is located.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Verify that subgrade is dry and in suitable condition to begin paving.
B. Proof-roll subgrade below pavements with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.

1. Completely proof-roll subgrade in one direction. Limit vehicle speed to 3 mph.
2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, and replace with compacted backfill or fill as directed.

C. Proceed with paving only after unsatisfactory conditions have been corrected.

D. Verify that utilities, traffic loop detectors, and other items requiring a cut and installation beneath the asphalt surface have been completed and that asphalt surface has been repaired flush with adjacent asphalt prior to beginning installation of imprinted asphalt.

3.02 PATCHING

A. Hot-Mix Asphalt Pavement: Saw cut perimeter of patch and excavate existing pavement section to sound base. Excavate rectangular or trapezoidal patches, extending 12 inches into adjacent sound pavement, unless otherwise indicated. Cut excavation faces vertically. Remove excavated material. Recompact existing unbound-aggregate base course to form new subgrade.

B. Tack Coat: Apply uniformly to vertical surfaces abutting or projecting into new, hot-mix asphalt paving at a rate of 0.05 to 0.15 gal./sq. yd.

1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.

C. Patching: Fill excavated pavements with hot-mix asphalt base mix for full thickness of patch and, while still hot, compact flush with adjacent surface.

D. Patching: Partially fill excavated pavements with hot-mix asphalt base mix and, while still hot, compact. Cover asphalt base course with compacted, hot-mix surface layer finished flush with adjacent surfaces.

3.03 REPAIRS

A. Leveling Course: Install and compact leveling course consisting of hot-mix asphalt surface course to level sags and fill depressions deeper than 1 inch in existing pavements.

B. Crack and Joint Filling: Remove existing joint filler material from cracks or joints to a depth of 1/4 inch.

1. Clean cracks and joints in existing hot-mix asphalt pavement.
2. Use hot-applied joint sealant to seal cracks and joints more than 1/4 inch wide. Fill flush with surface of existing pavement and remove excess.

3.04 SURFACE PREPARATION
A. General: Immediately before placing asphalt materials, remove loose and deleterious material from substrate surfaces. Ensure that prepared subgrade is ready to receive paving.

B. Tack Coat: Apply uniformly to surfaces of existing pavement at a rate of 0.05 to 0.15 gal./sq. yd.

1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.

3.05 HOT-MIX ASPHALT PLACING

A. Machine place hot-mix asphalt on prepared surface, spread uniformly, and strike off. Place asphalt mix by hand to areas inaccessible to equipment in a manner that prevents segregation of mix. Place each course to required grade, cross section, and thickness when compacted.

1. Place hot-mix asphalt base course in number of lifts and thicknesses indicated.
2. Spread mix at minimum temperature of 250 deg F.
3. Begin applying mix along centerline of crown for crowned sections and on high side of one-way slopes unless otherwise indicated.
4. Regulate paver machine speed to obtain smooth, continuous surface free of pulls and tears in asphalt-paving mat.

B. Promptly correct surface irregularities in paving course behind paver. Use suitable hand tools to remove excess material forming high spots. Fill depressions with hot-mix asphalt to prevent segregation of mix; use suitable hand tools to smooth surface.

3.06 JOINTS

A. Construct joints to ensure a continuous bond between adjoining paving sections. Construct joints free of depressions, with same texture and smoothness as other sections of hot-mix asphalt course.

1. Clean contact surfaces and apply tack coat to joints.
2. Offset longitudinal joints, in successive courses, a minimum of 6 inches.
3. Offset transverse joints, in successive courses, a minimum of 24 inches.
4. Compact joints as soon as hot-mix asphalt will bear roller weight without excessive displacement.
5. Compact asphalt at joints to a density within 2 percent of specified course density.

3.07 COMPACTION

A. General: Begin compaction as soon as placed hot-mix paving will bear roller weight without excessive displacement. Compact hot-mix paving with hot, hand tampers or with vibratory-plate compactors in areas inaccessible to rollers.

1. Complete compaction before mix temperature cools to 185 deg F.
B. Finish Rolling: Finish roll paved surfaces to remove roller marks while hot-mix asphalt is still warm.

C. Edge Shaping: While surface is being compacted and finished, trim edges of pavement to proper alignment. Bevel edges while asphalt is still hot; compact thoroughly.

D. Repairs: Remove paved areas that are defective or contaminated with foreign materials and replace with fresh, hot-mix asphalt. Compact by rolling to specified density and surface smoothness.

E. Protection: After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened.

F. Erect barricades to protect paving from traffic until mixture has cooled enough not to become marked.

3.08 INSTALLATION TOLERANCES

A. Pavement Thickness: Compact each course to produce the thickness indicated within the following tolerances:
 1. Base Course: Plus or minus 1/2 inch.
 2. Surface Course: Plus 1/4 inch, no minus.

B. Pavement Surface Smoothness: Compact each course to produce a surface smoothness within the following tolerances as determined by using a 10-foot straightedge applied transversely or longitudinally to paved areas:
 1. Base Course: 1/4 inch.
 2. Surface Course: 1/8 inch.

3.09 PAVEMENT MARKING

A. Do not apply pavement-marking paint until layout, colors, and placement have been verified with Architect.

B. Allow paving to age for 30 days before starting pavement marking.

C. Sweep and clean surface to eliminate loose material and dust.

D. Apply paint with mechanical equipment to produce pavement markings, of dimensions indicated, with uniform, straight edges. Apply at manufacturer's recommended rates to provide a minimum wet film thickness of 15 mils.

3.10 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Thickness: In-place compacted thickness of hot-mix asphalt courses will be determined according to ASTM D 3549.

C. Surface Smoothness: Finished surface of each hot-mix asphalt course will be tested for compliance with smoothness tolerances.

D. In-Place Density: Testing agency will take samples of uncompacted paving mixtures and compacted pavement according to ASTM D 979.

1. In-place density of compacted pavement will be determined by testing core samples according to ASTM D 1188 or ASTM D 2726.

 a. One core sample will be taken for every 1000 sq. yd. or less of installed pavement, with no fewer than 3 cores taken.

 b. Field density of in-place compacted pavement may also be determined by nuclear method according to ASTM D 2950 and correlated with ASTM D 1188 or ASTM D 2726.

E. Replace and compact hot-mix asphalt where core tests were taken.

F. Remove and replace or install additional hot-mix asphalt where test results or measurements indicate that it does not comply with specified requirements.

3.11 DISPOSAL

A. Except for material indicated to be recycled, remove excavated materials from Project site and legally dispose of them in an EPA-approved landfill.

END OF SECTION 32 12 16
SECTION 32 13 13 - CONCRETE PAVING

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. This Section includes exterior cement concrete pavement for the following:

1. Walkways.

B. Related Sections include the following:

1. Division 32 Section "Pavement Joint Sealants" for joint sealants of joints in concrete pavement and at isolation joints of concrete pavement with adjacent construction.

1.03 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash and other pozzolans, and ground granulated blast-furnace slag.

1.04 SUBMITTALS

A. Product Data: For each type of manufactured material and product indicated.

B. Design Mixtures: For each concrete pavement mixture. Include alternate mixture designs when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

C. Material Test Reports: From a qualified testing agency indicating and interpreting test results for compliance of the following with requirements indicated, based on comprehensive testing of current materials:

D. Material Certificates: Signed by manufacturers certifying that each of the following materials complies with requirements:

1. Cementitious materials.
2. Steel reinforcement and reinforcement accessories.
3. Admixtures.
4. Bonding agent or epoxy adhesive.
E. Field quality-control test reports.
F. Minutes of preinstallation conference.

1.05 QUALITY ASSURANCE

A. Manufacturer Qualifications: Manufacturer of ready-mixed concrete products who complies with ASTM C 94/C 94M requirements for production facilities and equipment.
 1. Manufacturer certified according to NRMCA’s "Certification of Ready Mixed Concrete Production Facilities."

B. Testing Agency Qualifications: An independent agency qualified according to ASTM C 1077 and ASTM E 329 for testing indicated, as documented according to ASTM E 548.
 1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-01 or an equivalent certification program.

D. Concrete Testing Service: Engage a qualified independent testing agency to perform material evaluation tests and to design concrete mixtures.

E. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination."
 1. Before submitting design mixtures, review concrete pavement mixture design and examine procedures for ensuring quality of concrete materials and concrete pavement construction practices.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 1. Products: Subject to compliance with requirements, provide one of the products specified.
 2. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.

2.02 FORMS

A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, smooth exposed surfaces.
1. Use flexible or curved forms for curves with a radius 100 feet or less.

B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.

2.03 STEEL REINFORCEMENT (IF REQUIRED)

A. Reinforcing Bars: ASTM A 615/A 615M, Grade 60; deformed.

B. Steel Bar Mats: ASTM A 184/A 184M; with ASTM A 615/A 615M, Grade 60, deformed bars; assembled with clips.

C. Joint Dowel Bars: Plain steel bars, ASTM A 615/A 615M, Grade 60, Cut bars true to length with ends square and free of burrs.

2.04 CONCRETE MATERIALS

A. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source throughout the Project:

1. Portland Cement: ASTM C 150, Type I. Supplement with the following:
 a. Fly Ash: ASTM C 618, Class F.
 b. Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.

B. Normal-Weight Aggregates: ASTM C 33, coarse aggregate, uniformly graded. Provide aggregates from a single source with documented service record data of at least 10 years' satisfactory service in similar pavement applications and service conditions using similar aggregates and cementitious materials.

2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.

C. Exposed Aggregate: Selected, hard, and durable; washed; free of materials with deleterious reactivity to cement or that cause staining; from a single source, with gap-graded coarse aggregate as follows:

1. Aggregate Sizes: 3/4 to 1 inch nominal.

D. Water: ASTM C 94/C 94M.

F. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material.
2.05 CURING MATERIALS

A. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. dry.

B. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.

C. Water: Potable.

D. Evaporation Retarder: Waterborne, monomolecular film forming; manufactured for application to fresh concrete.

E. Clear Waterborne Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B.

2.06 RELATED MATERIALS

B. Color Pigment: ASTM C 979, synthetic mineral-oxide pigments or colored water-reducing admixtures; color stable, nonfading, and resistant to lime and other alkalis.

C. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.

D. Epoxy Bonding Adhesive: ASTM C 881, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class suitable for application temperature and of grade to requirements, and as follows:

2.07 PAVEMENT MARKINGS

A. Pavement-Marking Paint: Alkyd-resin type, lead and chromate free, ready mixed, complying with AASHTO M 248, Type: as required.

 1. Color: As indicated.

2.08 CONCRETE MIXTURES

A. Prepare design mixtures, proportioned according to ACI 301, for each type and strength of normal-weight concrete determined by either laboratory trial mixes or field experience.

 1. Use a qualified independent testing agency for preparing and reporting proposed concrete mixture designs for the trial batch method.

B. Proportion mixtures to provide normal-weight concrete with the following properties:

 2. Maximum Water-Cementitious Materials Ratio at Point of Placement: 0.50.
 3. Slump Limit: 8 inches, plus or minus 1 inch.
C. Add air-entraining admixture at manufacturer's prescribed rate to result in normal-weight concrete at point of placement having an air content as follows:
 1. Air Content: 6 percent plus or minus 1.5 percent for 1-inch nominal maximum aggregate size.

D. Chemical Admixtures: Use admixtures according to manufacturer's written instructions.

E. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than portland cement according to ACI 301 requirements as follows:
 1. Combined Fly Ash or Pozzolan, and Ground Granulated Blast-Furnace Slag: 50 percent, with fly ash or pozzolan not exceeding 25 percent.

2.09 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Furnish batch certificates for each batch discharged and used in the Work.
 1. When air temperature is between 85 deg F and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine exposed subgrades and subbase surfaces for compliance with requirements for dimensional, grading, and elevation tolerances.

B. Proof-roll prepared subbase surface below concrete pavements with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding.
 1. Completely proof-roll subbase in one direction. Limit vehicle speed to 3 mph.
 2. Subbase with soft spots and areas of pumping or rutting exceeding depth of 1/2 inch require correction.

C. Proceed with concrete pavement operations only after nonconforming conditions have been corrected and subgrade is ready to receive pavement.

3.02 PREPARATION

A. Remove loose material from compacted subbase surface immediately before placing concrete.

3.03 EDGE FORMS AND SCREED CONSTRUCTION
A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides for pavement to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.

B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

3.04 STEEL REINFORCEMENT

A. General: Comply with CRSI’s "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.

B. Clean reinforcement of loose rust and mill scale, earth, ice, or other bond-reducing materials.

C. Arrange, space, and securely tie bars and bar supports to hold reinforcement in position during concrete placement. Maintain minimum cover to reinforcement.

D. Install welded wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh, and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction.

3.05 JOINTS

A. General: Form construction, isolation, and contraction joints and tool edgings true to line with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline, unless otherwise indicated.

1. When joining existing pavement, place transverse joints to align with previously placed joints, unless otherwise indicated.

B. Construction Joints: Set construction joints at side and end terminations of pavement and at locations where pavement operations are stopped for more than one-half hour unless pavement terminates at isolation joints.

1. Continue steel reinforcement across construction joints, unless otherwise indicated. Do not continue reinforcement through sides of pavement strips, unless otherwise indicated. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt-coat one-half of dowel length to prevent concrete bonding to one side of joint.

C. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows to match jointing of existing adjacent concrete pavement:

1. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before developing random contraction cracks.
2. **Doweled Contraction Joints:** Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt coat one-half of dowel length to prevent concrete bonding to one side of joint.

D. **Edging:** Tool edges of pavement, gutters, curbs, and joints in concrete after initial floating with an edging tool to a 1/4-inch radius. Repeat tooling of edges after applying surface finishes. Eliminate tool marks on concrete surfaces.

3.06 CONCRETE PLACEMENT

A. **Inspection:** Before placing concrete, inspect and complete formwork installation, steel reinforcement, and items to be embedded or cast in. Notify other trades to permit installation of their work.

B. Remove snow, ice, or frost from subbase surface and reinforcement before placing concrete. Do not place concrete on frozen surfaces.

C. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.

D. Comply with ACI 301 requirements for measuring, mixing, transporting, and placing concrete.

E. Do not add water to concrete during delivery or at Project site.

F. Do not add water to fresh concrete after testing.

G. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.

H. Consolidate concrete according to ACI 301 by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping.

1. Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from joint assemblies, reinforcement, or side forms. Use only square-faced shovels for hand spreading and consolidation. Consolidate with care to prevent dislocating reinforcement, dowels, and joint devices.

I. Place concrete in two operations; strike off initial pour for entire width of placement and to the required depth below finish surface. Lay welded wire fabric or fabricated bar mats immediately in final position. Place top layer of concrete, strike off, and screed.

1. Remove and replace concrete that has been placed for more than 15 minutes without being covered by top layer, or use bonding agent if approved by Architect.

J. Screed pavement surfaces with a straightedge and strike off.
K. Commence initial floating using bull floats or darbies to impart an open textured and uniform surface plane before excess moisture or bleed water appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.

L. Slip-Form Pavers: When automatic machine placement is used for pavement, submit revised mix design and laboratory test results that meet or exceed requirements. Produce pavement to required thickness, lines, grades, finish, and jointing as required for formed pavement.

1. Compact subbase and prepare subgrade of sufficient width to prevent displacement of paver machine during operations.

M. When adjoining pavement lanes are placed in separate pours, do not operate equipment on concrete until pavement has attained 85 percent of its 28-day compressive strength.

N. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.

1. When air temperature has fallen to or is expected to fall below 40 deg F, uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F and not more than 80 deg F at point of placement.
2. Do not use frozen materials or materials containing ice or snow.
3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mix designs.

O. Hot-Weather Placement: Comply with ACI 301 and as follows when hot-weather conditions exist:

1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
2. Cover steel reinforcement with water-soaked burlap so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.

3.07 FLOAT FINISHING

A. General: Do not add water to concrete surfaces during finishing operations.

B. Float Finish: Begin the second floating operation when bleed-water sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats, or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.

1. Medium-to-Fine-Textured Broom Finish: Draw a soft bristle broom across float-finished concrete surface perpendicular to line of traffic to provide a uniform, fine-line texture.
3.08 CONCRETE PROTECTION AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.

B. Comply with ACI 306.1 for cold-weather protection.

C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.

D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.

E. Curing Methods: Cure concrete by moisture curing, moisture-retaining-cover curing, curing compound, or a combination of these as follows:

1. Moist Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 a. Water.

2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Immediately repair any holes or tears during curing period using cover material and waterproof tape.

3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.

3.09 PAVEMENT TOLERANCES

A. Comply with tolerances of ACI 117 and as follows:

1. Elevation: 1/4 inch.
3. Surface: Gap below 10-foot-long, unleveled straightedge not to exceed 1/4 inch.
4. Lateral Alignment and Spacing of Tie Bars and Dowels: 1 inch.
5. Vertical Alignment of Tie Bars and Dowels: 1/4 inch.
6. Alignment of Tie-Bar End Relative to Line Perpendicular to Pavement Edge: 1/2 inch.
7. Alignment of Dowel-Bar End Relative to Line Perpendicular to Pavement Edge: Length of dowel 1/4 inch per 12 inches.
8. Joint Spacing: 3 inches.
3.10 PAVEMENT MARKING

A. Do not apply pavement-marking paint until layout, colors, and placement have been verified with Architect.

B. Allow concrete pavement to cure for 28 days and be dry before starting pavement marking.

C. Sweep and clean surface to eliminate loose material and dust.

D. Apply paint with mechanical equipment to produce pavement markings of dimensions indicated with uniform, straight edges. Apply at manufacturer's recommended rates to provide a minimum wet film thickness of 15 mils.

3.11 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified independent testing and inspecting agency to perform field tests and inspections and prepare test reports.

B. Testing Services: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:

1. Testing Frequency: Obtain at least 1 composite sample for each 100 cu. yd. or fraction thereof of each concrete mix placed each day.
 a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.

2. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mix. Perform additional tests when concrete consistency appears to change.

3. Air Content: ASTM C 231, pressure method; one test for each composite sample, but not less than one test for each day's pour of each concrete mix.

4. Concrete Temperature: ASTM C 1064; one test hourly when air temperature is 40 deg F and below and when 80 deg F and above, and one test for each composite sample.

5. Compression Test Specimens: ASTM C 31/C 31M; cast and laboratory cure one set of three standard cylinder specimens for each composite sample.

6. Compressive-Strength Tests: ASTM C 39/C 39M; test 1 specimen at 7 days and 2 specimens at 28 days.
 a. A compressive-strength test shall be the average compressive strength from 2 specimens obtained from same composite sample and tested at 28 days.

C. Strength of each concrete mix will be satisfactory if average of any 3 consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.
D. Nondestructive Testing: Impact hammer, sonoscopy, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.

E. Additional Tests: Testing and inspecting agency shall make additional tests at the contractor’s expense, of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect.

F. Remove and replace concrete pavement where test results indicate that it does not comply with specified requirements.

G. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.12 REPAIRS AND PROTECTION

A. Remove and replace concrete pavement that is broken, damaged, or defective or that does not comply with requirements in this Section.

B. Drill test cores, where directed by Architect, when necessary to determine magnitude of cracks or defective areas. Fill drilled core holes in satisfactory pavement areas with portland cement concrete bonded to pavement with epoxy adhesive.

C. Protect concrete from damage. Exclude traffic from pavement for at least 14 days after placement. When construction traffic is permitted, maintain pavement as clean as possible by removing surface stains and spillage of materials as they occur.

D. Maintain concrete pavement free of stains, discoloration, dirt, and other foreign material. Sweep concrete pavement not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION 32 13 13
SECTION 32 13 14 - CONCRETE CURBING

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Construct City of Philadelphia Type B concrete curb in accordance with City of Philadelphia, Department of Streets Drawing No. SC0102, depressed, curved, or straight, at locations indicated on the drawings or as directed by the Engineer.

1.02 REFERENCES

A. PennDOT Specifications Publication 408 (latest revision).

PART 2 - PRODUCTS

2.01 MATERIALS

A. Concrete: 4000 psi in accordance with Section 704, PennDOT 408.

B. Expansion Joint Material: Section 705.1, PennDOT 408.

C. Curing Compound: Section 711.2(a), PennDOT 408.

PART 3 - EXECUTION

3.01 PROCEDURE

A. Section 630.3, PennDOT 408, with the following additions:

1. Concrete may be placed in the forms in one lift provided there are sufficient personnel and equipment on the project to thoroughly consolidate the concrete.

2. Curing compound shall be applied to the top of the curb before any marked dehydration of the concrete surface occurs. The forms shall be removed within 24 hours and all exposed concrete surfaces cured.

3. When directed, the Contractor shall provide additional protection by covering the curb with salt hay at his expense.

END OF SECTION 32 13 14
SECTION 32 13 73 – PAVEMENT JOINT SEALANTS

PART 1 - GENERAL

1.01 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.02 SUMMARY
 A. This Section includes the following:
 1. Expansion and contraction joints within cement concrete pavement.
 B. Related Sections include the following:
 1. None.

1.03 SUBMITTALS
 A. Product Data: For each joint-sealant product indicated.
 B. Samples for Verification: For each type and color of joint sealant required. Install joint-sealant samples in 1/2-inch wide joints formed between two 6-inch long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.
 C. Product Certificates: For each type of joint sealant and accessory, signed by product manufacturer.

1.04 QUALITY ASSURANCE
 A. Installer Qualifications: An employer of workers trained and experienced in installation of joint sealants.
 B. Source Limitations: Obtain each type of joint sealant through one source from a single manufacturer.
 1. Submit joint preparation data that are based on previous testing of current sealant products for adhesion to, and compatibility with, joint substrates and other materials matching those submitted.

1.05 DELIVERY, STORAGE, AND HANDLING
A. Deliver materials to Project site in original unopened containers or bundles with labels indicating manufacturer, product name and designation, color, expiration date, pot life, curing time, and mixing instructions for multi-component materials.

B. Store and handle materials to comply with manufacturer's written instructions to prevent their deterioration or damage due to moisture, high or low temperatures, contaminants, or other causes.

1.06 PROJECT CONDITIONS

A. Do not proceed with installation of joint sealants under the following conditions:
 1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer.
 2. When joint substrates are wet or covered with frost.
 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, products listed in other Part 2 articles.

2.02 MATERIALS, GENERAL

A. Compatibility: Provide joint sealants, backing materials, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer based on testing and field experience.

B. Colors of Exposed Joint Sealants: As selected by Owner’s Representative from manufacturer's full range. Color selected may vary to match different selected pavements, i.e. concrete, exposed aggregate concrete or bluestone paving.

2.03 COLD-APPLIED JOINT SEALANTS

A. Provide a premium-grade, high-performance, moisture-cured, 1-component, polyurethane-based, non-sag elastomeric sealant meeting federal specification TT-S-00230C, Type II, Class A. Meets ASTM C-920, Type S, Grade NS, Class 25, use T, NT, O, M, G, I; Canadian standard CAN/CGB 19.13-M87
1. Provide one of the following Available Products, or an Owners Representatives accepted equal:
 a. Sika Corp. Sikaflex 1A
 b. Sonneborn Sonolastic SL1

2. Color to be selected by Owners Representatives from samples provided by the Contractor.

2.04 JOINT-SEALANT BACKER MATERIALS

A. General: Provide joint-sealant backer materials that are non-staining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by joint-sealant manufacturer based on field experience and laboratory testing.

B. Round Backer Rods for Cold-Applied Sealants: ASTM D 5249, Type 3, of diameter and density required to control sealant depth and prevent bottom-side adhesion of sealant.

2.05 PRIMERS

A. Primers: Product recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.

 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 PREPARATION

A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions.

B. Joint Priming: Prime joint substrates where indicated or where recommended in writing by joint-sealant manufacturer, based on preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

3.03 INSTALLATION OF JOINT SEALANTS

A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.
B. Install joint sealants to all work prior to the area being made available for public use to prevent smearing or tracking of un-cured sealants.

C. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.

D. Install backer materials of type indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 1. Do not leave gaps between ends of backer materials.
 2. Do not stretch, twist, puncture, or tear backer materials.
 3. Remove absorbent backer materials that have become wet before sealant application and replace them with dry materials.

E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 1. Place sealants so they directly contact and fully wet joint substrates.
 2. Completely fill recesses provided for each joint configuration.
 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

F. Tooling of Non-sag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 1. Remove excess sealants from surfaces adjacent to joint.
 2. Use tooling agents that are approved in writing by joint-sealant manufacturer and that do not discolor sealants or adjacent surfaces.

G. Provide joint configuration to comply with joint-sealant manufacturer's written instructions, unless otherwise indicated.

H. Provide recessed joint configuration for silicone sealants of recess depth and at locations indicated.

3.04 CLEANING

A. Clean off excess sealants or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved by manufacturers of joint sealants and of products in which joints occur.
3.05 PROTECTION

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately and replace with joint sealant so installations with repaired areas are indistinguishable from the original work.

END OF SECTION 32 13 73
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. City of Philadelphia and PennDOT standard specifications. The most stringent requirements shall be considered the base requirements.

1.2 SUMMARY

A. Section includes painted markings applied to asphalt and concrete pavement.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For pavement markings.

(1) Indicate pavement markings, colors, lane separations, defined parking spaces, and dimensions to adjacent work.

(2) Indicate, with international symbol of accessibility, spaces allocated for people with disabilities.

1.4 QUALITY ASSURANCE

A. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of Philadelphia Streets Department of PennDOT for pavement-marking work.

(1) Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.

1.5 FIELD CONDITIONS

A. Environmental Limitations: Proceed with pavement marking only on clean, dry surfaces and at a minimum ambient or surface temperature of 40 deg F for alkyd materials and 55 deg F for water-based materials, and not exceeding 95 deg F (35 deg C).

PART 2 - PRODUCTS
2.1 MANUFACTURERS
 A. Aexcel Inc.
 B. Benjamin Moore & Co.
 C. Color Wheel Paints & Coatings
 D. Columbia Paint & Coatings
 E. Conco Paints
 F. Coronado Paint; Benjamin Moore Company
 G. Diamond Vogel Paints
 H. Dunn-Edwards Corporation
 I. Ennis Traffic Safety Solutions, Inc
 J. Frazee Paint; Comex Group
 K. General Paint
 L. Kwal Paint
 M. M.A.B. Paints
 N. McCormick Paints
 O. Miller Paint Co.
 P. Parker Paint; Comex Group
 Q. PPG Industries
 R. Pratt & Lambert
 S. Rodda Paint Co
 T. Rohm and Haas Company
 U. Scott Paint
 V. Sherwin-Williams Company (The)

2.2 PAVEMENT-MARKING PAINT
 A. Pavement-Marking Paint: Alkyd-resin type, lead and chromate free, ready mixed,
 complying with AASHTO M 248, [Type N] [Type F] [Type S]; colors complying
 with FS TT-P-1952.
 (1) Color: White, yellow and blue.
 B. Pavement-Marking Paint: MPI #32, alkyd traffic-marking paint.
C. Color: White, yellow and blue.

D. Pavement-Marking Paint: Latex, waterborne emulsion, lead and chromate free, ready mixed, complying with FS TT-P-1952, Type II, with drying time of less than 45 minutes.

(1) Color: White, yellow and blue.

E. Pavement-Marking Paint: MPI #97, latex traffic-marking paint.

(1) Color: White, yellow and blue.

F. Glass Beads: AASHTO M 247, Type 1 made of 100 percent recycled glass.

(1) Roundness: Minimum 75 percent true spheres by weight.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that pavement is dry and in suitable condition to begin pavement marking according to manufacturer's written instructions.

B. Proceed with pavement marking only after unsatisfactory conditions have been corrected.

3.2 PAVEMENT MARKING

A. Do not apply pavement-marking paint until layout, colors, and placement have been verified with Landscape Architect.

B. Sweep and clean surface to eliminate loose material and dust.

C. Apply paint with mechanical equipment to produce pavement markings, of dimensions indicated, with uniform, straight edges. Apply at manufacturer's recommended rates to provide a minimum wet film thickness of 15 mils (0.4 mm).

(1) Apply graphic symbols and lettering with paint-resistant, die-cut stencils, firmly secured to pavement. Mask an extended area beyond edges of each stencil to prevent paint application beyond the stencil. Apply paint so that it cannot run beneath the stencil.

(2) Broadcast glass beads uniformly into wet markings at a rate of 7 lb/gal. (0.84 kg/L).

D. Apply Minimum of three coats.

3.3 PROTECTING AND CLEANING

A. Protect pavement markings from damage and wear during remainder of construction
period.

B. Clean spillage and soiling from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.

END OF SECTION 321723
SECTION 32 91 13 - SOIL PREPARATION

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section includes planting soils specified by composition of the mixes:

1. Planting Soil Mix for lawn areas.
2. Planting Soil Mix for landscaped areas.

B. Related Requirements:

1. Section 311000 "Site Clearing" for topsoil stripping and stockpiling.
2. Section 329200 "Turf and Grasses" for installation of lawn seed or sod.
3. Section 329300 "Plants" for installation of trees, shrubs, and groundcover.

1.03 REFERENCES

B. USDA: United States Department of Agriculture: Texture Triangle Classification.

1.04 DEFINITIONS

B. Backfill: The earth used to replace or the act of replacing earth in an excavation. This can be amended or unamended soil as indicated.

C. CEC: Cation exchange capacity.

D. Compost: The product resulting from the controlled biological decomposition of organic material that has been sanitized through the generation of heat and stabilized to the point that it is beneficial to plant growth.

E. Duff Layer: A surface layer of soil, typical of forested areas, that is composed of mostly decayed leaves, twigs, and detritus.
F. Imported Soil: Soil that is transported to Project site for use.

G. Manufactured Soil: Soil produced by blending soils, sand, stabilized organic soil amendments, and other materials to produce topsoil or planting soil.

H. NAPT: North American Proficiency Testing Program. An SSSA program to assist soil-, plant-, and water-testing laboratories through interlaboratory sample exchanges and statistical evaluation of analytical data.

I. Organic Matter: The total of organic materials in soil exclusive of undecayed plant and animal tissues, their partial decomposition products, and the soil biomass; also called "humus" or "soil organic matter."

J. Planting Soil: Existing, on-site soil; imported soil; or manufactured soil that has been modified as specified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth.

L. SSSA: Soil Science Society of America.

M. Subgrade: Surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.

N. Subsoil: Soil beneath the level of subgrade; soil beneath the topsoil layers of a naturally occurring soil profile, typified by less than 1 percent organic matter and few soil organisms.

O. Surface Soil: Soil that is present at the top layer of the existing soil profile. In undisturbed areas, surface soil is typically called "topsoil"; but in disturbed areas such as urban environments, the surface soil can be subsoil.

P. USCC: U.S. Composting Council.

1.05 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Topsoil:
 a. Provide source of topsoil.
 b. Provide written report of topsoil analysis results and recommendations as outlined in Section 1.9 Testing Requirements.

2. Compost:
 a. Provide source and composition of compost.
 b. Provide written report of compost analysis, including pH and organic content.
3. Planting Soil Mix:
 a. Provide written report of mix analysis.

4. Soil Amendments:
 a. Include recommendations or application and use.

1.06 INFORMATIONAL SUBMITTALS
A. Qualification Data: For each testing agency.
B. Field quality-control reports.

1.07 QUALITY ASSURANCE
A. Testing Agency Qualifications: An independent, state-operated, or university-operated laboratory; experienced in soil science, soil testing, and plant nutrition; with the experience and capability to conduct the testing indicated; and that specializes in types of tests to be performed.

1.08 SOIL-SAMPLING REQUIREMENTS
A. General: Extract soil samples according to requirements in this article.
B. Sample Collection and Labeling: Have samples taken and labeled by Contractor or Soil Scientist in presence of Engineer or Landscape Architect, under the direction of the testing agency.
 1. Number and Location of Samples: Minimum of three representative soil samples where directed by Engineer or Landscape Architect for each soil to be used or amended for landscaping purposes.
 2. Procedures and Depth of Samples: According to USDA-NRCS's "Field Book for Describing and Sampling Soils."
 3. Division of Samples: Split each sample into two, equal parts. Send half to the testing agency and half to Owner for its records.
 4. Labeling: Label each sample with the date, location keyed to a site plan or other location system, visible soil condition, and sampling depth.

1.09 TESTING REQUIREMENTS
A. General: Perform tests on topsoil samples according to requirements in this article.
B. Physical Testing:
 1. Soil Texture: Soil-particle, size-distribution analysis by one of the following methods according to SSSA's "Methods of Soil Analysis - Part I-Physical and Mineralogical Methods".
a. Sieving Method: Report sand-gradation percentages for very coarse, coarse, medium, fine, and very fine sand; and fragment-gradation (gravel) percentages for fine, medium, and coarse fragments; according to USDA sand and fragment sizes.

2. Total Porosity: Calculate using particle density and bulk density according to SSSA's "Methods of Soil Analysis - Part 1-Physical and Mineralogical Methods."

C. Chemical Testing:

1. CEC: Analysis by sodium saturation at pH 7 according to SSSA's "Methods of Soil Analysis - Part 3- Chemical Methods."

2. Clay Mineralogy: Analysis and estimated percentage of expandable clay minerals using CEC by ammonium saturation at pH 7 according to SSSA's "Methods of Soil Analysis - Part 1- Physical and Mineralogical Methods."

3. Phytotoxicity: Test for plant-available concentrations of phytotoxic minerals including aluminum, arsenic, barium, cadmium, chlorides, chromium, cobalt, copper, lead, lithium, mercury, nickel, selenium, silver, sodium, strontium, tin, titanium, vanadium, and zinc.

D. Fertility Testing: Soil-fertility analysis according to standard laboratory protocol of SSSA NAPT NEC-67, including the following:

1. Percentage of organic matter.
2. CEC, calcium percent of CEC, and magnesium percent of CEC.
3. Soil reaction (acidity/alkalinity pH value).
4. Buffered acidity or alkalinity.
6. Phosphorous ppm.
7. Potassium ppm.
8. Manganese ppm.
10. Zinc ppm.
11. Zinc availability ppm.
12. Copper ppm.
13. Sodium ppm and sodium absorption ratio.
15. Presence and quantities of problem materials including salts and metals cited in the Standard protocol. If such problem materials are present, provide additional recommendations for corrective action.
16. Other deleterious materials, including their characteristics and content of each.

F. Recommendations: Based on the test results, state recommendations for soil treatments and soil amendments to be incorporated to produce satisfactory planting soil suitable for healthy, viable plants indicated. Include, at a minimum, recommendations for nitrogen, phosphorous, and potassium fertilization, and for micronutrients.

1. Fertilizers and Soil Amendment Rates: State recommendations in weight per 1000 sq. ft. for 6-inch depth of soil.

2. Soil Reaction: State the recommended liming rates for raising pH or sulfur for lowering pH according to the buffered acidity or buffered alkalinity in weight per 1000 sq. ft. for 6-inch depth of soil.

1.10 DELIVERY, STORAGE, AND HANDLING

A. Packaged Materials:

1. Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and compliance with state and Federal laws if applicable.

2. Store packaged material with protection from weather or other conditions which would damage or impair the effectiveness of the product.

3. Packaged material which has become wet, moldy, or otherwise damaged in transit or storage will be rejected.

B. Bulk Materials:

1. Store bulk materials in areas as indicated on the plans or as directed by the Engineer/Landscape Architect. Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas, plants, or within the drip line of existing trees.

2. Provide erosion-control measures to prevent erosion or displacement of bulk materials, discharge of soil-bearing water runoff, and airborne dust reaching adjacent properties, water conveyance systems, or walkways.

3. Do not move or handle materials when they are wet or frozen.

4. Accompany each delivery of bulk fertilizers and soil amendments with appropriate certificates.

PART 2 - PRODUCTS

2.01 PLANTING SOILS SPECIFIED BY COMPOSITION

A. General: Soil amendments, fertilizers, and rates of application specified in this article are guidelines that may need revision based on testing laboratory's recommendations after preconstruction soil analyses are performed.

B. Definition: Per ASTM D 5268. Topsoil shall be acceptable friable loam that is reasonably free of subsoils, clay lumps, litter, roots or other plant materials, stones larger than 1” in any direction, and other foreign materials.
C. Topsoil for Planting Soil Mixes:

1. Sources: Take imported, unamended soil from sources that are naturally well-drained sites where topsoil occurs at least 4 inches deep, not from agricultural land, bogs, or marshes; and that do not contain undesirable organisms; disease-causing plant pathogens; or obnoxious weeds and invasive plants including, but not limited to, quackgrass, johnsongrass, poison ivy, nutsedge, nimblewill, Canada thistle, bindweed, bentgrass, wild garlic, ground ivy, perennial sorrel, and bromegrass.

2. Topsoil shall be fertile, friable natural loam capable of sustaining vigorous plant growth. Furnished topsoil shall meet the following grading analysis:

 a. Particle size

Sieve	Minimum Percent Passing
2”	100
No. 4	75
No. 10	60

 b. Sand, silt and clay material passing the No. 10 sieve shall be present within the following ranges:

 | Minimum Percent | Maximum Percent | |
|---|---|---|
 | Sand | 30 | 50 |
 | Silt | 10 | 30 |
 | Clay | 20 | 50 |

3. Additional Properties of Imported Soil before Amending: Soil reaction of pH 6 to 7 and minimum of 4 percent organic-matter content, friable, and with sufficient structure to give good tilth and aeration.

4. The topsoil shall be free from subsoil, stones larger than one inch, clods of hard earth, sod, plants or roots, sticks or other extraneous materials. It shall contain no toxic materials. Topsoil from swampy areas or areas of standing water will not be permitted. Do not deliver topsoil in either a frozen or muddy condition.

5. Limestone: Ground limestone shall have a minimum of 85% total carbonates and a minimum of 50% total calcium oxides. At least 90% of it shall be able to pass a No. 20 sieve and at least 50% to pass a No. 100 sieve.

6. Fertilizers: Fertilizer shall be standard commercial fertilizer conforming to the requirements of the Pennsylvania Soil Conditioner and Plant Growth Substance Act of December 1, 1977, P.L. 258, No. 86 (3 P.S. 68.2), as amended and any other applicable State and Federal laws. Quantities as per soil analysis.

 a. Use 20-10-5 (10 gram tablets) slow release, plus iron supplement as required.
 b. Additives: Add in the amount and manner prescribed by the soil analysis.
 c. Organic Matter: On dry weight basis 90% or better pH factor 3.5 - 5.5.
 d. Porous Ceramics: Profile, Isolite or Axis.

D. PLANTING SOIL MIX for lawn and landscaped areas.

1. Planting Soil Mix shall be topsoil amended per the results of the soil analysis to have the following properties. Test the mixture to confirm it meets the specified requirements before placing.
Text of soil shall conform to the classification within the USDA triangle for Sandy Loam or Loamy Sand. Planting Soil Mix shall have the following particle size distribution, as determined by pipette method in compliance with ASTM F-1632:

- Sand: 40% to 60% (0.05mm to 2 mm)
- Silt: 20% to 30% (0.002mm to 0.05mm)
- Clay: 15% to 25% (less than 0.002 mm)

b. Organic content of Planting Soil Mix shall have a range of 2% to 10% by weight as determined by the appropriate testing method listed herein. Adjust organic content of Planting Mix prior to placing the soil and finished grading.

c. The pH of the Planting Soil Mix shall have a range of 6.0 to 7.0. Extremes shall be avoided.

d. The Planting Soil Mix shall also be amended with fertilizer and lime as recommended by the Soil Test Report and to meet requirements.

2.02 INORGANIC SOIL AMENDMENTS

A. Lime: ASTM C 602, agricultural liming material containing a minimum of 85 percent calcium and magnesium carbonates.

1. Form: Provide lime in form of pelletized limestone.
2. Rate: Apply at a rate as recommended in the Soil Test Reports. Apply mechanically at least two weeks prior to planting and fertilizer applications. Incorporate into full depth of planting soil prior to finished grading.

B. Sulfur: Granular, biodegradable, and containing a minimum of 90 percent elemental sulfur, with a minimum of 99 percent passing through a No. 6 sieve and a maximum of 10 percent passing through a No. 40 sieve.

C. Iron Sulfate: Granulated ferrous sulfate containing a minimum of 20 percent iron and 10 percent sulfur.

D. Perlite: Horticultural perlite, soil amendment grade.

E. Sand: Clean, washed, natural or manufactured, free of toxic materials, and according to ASTM C 33/C 33M.

2.03 ORGANIC SOIL AMENDMENTS

A. Compost: A commercially manufactured humus product that is dark, crumbly, fine textured, fully composted decayed organic matter specifically manufactured for use as a soil amendment to promote vegetative growth. Organic amendments shall be well-aged, and contain no visible admixture or refuse or other physical contaminants nor any material toxic to plant growth.

1. Feedstock: Limited to leaves.
2. Reaction: pH of the finished composted organic matter near 7.0, within the range of 6.0 to 8.0.
3. Soluble-Salt Concentration: Less than 4 dS/m.
4. Moisture Content: 35 to 55 percent by weight.
5. Organic-Matter Content: 40% minimum on a dry weight basis as determined by loss on ignition.
6. Particle Size: 100 percent passing through a ½”-inch screen.
8. Degree of maturity: Composted organic matter shall be considered stable as determined by the Solvita compost maturity index. Compost must achieve a maturity index of 6 or better, indicating a curing active compost.
9. Ammonium content: Ammonium shall be less than 400 ppm on a dry-weight basis.

2.04 FERTILIZERS

A. Commercial Fertilizer: Complete slow-release commercial-grade complete fertilizer of neutral character. 50 percent of the fertilizer components shall be derived from natural organic sources of urea formaldehyde, phosphorous, and potassium in the following composition:

1. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified testing agency.

2.05 GEOTEXTILE FABRIC

A. Geotextile shall consist of needled, non-woven polypropylene fibers and meet the following properties:

1. Grab tensile strength (ASTM D4632) ≥ 120 lbs.
2. Mullen burst strength (ASTM D3786) ≥225 psi.
3. Flow rate (ASTM D4491) ≥ 95 gal/min/ft2.
4. UV Resistance after 500 hours (ASTM D4355) ≥ 70%.
5. Heat-set or heat calendared fabrics are not permitted.

PART 3 - EXECUTION

3.01 GENERAL

A. Place planting soil and fertilizers according to requirements in other Specification Sections.

B. Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in planting soil.

C. Proceed with placement only after unsatisfactory conditions have been corrected.
3.02 PREPARATION OF UNAMENDED, ON-SITE SOIL BEFORE AMENDING

A. If on-site topsoil is to be stockpiled and reused, excavate soil from designated areas and stockpile until amended. Depth of topsoil may vary, generally between 4” and 6”. Contractor shall make adjustments to excavation depths as necessary to avoid mixing subsoil with topsoil.

B. Unacceptable Materials: Clean soil of concrete slurry, concrete layers or chunks, cement, plaster, building debris, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, acid, and other extraneous materials that are harmful to plant growth.

C. Unsuitable Materials: Clean soil to contain a maximum of 8 percent by dry weight of stones, roots, plants, sod, clay lumps, and pockets of coarse sand.

3.03 PLACING BLENDED PLANTING SOIL OVER EXPOSED SUBGRADE

A. General: Generally, Planting Soil Mix and Bio-Retention Soil mix is to be mixed before placement in its final location. For large lawn areas, Planting Soil may be mixed in place, with approval of the Engineer or Landscape Architect. Do not apply materials or till if existing soil or subgrade is frozen, muddy, or excessively wet.

B. Application:

1. FOR LAWN AREAS:
 a. Till subgrade to a minimum depth of 8 inches. Remove stones larger than 1-1/2 inches in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property.
 b. Apply approximately two inches of the Planting Soil Mix over prepared, loosened subgrade. Mix thoroughly into top 4 inches of subgrade.
 c. Spread remaining Planting Soil Mix to meet depths as indicated on plan (4” minimum), and as required to meet finished grades after natural settlement. Do not spread if soil or subgrade is frozen, muddy, or excessively wet. Compact each lift of to 75 to 82 percent of maximum Standard Proctor density according to ASTM D 698.
 d. Finish grade planting soil to a smooth, uniform surface plane with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades.
 e. Test for compaction before installing seed or sod.
 f. Install seed mix or sod in accordance with the applicable specification section.

2. FOR LANDSCAPED AREAS, planting beds, and tree and shrub pits:
 a. Till subgrade to a minimum depth of 8 inches. Remove stones larger than 1-1/2 inches in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property.
 b. Apply approximately two inches of the Planting Soil Mix over prepared, loosened subgrade. Mix thoroughly into top 4 inches of subgrade.
 c. Spread Planting Soil Mix in lifts not exceeding 8 inches in loose depth for material compacted by compaction equipment, and not more than 4 inches in loose depth for material compacted by hand-operated tampers. Compact each lift soil to 75 to 82 percent of maximum Standard Proctor density according to ASTM D 698.
 d. Finish grade planting soil to a smooth, uniform surface plane with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades.
 e. Test for compaction before installing seed or sod.
 f. Install seed mix or sod in accordance with the applicable specification section.
percent of maximum Standard Proctor density according to ASTM D 698. Continue until planting bed or tree pit excavation is filled to finished grade.

d. Finish grade planting soil to a smooth, uniform surface plane with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades.
e. Test for compaction before installing plant material.
f. Install plant material in accordance with the applicable specification section.

3.04 FIELD QUALITY CONTROL

A. Testing Agency: Contractor to engage a qualified testing agency to perform tests and inspections.

B. Perform the following tests:

1. Compaction: Test Planting Soil Mix compaction after placing each lift and at completion using a densitometer or soil-compaction meter calibrated to a reference test value based on laboratory testing according to ASTM D 698. Space tests at no less than one for each 1000 sq. ft. of in-place soil or part thereof.

2. Filtration: Perform infiltration testing on the Bio-Retention Soil Mix after placement. If the tested infiltration rate is determined to be out of the allowable range of 0.5 to 1.0 inches per hour, additional soil amendments will be required.

C. Soil will be considered defective if it does not pass tests.

D. Submit test reports.

E. Label each sample and test report with the date, location keyed to a site plan or other location system, visible conditions when and where sample was taken, and sampling depth.

3.05 PROTECTION

A. Protection Zone: Identify protection zones according to Section 015639 "Temporary Tree and Plant Protection."

B. Protect areas of in-place soil from additional compaction, disturbance, and contamination. Prohibit the following practices within these areas except as required to perform planting operations:

1. Storage of construction materials, debris, or excavated material.
2. Parking vehicles or equipment.
3. Vehicle traffic.
4. Foot traffic.
5. Erection of sheds or structures.
6. Impoundment of water.
7. Excavation or other digging unless otherwise indicated.

C. If planting soil or subgrade is overcompacted, disturbed, or contaminated by foreign or deleterious materials or liquids, remove the planting soil and contamination; restore the subgrade as directed.
by Engineer or Landscape Architect and replace contaminated planting soil with new planting soil.

3.06 CLEANING

A. Protect areas adjacent to planting-soil preparation and placement areas from contamination. Keep adjacent paving and construction clean and work area in an orderly condition.

B. Remove surplus soil and waste material including excess subsoil, unsuitable materials, trash, and debris and legally dispose of them off Owner's property unless otherwise indicated.

1. Dispose of excess subsoil and unsuitable materials on-site where directed by Owner.

END OF SECTION 32 91 13
SECTION 32 92 00 - TURF AND GRASSES

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.02 SUMMARY

A. Section Includes:
 1. Seeding.
 2. Hydroseeding.

B. Related Requirements:
 1. Section 329300 "Plants" for trees, shrubs, ground covers, and other plants as well as border edgings and mow strips.

1.03 DEFINITIONS

A. Finish Grade: Elevation of finished surface of planting soil.

B. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. Pesticides include insecticides, miticides, herbicides, fungicides, rodenticides, and molluscicides. They also include substances or mixtures intended for use as a plant regulator, defoliant, or desiccant.

C. Pests: Living organisms that occur where they are not desired or that cause damage to plants, animals, or people. Pests include insects, mites, grubs, mollusks (snails and slugs), rodents (gophers, moles, and mice), unwanted plants (weeds), fungi, bacteria, and viruses.

D. Planting Soil: Existing, on-site soil; imported soil; or manufactured soil that has been modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth. See Section 329113 "Soil Preparation" and drawing designations for planting soils.

E. Subgrade: The surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.

1.04 INFORMATIONAL SUBMITTALS

A. Qualification Data: For landscape Installer.
B. Certification of Grass Seed: From seed vendor for each grass-seed monostand or mixture, stating the botanical and common name, percentage by weight of each species and variety, and percentage of purity, germination, and weed seed. Include the year of production and date of packaging.

C. Product Certificates: For fertilizers, from manufacturer.

D. Pesticides and Herbicides: Product label and manufacturer's application instructions specific to Project.

1.05 CLOSEOUT SUBMITTALS

A. Maintenance Data: Recommended procedures to be established by Owner for maintenance of turf during a calendar year. Submit before expiration of required maintenance periods.

1.06 QUALITY ASSURANCE

A. Installer Qualifications: A qualified landscape installer whose work has resulted in successful turf establishment.

1. Installer's Field Supervision: Require Installer to maintain an experienced full-time supervisor on Project site when work is in progress.

1.07 DELIVERY, STORAGE, AND HANDLING

A. Seed and Other Packaged Materials: Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of compliance with state and Federal laws, as applicable.

B. Sod: Harvest, deliver, store, and handle sod according to requirements in "Specifications for Turfgrass Sod Materials" and "Specifications for Turfgrass Sod Transplanting and Installation" sections in TPI's "Guideline Specifications to Turfgrass Sodding." Deliver sod within 24 hours of harvesting and in time for planting promptly. Protect sod from breakage and drying.

C. Bulk Materials:

1. Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas or plants.

2. Provide erosion-control measures to prevent erosion or displacement of bulk materials; discharge of soil-bearing water runoff; and airborne dust reaching adjacent properties, water conveyance systems, or walkways.

3. Accompany each delivery of bulk materials with appropriate certificates.

1.08 FIELD CONDITIONS
A. Planting Restrictions: Plant during one of the following periods. Coordinate planting periods with initial maintenance periods to provide required maintenance from date of planting completion.

1. Spring Planting: April 15th through May 31st.
2. Fall Planting: August 17th through October 15th.

B. Weather Limitations: Proceed with planting only when existing and forecasted weather conditions permit planting to be performed when beneficial and optimum results may be obtained. Apply products during favorable weather conditions according to manufacturer's written instructions.

PART 2 - PRODUCTS

2.01 SEED

A. Grass Seed: Fresh, clean, dry, new-crop seed complying with AOSA's "Rules for Testing Seeds" for purity and germination tolerances.

B. Seed Species:

1. Quality: Seed of grass species as listed below, with not less than 85 percent germination, not less than 95 percent pure seed, and not more than 0.5 percent weed seed:
2. Seed mix as indicated on drawings.

2.02 TURFGRASS SOD

A. Turfgrass Sod: Number 1 Quality/Premium, including limitations on thatch, weeds, diseases, nematodes, and insects, complying with "Specifications for Turfgrass Sod Materials" in TPI's "Guideline Specifications to Turfgrass Sodding." Furnish viable sod of uniform density, color, and texture that is strongly rooted and capable of vigorous growth and development when planted.

B. Turfgrass Species: Sod of grass species as follows, with not less than 85 percent germination, not less than 95 percent pure seed, and not more than 0.5 percent weed seed:

1. Full Sun: Kentucky bluegrass (Poa pratensis), a minimum of three cultivars.

2.03 FERTILIZERS

A. Commercial Fertilizer: Commercial-grade complete fertilizer of neutral character, consisting of fast- and slow-release nitrogen, 50 percent derived from natural organic sources of urea formaldehyde, phosphorous, and potassium in the following composition:

1. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.
B. Slow-Release Fertilizer: Granular or pelleted fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition:

1. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.

2.04 MULCHES

A. Straw Mulch: Provide air-dry, clean, mildew- and seed-free, salt hay or threshed straw of wheat, rye, oats, or barley.

B. Fiber Mulch: Biodegradable, dyed-wood, cellulose-fiber mulch; nontoxic and free of plant-growth or germination inhibitors; with a maximum moisture content of 15 percent and a pH range of 4.5 to 6.5.

2.05 PESTICIDES AND HERBICIDES

A. General: Pesticide, registered and approved by the EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as required for Project conditions and application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction.

B. Pre-Emergent Herbicide (Selective and Nonselective): Effective for controlling the germination or growth of weeds within planted areas at the soil level directly below the mulch layer.

C. Post-Emergent Herbicide (Selective and Nonselective): Effective for controlling weed growth that has already germinated.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine areas to be planted for compliance with requirements and other conditions affecting installation and performance of the Work.

1. Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in soil within a planting area.

2. Suspend planting operations during periods of excessive soil moisture until the moisture content reaches acceptable levels to attain the required results.

3. Uniformly moisten excessively dry soil that is not workable or which is dusty.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
C. If contamination by foreign or deleterious material or liquid is present in soil within a planting area, remove the soil and contamination as directed by Landscape Architect and replace with new planting soil.

3.02 PREPARATION

A. Protect structures; utilities; sidewalks; pavements; and other facilities, trees, shrubs, and plantings from damage caused by planting operations.
 1. Protect adjacent and adjoining areas from hydroseeding and hydromulching overspray.
 2. Protect grade stakes set by others until directed to remove them.

B. Install erosion-control measures to prevent erosion or displacement of soils and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways.

3.03 TURF AREA PREPARATION

A. General: Prepare planting area for soil placement and mix planting soil according to Section 329113 "Soil Preparation”.

B. Placing Planting Soil: Place planting soil over exposed subgrade. Smooth the surface with a wide landscaping rake.

C. Add soil amendments to the soil according to the recommendations supplied in the Soil Test Report. Apply the amendments in two directions to ensure even coverage of spreadable amendments. Till into the soil to a depth of at least 6 inches.

D. Resmooth the surface with a wide landscaping rake. Remove any stones or vegetative matter that has risen to the surface during tilling and raking.

E. Roll the area with a lawn roller to create a firm work surface. Roll until an average person can walk on the compacted soil and leave footprints that are ½” deep.

F. Water the surface to check for puddles. When soil is dry enough to work, regrade the surface to eliminate puddles and provide positive drainage, as indicated on the construction plans.

G. Moisten prepared area before planting if soil is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.

H. Before planting, obtain Landscape Architect's acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading.

3.04 SEEDING

A. Sow seed with spreader or seeding machine. Do not broadcast or drop seed when wind velocity exceeds 5 mph.
1. Evenly distribute seed by sowing equal quantities in two directions at right angles to each other.
2. Do not use wet seed or seed that is moldy or otherwise damaged.
3. Do not seed against existing trees. Limit extent of seed to outside edge of planting saucer.

B. Sow seed at a total rate of 3 to 4 lb/1000 sq. ft.

C. Rake seed lightly into top 1/8 inch of soil, roll lightly, and water with fine spray.

D. Protect seeded areas with slopes exceeding 3:1 with an organic soil stabilizer installed according to manufacturer's written instructions.

E. Protect seeded areas by spreading straw mulch. Spread uniformly at a minimum rate of 2 tons/acre to form a continuous blanket 1-1/2 inches in loose thickness over seeded areas. Spread by hand, blower, or other suitable equipment.

3.05 HYDROSEEDING

A. Hydroseeding: Mix specified seed, fertilizer, and fiber mulch in water, using equipment specifically designed for hydroseed application. Continue mixing until uniformly blended into homogeneous slurry suitable for hydraulic application.

1. Mix slurry with fiber-mulch manufacturer's recommended tackifier.
2. Spray-apply slurry uniformly to all areas to be seeded in a one-step process. Apply slurry at a rate so that mulch component is deposited at not less than 1500-lb/acre dry weight, and seed component is deposited at not less than the specified seed-sowing rate.

3.06 SODDING

A. Lay sod within 24 hours of harvesting. Do not lay sod if dormant or if ground is frozen or muddy.

B. Lay sod to form a solid mass with tightly fitted joints. Butt ends and sides of sod; do not stretch or overlap. Stagger sod strips or pads to offset joints in adjacent courses. Avoid damage to soil or sod during installation. Tamp and roll lightly to ensure contact with soil, eliminate air pockets, and form a smooth surface. Work sifted soil or fine sand into minor cracks between pieces of sod; remove excess to avoid smothering sod and adjacent grass.

1. Lay sod across slopes exceeding 1:3.
2. Anchor sod on slopes exceeding 1:6 with steel staples spaced as recommended by sod manufacturer but not less than two anchors per sod strip to prevent slippage.

C. Saturate sod with fine water spray within two hours of planting. During first week after planting, water daily or more frequently as necessary to maintain moist soil to a minimum depth of 1-1/2 inches below sod.

3.07 TURF MAINTENANCE
A. General: Maintain and establish turf by watering, fertilizing, weeding, mowing, trimming, replanting, and performing other operations as required to establish healthy, viable turf. Roll, regrade, and replant bare or eroded areas and remulch to produce a uniformly smooth turf. Provide materials and installation the same as those used in the original installation.

1. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace materials and turf damaged or lost in areas of subsidence.
2. In areas where mulch has been disturbed by wind or maintenance operations, add new mulch and anchor as required to prevent displacement.
3. Apply treatments as required to keep turf and soil free of pests and pathogens or disease. Use integrated pest management practices whenever possible to minimize the use of pesticides and reduce hazards.

B. Watering: Install and maintain temporary piping, hoses, and turf-watering equipment to convey water from sources and to keep turf uniformly moist to a depth of 4 inches.

1. Schedule watering to prevent wilting, puddling, erosion, and displacement of seed or mulch. Lay out temporary watering system to avoid walking over muddy or newly planted areas.
2. Water turf with fine spray at a minimum rate of 1 inch per week unless rainfall precipitation is adequate.

C. Mow turf as soon as top growth is tall enough to cut. Repeat mowing to maintain specified height without cutting more than one-third of grass height. Remove no more than one-third of grass-leaf growth in initial or subsequent mowings. Do not delay mowing until grass blades bend over and become matted. Do not mow when grass is wet. Schedule initial and subsequent mowings to maintain the following grass height:

1. Mow grass to a height of 2 1/2 to 3 inches or less.

D. Turf Postfertilization: Apply fertilizer after initial mowing and when grass is dry.

3.08 SATISFACTORY TURF

A. Turf installations shall meet the following criteria as determined by Landscape Architect:

1. Satisfactory Seeded Turf: At end of maintenance period, a healthy, uniform, close stand of grass has been established, free of weeds and surface irregularities, with coverage exceeding 90 percent over any 10 sq. ft. and bare spots not exceeding 5 by 5 inches.
2. Satisfactory Sodded Turf: At end of maintenance period, a healthy, well-rooted, even-colored, viable turf has been established, free of weeds, open joints, bare areas, and surface irregularities.

B. Use specified materials to reestablish turf that does not comply with requirements, and continue maintenance until turf is satisfactory.

3.09 PESTICIDE APPLICATION
A. Apply pesticides and other chemical products and biological control agents according to requirements of authorities having jurisdiction and manufacturer's written recommendations. Coordinate applications with Owner's operations and others in proximity to the Work. Notify Owner before each application is performed.

B. Post-Emergent Herbicides (Selective and Nonselective): Apply only as necessary to treat already-germinated weeds and according to manufacturer's written recommendations.

3.10 CLEANUP AND PROTECTION

A. Promptly remove soil and debris created by turf work from paved areas. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas.

B. Remove surplus soil and waste material, including excess subsoil, unsuitable soil, trash, and debris, and legally dispose of them off Owner's property.

C. Erect temporary fencing or barricades and warning signs as required to protect newly planted areas from traffic. Maintain fencing and barricades throughout initial maintenance period and remove after plantings are established.

D. Remove nondegradable erosion-control measures after grass establishment period.

END OF SECTION 32 92 00
SECTION 334100 STORM UTILITY DRAINAGE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

B. City of Philadelphia and PennDOT standard specifications. The most stringent requirements shall be considered the base requirements.

1.2 SUMMARY

A. Section includes gravity flow, non-pressure storm drainage outside the building, with the following components:

(1) Pipe and fittings.

(2) Expansion joints and deflection fittings.

(3) Backwater valves.

(4) Cleanouts.

(5) Drains.

(6) Manholes.

(7) Stormwater inlets.

(8) Stormwater disposal systems.

1.3 DEFINITIONS

A. FRP: Fiberglass-reinforced plastic.

B. HDPE: High-density polyethylene plastic.

C. PE: Polyethylene plastic.

D. RCP: Reinforced Concrete Pipe.
1.4 PERFORMANCE REQUIREMENTS

A. Gravity-flow, nonpressure, drainage-piping pressure rating: 10-foot head of water. Pipe joints shall be at least silttight, unless otherwise noted.

1.5 SUBMITTALS

A. Product Data: For each type of product indicated.
 (1) Special pipe fittings

B. Shop Drawings:
 (1) Manholes: Include plans, elevations, sections, details, frames, and covers.
 (2) Stormwater inlets: Include plans, elevations, sections, details, frames, covers, and grates.
 (3) Stormwater Detention Structures: Include plans, elevations, sections, details, frames, covers, design calculations, and concrete design-mix reports.
 (4) Stormwater vapor tight trap.
 (5) Water Quality Filter Devices.

C. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from storm drainage system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.

D. Field quality-control reports.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Do not store plastic manholes, pipe, and fittings in direct sunlight.

B. Protect pipe, pipe fittings, and seals from dirt and damage.

C. Handle manholes according to manufacturer's written rigging instructions.

D. Handle stormwater inlets according to manufacturer's written rigging instructions.

1.7 PROJECT CONDITIONS
A. Interruption of Existing Storm Drainage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:

(1) Notify Construction Manager no fewer than 2 days in advance of proposed interruption of service.

(2) Do not proceed with interruption of service without Owner's written permission.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other part 2 articles where titles below introduce lists, the following requirements apply to product selection.

(1) Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 PIPING MATERIAL

A. Refer to Part 3 “Piping Applications”.

2.3 CONCRETE PIPE AND FITTINGS

A. Nonreinforced-Concrete Sewer Pipe and Fittings: ASTM C 14 (ASTM C 14M), Class 1, Class 2, Class 3, with bell-and-spigot or tongue-and-groove ends and gasketed joints with ASTM C 443 (ASTM C 443M), rubber gaskets, sealant joints with ASTM C 990 (ASTM C 990M), bitumen or butyl-rubber sealant.

B. Reinforced-Concrete Sewer Pipe and Fittings: ASTM C 76 (ASTM C 76M).

(1) Bell-and-spigot or tongue-and-groove ends and gasketed joints with ASTM C 443 (ASTM C 443M), rubber gaskets, sealant joints with ASTM C 990 (ASTM C 990M), bitumen or butyl-rubber sealant.

PART 1 -

(2) Class I, Wall B.

(3) Class II, Wall B.

STORM UTILITY
DRAINAGE PIPING

334100- 3
2.4 NONPRESSURE TRANSITION COUPLINGS

A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.

(1) For Concrete Pipes: ASTM C 443 (ASTM C 443M), rubber.

(2) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

B. Shielded, Flexible Couplings:

(1) Description: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

(2) Available Manufacturers
- Cascade Waterworks MFG.
- Dallas Specialty & MFG Co.
- Mission Rubber Co.

2.5 BACKWATER VALVES

A. Plastic Backwater Valves:

(1) Available manufacturers tide flex 30” checkmate value.

(2) Description: Horizontal type; with elastomer body, and swing check valve.

2.6 CLEANOUTS

A. Cast-Iron Cleanouts:

(1) Manufacturers
- Josam Company
- MIFAB, Inc
- Smith, Jay R. Mfg. Co
- Tyler Pipe; a subsidiary of McWane Inc.
- Watts; a Watts Water Technologies company
- Zurn Industries, LLC

(2) Description: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.

(3) Top-Loading Classification(s): Heavy Duty

(4) Sewer Pipe Fitting and Riser to Cleanout: ASTM A 74, Service class, cast-iron soil pipe and fittings.

PART 2 -

2.7 MANHOLES

A. Standard Precast Concrete Manholes:

(1) Description: ASTM C 478 (ASTM C 478M), precast, reinforced concrete, of depth indicated, with provision for sealant joints.

(2) Diameter: 48 inches (1200 mm) minimum unless otherwise indicated.

(3) Ballast: Increase thickness of precast concrete sections or add concrete to base section as required to prevent flotation.

(4) Base Section: 6-inch (150-mm) minimum thickness for floor slab and 4-inch (102-mm) minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.

(5) Riser Sections: 4-inch (102-mm) minimum thickness, and lengths to provide depth indicated.

(6) Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated, and top of cone of size that matches grade rings.

(7) Joint Sealant: ASTM C 990 (ASTM C 990M), bitumen or butyl rubber.

(8) Resilient Pipe Connectors: ASTM C 923 (ASTM C 923M), cast or fitted into manhole walls, for each pipe connection.
(9) Steps: Individual FRP steps, ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP, ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch (300- to 400-mm) intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.

(10) Adjusting Rings: Interlocking HDPE rings with level or sloped edge in thickness and diameter matching manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.

(11) Grade Rings: Reinforced-concrete rings, 6- to 9-inch (150- to 225-mm) total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.

PART 3 -

B. Designed Precast Concrete Manholes:

(1) Description: ASTM C 913; designed according to ASTM C 890 for A-16 (AASHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.

(2) Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.

(3) Joint Sealant: ASTM C 990 (ASTM C 990M), bitumen or butyl rubber.

(4) Resilient Pipe Connectors: ASTM C 923 (ASTM C 923M), cast or fitted into manhole walls, for each pipe connection.

(5) Steps: Individual FRP steps, ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP, ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch (300- to 400-mm) intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.

(6) Adjusting Rings: Interlocking HDPE rings with level or sloped edge in thickness and diameter matching manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
(7) Grade Rings: Reinforced-concrete rings, 6- to 9-inch (150- to 225-mm) total thickness, to match diameter of manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope.

C. Manhole Frames and Covers:

(1) Description: Ferrous; 24-inch (610-mm) ID by 7- to 9-inch (175- to 225-mm) riser with 4-inch- (102-mm-) minimum width flange and 26-inch- (660-mm-) diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."

(2) Material: ASTM A 48/A 48M, Class 35 gray iron unless otherwise indicated.

2.8 CONCRETE

A. General: Cast-in-place concrete according to ACI 318, ACI 350/350R (ACI 350M/350RM), and the following:

(1) Cement: ASTM C 150, Type II.

(2) Fine Aggregate: ASTM C 33, sand.

(3) Coarse Aggregate: ASTM C 33, crushed gravel.

(4) Water: Potable.

B. Portland Cement Design Mix: 4000 psi (27.6 MPa) minimum, with 0.45 maximum water/cementitious materials ratio.

(2) Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

C. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi (27.6 MPa) minimum, with 0.45 maximum water/cementitious materials ratio. Include channels and benches in manholes.

(1) Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.

- Invert Slope: 2 percent through manhole.

D. Ballast and Pipe Supports: Portland cement design mix, 3000 psi (20.7 MPa) minimum, with 0.58 maximum water/cementitious materials ratio.

(2) Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

2.9 CATCH BASINS

A. Standard Precast Concrete Catch Basins:

(1) Description: ASTM C 478 (ASTM C 478M), precast, reinforced concrete, of depth indicated, with provision for sealant joints.

(2) Base Section: 6-inch (150-mm) minimum thickness for floor slab and 4-inch (102-mm) minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.

(3) Riser Sections: 4-inch (102-mm) minimum thickness, 48-inch (1200-mm) diameter, and lengths to provide depth indicated.

(4) Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated. Top of cone of size that matches grade rings.

(5) Joint Sealant: ASTM C 990 (ASTM C 990M), bitumen or butyl rubber.

(6) Adjusting Rings: Interlocking rings with level or sloped edge in thickness and shape matching catch basin frame and grate. Include sealant recommended by ring manufacturer.

(7) Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch (150- to 225-mm) total thickness, that match 24-inch- (610-mm-) diameter frame and grate.

(8) Steps: Individual FRP steps, ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP, ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch (300- to 400-mm) intervals. Omit steps if total depth from floor of catch basin to finished grade is less than 60 inches.

(9) Pipe Connectors: ASTM C 923 (ASTM C 923M), resilient, of size required, for each pipe connecting to base section.

B. Designed Precast Concrete Catch Basins: ASTM C 913, precast, reinforced concrete; designed according to ASTM C 890 for A-16 (ASSHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for joint sealants.
(1) Joint Sealants: ASTM C 990 (ASTM C 990M), bitumen or butyl rubber.

(2) Adjusting Rings: Interlocking rings with level or sloped edge in thickness and shape matching catch basin frame and grate. Include sealant recommended by ring manufacturer.

(3) Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch (150- to 225-mm) total thickness, that match 24-inch- (610-mm-) diameter frame and grate.

(4) Steps: Individual FRP steps, ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP, ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch (300- to 400-mm) intervals. Omit steps if total depth from floor of catch basin to finished grade is less than 60 inches.

(5) Pipe Connectors: ASTM C 923 (ASTM C 923M), resilient, of size required, for each pipe connecting to base section.

C. Frames and Grates: ASTM A 536, Grade 60-40-18, ductile iron designed for A-16, structural loading. Include flat grate with small square or short-slotted drainage openings.

(1) Size: 24 by 48 inches (610 by 610 mm) minimum unless otherwise indicated.

(2) Grate Free Area: Approximately 50 percent unless otherwise indicated.

D. Frames and Grates: ASTM A 536, Grade 60-40-18, grey iron designed for A-16, structural loading. Include 24-inch (610-mm) ID by 7- to 9-inch (175- to 225-mm) riser with 4-inch (102-mm) minimum width flange, and 26-inch- (660-mm-) diameter flat grate with small square or short-slotted drainage openings.

(1) Grate Free Area: Approximately 50 percent unless otherwise indicated.

2.10 STORMWATER INLETS

A. Curb Inlets: Made with vertical curb opening, of materials and dimensions according to PWD standards.

B. Gutter Inlets: Made with horizontal gutter opening, of materials and dimensions according to PWD standards. Include heavy-duty frames and grates.

C. Frames and Grates: Heavy duty, according to PWD standards.

D. Vapor Tight Trap: Hanging type traps are not permitted.
2.11 PIPE OUTLETs

A. Head Walls: Cast-in-place reinforced concrete, with apron and tapered sides.

B. Riprap Basins: Broken, irregularly sized and shaped, graded stone according to NSSGA's "Quarried Stone for Erosion and Sediment Control."

 (1) Average Size: NSSGA No. R-3, screen opening 2 inches (51 mm).
 (2) Average Size: NSSGA No. R-4, screen opening 3 inches (76 mm).
 (3) Average Size: NSSGA No. R-5, screen opening 5 inches (127 mm).

D. Energy Dissipaters: According to NSSGA's "Quarried Stone for Erosion and Sediment Control," No. A-1, 3-ton (2721-kg) average weight armor stone, unless otherwise indicated.

2.12 STORMWATER DISPOSAL SYSTEMS

A. Water Quality Systems:

 (1) Water Quality Filter Device.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavation, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets,
seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.

C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.

D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.

E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.

F. Install gravity-flow, nonpressure drainage piping according to the following:

1. Install piping pitched down in direction of flow.
2. Install piping NPS 6 (DN 150), NPS 5 and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place concrete supports or anchors.
3. Install reinforced-concrete sewer piping according to ASTM C 1479 and ACPA's "Concrete Pipe Installation Manual."

G. Install corrosion-protection piping encasement over the following underground metal piping according to ASTM A 674 or AWWA C105:

2. Hubless cast-iron soil pipe and fittings.
3. Ductile-iron pipe and fittings.
4. Expansion joints and deflection fittings.

3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure drainage piping according to the following:

1. Join corrugated PE piping according to ASTM D 3212 for push-on joints.
3. Join dissimilar pipe materials with nonpressure-type flexible couplings.
3.4 CLEANOUT INSTALLATION

A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts and cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.

(1) Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.

B. Set cleanout frames and covers in earth in cast-in-place concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding earth grade.

C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.5 DRAIN INSTALLATION

A. Install type of drains in locations indicated.

(1) Use Heavy-Duty, top-loading classification drains in vehicle-traffic service areas.

B. Embed drains in 4-inch minimum concrete around bottom and sides.

C. Fasten grates to drains if indicated.

D. Set drain frames and covers with tops flush with pavement surface.

E. Assemble trench sections with flanged joints.

F. Embed trench sections in 4-inch minimum concrete around bottom and sides.

3.6 MANHOLE INSTALLATION

A. General: Install manholes, complete with appurtenances and accessories indicated.

B. Install precast concrete manhole sections with sealants according to ASTM C 891.

C. Where specific manhole construction is not indicated, follow manhole manufacturer's written instructions.

D. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.
3.7 CATCH BASIN INSTALLATION
 A. Construct catch basins to sizes and shapes indicated.
 B. Set frames and grates to elevations indicated.

3.8 CONCRETE PLACEMENT
 A. Place cast-in-place concrete according to ACI 318.

3.9 STORMWATER DISPOSAL SYSTEM INSTALLATION
 A. Chamber Systems: Excavate trenches of width and depth, and install system and backfill
 according to chamber manufacturer's written instructions.

3.10 CONNECTIONS
 A. Connect nonpressure, gravity-flow drainage piping in building's storm building drains
 specified in Section 221413 "Facility Storm Drainage Piping."
 B. Make connections to existing piping and underground manholes.
 (1) Use commercially manufactured wye fittings for piping branch connections. Remove section
 of existing pipe; install wye fitting into existing piping; and encase entire wye fitting, plus 6-inch
 (150-mm) overlap, with not less than 6 inches (150 mm) of concrete with 28-day compressive
 strength of 3000 psi (20.7 MPa).
 (2) Make branch connections from side into existing piping, NPS 4 to NPS 20
 (DN 100 to DN 500). Remove section of existing pipe, install wye fitting into existing piping,
 and encase entire wye with not less than 6 inches (150 mm) of concrete with 28-day compressive
 strength of 3000 psi (20.7 MPa).
 (3) Make branch connections from side into existing piping, NPS 21 (DN 525) or larger,
 or to underground manholes and structures by cutting into existing unit and creating an opening
 large enough to allow 3 inches (76 mm) of concrete to be packed around entering connection.
 Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be
 flush with inside wall unless otherwise indicated. On outside of pipe, manhole, or structure wall,
 encase entering connection in 6 inches (150 mm) of concrete for minimum length of 12 inches
 (300 mm) to provide additional support of collar from connection to undisturbed ground.

- Use concrete that will attain a minimum 28-day compressive strength of 3000 psi (20.7 MPa) unless
 otherwise indicated.
• Use epoxy-bonding compound as interface between new and existing concrete and piping materials.

(4) Protect existing piping, manholes, and structures to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

C. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

(1) Use nonpressure-type flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.

• Shielded flexible couplings for same or minor difference OD pipes.
• Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
• Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

(2) Use pressure-type pipe couplings for force-main joints.

3.11 CLOSING ABANDONED STORM DRAINAGE SYSTEMS

A. Abandoned Piping: Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed. Use either procedure below:

(1) Close open ends of piping with at least 8-inch thick, brick masonry bulkheads.

(2) Close open ends of piping with threaded metal caps, plastic plugs, or other acceptable methods suitable for size and type of material being closed. Do not use wood plugs.

B. Abandoned Manholes and Structures: Excavate around manholes and structures as required and use one procedure below:

(1) Remove manhole or structure and close open ends of remaining piping.

(2) Remove top of manhole or structure down to at least 36 inches below final grade. Fill to within 12 inches of top with stone, rubble, gravel, or compacted dirt. Fill to top with concrete.

C. Backfill to grade according to Section 312000 "Earth Moving."
3.12 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches (610 mm) of backfill is in place, and again at completion of Project.

(1) Submit separate reports for each system inspection.

(2) Defects requiring correction include the following:
 - Alignment: Less than full diameter of inside of pipe is visible between structures.
 - Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - Infiltration: Water leakage into piping.
 - Exfiltration: Water leakage from or around piping.

(3) Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.

(4) Reinspect and repeat procedure until results are satisfactory.

B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.

(1) Do not enclose, cover, or put into service before inspection and approval.

(2) Test completed piping systems according to requirements of authorities having jurisdiction.

(3) Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.

(4) Submit separate report for each test.

(5) Gravity-Flow Storm Drainage Piping: Test according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 - Exception: Piping with soiltight joints unless required by authorities having jurisdiction.
 - Option: Test plastic piping according to ASTM F 1417.
• Option: Test concrete piping according to ASTM C 924 (ASTM C 924M).

(6) Force-Main Storm Drainage Piping: Perform hydrostatic test after thrust blocks, supports, and anchors have hardened. Test at pressure not less than 1-1/2 times the maximum system operating pressure, but not less than 150 psig (1035 kPa).

• Ductile-Iron Piping: Test according to AWWA C600, "Hydraulic Testing" Section.

• PVC Piping: Test according to AWWA M23, "Testing and Maintenance" Chapter.

C. Leaks and loss in test pressure constitute defects that must be repaired.

D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.13 CLEANING

A. Clean interior of piping of dirt and superfluous materials. Flush with potable water.

END OF SECTION 334100
SECTION 334713 - POND AND RESERVOIR LINERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes geomembrane liners for ponds and reservoirs.
B. Related Requirements:
 1. Section 033000 "Cast-in-Place Concrete" for perimeter concrete.
 2. Retain first subparagraph below for floating covers.
 3. Section 312000 "Earth Moving" for excavating, compacting, and grading the subgrade; for excavating and backfilling the anchor trench; for protecting the earthwork; for adding requirements for the earth cover; and for the filter fabric and other geotextiles.
 4. Section 312319 "Dewatering" for removing ground water from subgrade to the extent required by liner manufacturer.

1.3 DEFINITIONS
A. Plastics Terminology: See ASTM D 1600 for definitions of abbreviated terms for plastics not otherwise defined in this Section.
B. CSPE: Chlorosulfonated polyethylene.
C. EIA: Ethylene interpolymer alloy.
D. EPDM: Ethylene-propylene-diene terpolymer.
E. PE: Polyethylene.
F. PP: Polypropylene.

1.4 PERFORMANCE REQUIREMENTS
A. Provide geomembrane liners that prevent the passage of water
1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include the following:
 1. Sheets for geomembrane liners.
 2. Seaming adhesives, solvents, and extrusions.
 3. Penetration assemblies.
 4. Accessories for floating covers.

B. Shop Drawings: Show fabrication and installation details for geomembrane liners. Show panel layout, seams, penetrations, perimeter anchorage, and methods of attachment and sealing to other construction. Differentiate between factory and field seams and joints.

C. Samples: For the following products, in sizes indicated:
 1. Geomembrane Panels: For each type, not less than one 12-inch seam length for factory-bonded sheets and one 12-inch seam length for field-bonded sheets.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer

B. Product Certificates: For each type of geomembrane liner from manufacturer.

C. Product Test Reports: For each geomembrane sheet, based on evaluation of comprehensive tests performed by a qualified testing agency.

D. Source quality-control reports.

E. Field quality-control reports.

F. Warranty: Special warranty specified in this Section.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For geomembrane liner to include in maintenance manuals.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: An employer of workers trained and approved by manufacturer.

B. Source Limitations: Obtain geomembrane liner, accessories, and required seaming materials, solvents, and adhesives from single source.
1.9 PROJECT CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit placement and seaming of geomembrane liners to be performed according to manufacturers' written instructions and warranty requirements.

1.10 WARRANTY

A. Special Warranty: Specified form in which geomembrane manufacturer, geomembrane liner Fabricator, and geomembrane liner Installer agree to repair or replace geomembrane liner that fail(s) in materials or workmanship or that deteriorate(s) under conditions of normal weather within specified warranty period. Warranty does not include deterioration or failure of geomembrane liner due to exposure to harmful chemicals, gases or vapors, abnormal and severe weather phenomena, fire, earthquakes, floods, vandalism, or abuse by persons, animals, or equipment.

1. Failures include, but are not limited to, the following:
 a. Leaks in geomembrane liner.
 b. Defects in seams.
 c. Cracks and holes in floating cover.

2. Warranty Period: 10 year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PVC SHEET MATERIALS

A. PVC Sheet: Formulated from virgin PVC with plasticizers and other modifiers, compounded for use in hydraulic structures, and formed into uniform, flexible sheets with material properties complying with [ASTM D 7176] [PGI 1104, "Specification for PVC Geomembranes,"] for nominal thickness indicated.

1. Nominal Thickness: 30 mils
2. Revise subparagraph below if first side is not smooth. Verify availability with manufacturers.

2.2 MISCELLANEOUS MATERIALS

A. Adhesives: Provide types of adhesive primers, compounds, solvents, and tapes recommended in writing by geomembrane liner manufacturer for bonding to structures (if required), for sealing of seams in geomembrane liner, and for sealing penetrations through geomembrane liner.
B. Penetration Assemblies: Provide manufacturer's standard factory-fabricated assemblies for sealing penetrations. Include joint sealant recommended in writing by geomembrane liner manufacturer and compatible with geomembrane liner, containment conditions, and materials.

C. Battens: Long-length strips of material indicated, size as shown on Drawings. Fabricate battens with sharp projections removed and edges eased and then predrilled or punched for anchors. Provide anchors, or other type of attachment, of type and spacing recommended in writing by geomembrane liner manufacturer for attaching geomembrane liner system to substrate and as indicated.

1. Batten Material: Liner manufacturer's standard system.
2. Batten Material: Aluminum; with stainless-steel anchors, complete with gasket and sealant compatible with geomembrane liner, containment conditions, and materials.
3. Batten Material: Stainless steel; with stainless-steel anchors, complete with gasket and sealant compatible with geomembrane liner, containment conditions, and materials.
4. Batten Material: Plastic compatible with geomembrane liner, cast in place or fastened with stainless-steel anchors, designed to continuously seal geomembrane liner to batten.

D. Sand: ASTM C 33; fine aggregate, natural or manufactured sand.

2.3 FABRICATION

A. Fabricate geomembrane liner panels from sheets in sizes as large as possible with factory-sealed seams, consistent with limitations of weight and installation procedures. Minimize field seaming.

B. Fabricate flotation blocks, wrap in geomembrane, and attach to underside of floating cover according to manufacturer's written instructions.

C. Fabricate ballast tubes of sand-filled geomembrane and attach to top surface of floating cover according to manufacturer's written instructions.

D. Install built-in accessories, hatches, access panels, vents, and walkways on geomembrane floating cover.

2.4 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate geomembrane seams.

B. Destructive Testing: Test for bonded seam strength and peel adhesion every 3000 feet (915 m) or once per panel, whichever is more frequent.

C. PE Liner: Test and inspect factory seams, according to ASTM D 4545, for peel adhesion and for bonded seam strength indicated.
1. Peel Adhesion/Extrusion: Film tear bond and not less than 78 lbf/in. (13.7 kN/m) of extrusion-bonded seam width.
2. Peel Adhesion/Fusion: Film tear bond and not less than 90 lbf/in. (15.8 kN/m) of fused seam width.
3. Bonded Seam Strength: Not less than 120 lbf/in. (21 kN/m) of seam width for seams constructed from two scrim-reinforced sheets, each with nominal sheet thickness of not less than 45 mils (1.14 mm).

D. PVC Liner: Test and inspect factory seams, according to ASTM D 4545, for peel adhesion not less than 10 lbf/in. (1.75 kN/m) of seam width and for bonded seam strength not less than that indicated below for seams constructed from two sheets of minimum nominal thickness indicated for each:

1. Bonded Seam Strength for 30-mil- (0.76-mm-) Thick Sheets: 58.4 lbf/in. (10.2 kN/m) of seam width.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, with Installer present, for compliance with requirements for soil compaction and grading; for subgrade free from angular rocks, rubble, roots, vegetation, debris, voids, protrusions, and ground water; and for other conditions affecting performance of geomembrane liner.

B. Examine anchor trench excavation, where geomembrane liner will be secured, for substrate conditions indicated above and for correct location and configuration.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Provide temporary ballast, until edges are permanently secured, that does not damage geomembrane liner or substrate, to prevent uplift of geomembrane liner in areas with prevailing winds.

B. Prepare surfaces of construction penetrating through geomembrane liner according to geomembrane liner manufacturer's written instructions.

C. Remove curing compounds and coatings from concrete surfaces to be sealed to geomembrane liner.
3.3 INSTALLATION

A. General: Place geomembrane liner over prepared surfaces to ensure minimum handling. Install at basin invert, within underdrain trenches, and up basin side slopes according to Shop Drawings and in compliance with geomembrane liner manufacturer's written instructions. Begin placing geomembrane liner at Project's upwind direction and proceed downwind. Install geomembrane liner in a relaxed condition, free from stress and with minimum wrinkles, and in full contact with subgrade. Do not bridge over voids or low areas in the subgrade. Fit closely and seal around inlets, outlets, and other projections through geomembrane liner. Permanently secure edges.

B. Field Seams: Comply with geomembrane liner manufacturer's written instructions. Form seams by lapping edges of panels 2 to 4 inches (50 to 102 mm.), unless instructions require a larger overlap. Wipe contact surfaces clean and free of dirt, dust, moisture, and other foreign materials. Use solvent-cleaning methods and grind geomembrane seam surfaces if recommended by geomembrane liner manufacturer. Proceed with seaming at required temperatures for materials and ambient conditions. Continuously bond sheet to sheet to construct single or double seams of width recommended for method of seaming used. Seal or fuse free seam edges. Inspect seams and reseal voids.

1. Adhesive Bonding: Apply bonding cement to both contact surfaces in seam area and press together immediately, or use other seaming methods as instructed by geomembrane liner manufacturer. Roll to press surfaces together, to distribute adhesive to leading edges of panels, and to remove wrinkles and fishmouths. Remove excess adhesive.

2. Thermal Bonding: Use thermal-welding technique recommended by geomembrane liner manufacturer. Apply pressure to smoothly bond surfaces together. Examine for and patch wrinkles and fishmouths.

C. Installation in Anchor Trench: Install geomembrane liner in trench according to manufacturer's written instructions and as indicated on the construction drawings. Backfill and compact to lock liner into trench.

D. Attachment to Concrete: Use manufacturer's standard system to suit Project conditions. Support adhesive and geomembrane on minimum 8-inch- (200-mm-) wide concrete substrate unless otherwise indicated.

1. Install batten strips over geomembrane liner as shown on Drawings.

2. Install antichafing strips of geomembrane sheet between geomembrane liner and floating cover according to manufacturer's written instructions.

3. Install floating cover with perimeter fold.

E. Floating Cover Flotation Control: Connect drainage hoses in perimeter fold, sumps, or scuppers to pump or gravity drain system.

F. Liner Repairs: Repair tears, punctures, and other imperfections in geomembrane liner field and seams using patches of geomembrane liner material, liner-to-liner bonding materials, and bonding methods according to geomembrane liner manufacturer's written instructions. Apply
bonding solvent or weld to contact surfaces of both patch and geomembrane liner, and press together immediately. Roll to remove wrinkles.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Nondestructive Testing: Visually inspect seams and patches. Comply with ASTM D 4437 for Air Lance Test, Vacuum Box Testing, or Ultrasonic (High Frequency) Pulse Echo Testing or with GRI Test Method GM6, as applicable to geomembrane liner and seam construction. Record locations of failed seams and patches. Individually number and date occurrences and details of leak and remedial action. Repair leaking seams and patches.

C. Prepare test and inspection reports.

3.5 DISINFECTION

A. Disinfect the complete installation according to procedures in AWWA C652.

3.6 PROTECTION

A. Protect installed geomembrane liner according to manufacturer's written instructions. Repair or replace areas of geomembrane liner damaged by scuffing, punctures, traffic, rough subgrade, or other unacceptable conditions.

B. Before initial filling of pond or placement of earth cover, inspect seams and patched areas to ensure tight, continuously bonded installation. Repair damaged geomembrane and seams and reinspect repaired work.

END OF SECTION 334713